SMC 2023: HILBERT'S $19{ }^{\text {TH }}$ PROBLEM - Day VI

Jeffrey Cheng

June 5, 2023

1 Reorienting Ourselves

Recall what we were actually trying to prove:

PROBLEM: Consider any local minimizer u of an energy functional of the form:

$$
\mathscr{E}(w)=\int_{\Omega} L(\nabla w) d x
$$

where:

1. $\mathscr{E}: H^{1}(\Omega) \rightarrow \mathbb{R}$
2. $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is smooth \& uniformly convex (Jacobian matrix is uniformly positive-definite \& bounded)
3. $\Omega \subset \mathbb{R}^{n}$ is open, bounded

Then, is it true that $u \in C^{\infty}(\Omega)$?

Last week, I gave you the following outline:

$$
u \in H^{1} \underbrace{\Longrightarrow}_{\text {difference quotients }} u \in H^{2} \underbrace{\Longrightarrow}_{\text {de Giorgi-Nash-Moser }} \nabla u \in C^{0, \alpha} \underbrace{\Longrightarrow}_{\text {Schauder }} u \in C^{\infty}
$$

We are now going to talk about the middle step. Recall that any local minimizer u is a weak solution to:

$$
\operatorname{div}(D L(\nabla u))=0
$$

Taking derivatives w.r.t. x_{i} :

$$
\operatorname{div}\left(D^{2} L(\nabla u) \nabla w\right)=0
$$

where $w=\partial_{i} u$. This is an equation for which we want some regularity on w, but we have no information on $D^{2} L(\nabla u)$ besides the uniform ellipticity. This is called a uniformly elliptic equation in divergence form with bounded measurable coefficients. The regularity is given by the famous theorem of de Giorgi-Nash-Moser.

2 The de Giorgi $L^{2} \rightarrow L^{\infty}$ Lemma - I

Theorem 1. Let $v \in H^{1}(\Omega)$ be a weak solution to $\operatorname{div}(A(x) \nabla v)=0$, where A is uniformly elliptic. Then, $\exists \alpha>0$ such that $v \in C^{0, \alpha}(\tilde{\Omega}) \forall \tilde{\Omega} \Subset \Omega$. Further:

$$
\|v\|_{C^{0, \alpha}(\tilde{\Omega})} \leq C\|v\|_{L^{2}(\Omega)}
$$

Note: It is vital that $u \in H^{2}$ so that $w \in H^{1}$ and 1 may be applied to w.
The proof proceeds in 2 steps:

1. $v \in L^{2}(\Omega) \Longrightarrow v \in L^{\infty}(\tilde{\Omega})$ (This is where the technique of de Giorgi-iteration was introduced)
2. $v \in L^{\infty}(\tilde{\Omega}) \Longrightarrow v \in C^{0, \alpha}(\tilde{\Omega})$

Today, we will start the first step and introduce the iteration. As before, we show the proof for $\Omega=B_{1}$. Here is the theorem:

Theorem 2. Let $\mathcal{L} v=-\operatorname{div}(A(x) \nabla v)$, where A is uniformly bounded \mathfrak{G} elliptic. Then, $\exists \delta=$ $\delta(n, \lambda, \Lambda) \geq 0$ such that if $v \in H^{1}\left(B_{1}\right)$ solves:

$$
\mathcal{L} v \leq 0 \quad \text { in } B_{1}, \int_{B_{1}} v_{+}^{2} \leq \delta
$$

then $v \leq 1$ in $B_{\frac{1}{2}}$.
This may not look like an $L^{2} \rightarrow L^{\infty}$ result, but it is, as seen from the following corollary:
Corollary 1. Let $v \in H^{1}\left(B_{1}\right)$ such that $\mathcal{L} v=0$ in B_{1}. Then:

$$
\|v\|_{L^{\infty}\left(B_{\frac{1}{2}}\right)} \leq C\|v\|_{L^{2}\left(B_{1}\right)}
$$

Proof. Let $\tilde{v}=\frac{\sqrt{\delta}}{\left\|v_{+}\right\|_{L^{2}\left(B_{1}\right)}} v_{+}$. Then, applying 2 to \tilde{v} we see that $\|\tilde{v}\|_{L^{\infty}\left(B_{\frac{1}{2}}\right)} \leq 1 \Longrightarrow\left\|v_{+}\right\|_{L^{\infty}\left(B_{1}\right)} \leq$ $\frac{\left\|v_{+}\right\|_{L^{2}\left(B_{1}\right)}}{\sqrt{\delta}}$. Doing the same with v_{-}, we get:

$$
\|v\|_{L^{\infty}\left(B_{\frac{1}{2}}\right)} \leq C\left\|v_{+}\right\|_{L^{2}\left(B_{1}\right)}+C\left\|v_{-}\right\|_{L^{2}\left(B_{1}\right)} \leq C\|v\|_{L^{2}\left(B_{1}\right)}
$$

3 Inequalities

Now, we list the inequalities needed in the proof of the de Giorgi lemma. The first is the Sobolev embedding theorem.

Theorem 3. $\|v\|_{L^{p}(\Omega)} \leq C\|\nabla v\|_{L^{2}(\Omega)} \forall p \leq \frac{2 d}{d-2}$
(the case $d=1$ is a little different, this holds for any $1 \leq p \leq \infty$). The second is Chebyshev's inequality:

Theorem 4. Let $a>0$. Then:

$$
\lambda(\{x:|f| \geq a\}) \leq \frac{1}{a^{p}} \int_{|f| \geq a}|f|^{p} d \lambda \leq \frac{1}{a^{p}}\|f\|_{p}^{p}
$$

The last is a sort of reverse Poincare inequality, called the Caccioppoli inequality:
Theorem 5. Let $v \geq 0 \in H^{1}\left(B_{1}\right)$ be such that $\mathcal{L} v \leq 0$. Then, $\forall \phi \in C_{0}^{\infty}\left(B_{1}\right)$, we have:

$$
\int_{B_{1}}|\nabla(v \phi)|^{2} d x \leq C| | \nabla \phi \|_{L^{\infty}\left(B_{1}\right)}^{2} \int_{B_{1} \cap \operatorname{supp}(\phi)} u^{2} d x
$$

Proof. The weak formulation of $\mathcal{L} v \leq 0$ is:

$$
\langle A \nabla v, \nabla \eta\rangle \leq 0 \forall \eta \in H_{0}^{1}\left(B_{1}\right), \eta \geq 0
$$

where $\langle\cdot, \cdot\rangle$ denotes the L^{2} inner product. The energy estimate follows by choosing $\eta=\phi^{2} v$:

$$
\begin{gathered}
\left\langle A \nabla v, \nabla\left(\phi^{2} v\right)\right\rangle \leq 0 \\
\langle A \nabla v, \phi \nabla(\phi v)\rangle+\langle A \nabla v, \phi v \nabla(\phi)\rangle \leq 0 \\
\langle A \phi \nabla v, \nabla(\phi v)\rangle+\langle A \phi \nabla v, v \nabla \phi\rangle \leq 0 \\
\langle A[\nabla(\phi v)-v \nabla \phi], \nabla(\phi v)+v \nabla \phi\rangle \leq 0 \\
\langle A \nabla(\phi v), \nabla(\phi v)\rangle \leq\langle A v \nabla \phi, v \nabla \phi\rangle+\langle A v \nabla \phi, \nabla(\phi v)\rangle+|\langle A \nabla(\phi v), v \nabla \phi\rangle|
\end{gathered}
$$

Now, using the uniform ellipticity and boundedness:

$$
\lambda \int_{B_{1}}|\nabla(\phi v)|^{2} d x \leq \Lambda \int_{B_{1}} u^{2}|\nabla \phi|^{2} d x+2 \Lambda \int_{B_{1}}|\nabla(\phi v)||v \nabla \phi| d x
$$

Using Young's inequality with ϵ to split the last term and absorb the bad term into the LHS, then gathering constants gives the result.

4 The de Giorgi $L^{2} \rightarrow L^{\infty}$ Lemma - II

Finally, we can show the de Giorgi iteration.
Proof. Define a sequence of:

1. balls $B_{k}:=B\left(0, \frac{1}{2}+\frac{1}{2^{k+1}}\right)$
2. constants $c_{k}:=1-\frac{1}{2^{k}}$
3. cutoffs $\phi_{k} \in C_{0}^{\infty}\left(B_{k-1}\right)$, such that:

$$
\begin{cases}\phi_{k}(x) \equiv 1 & x \in B_{k} \\ \phi_{k}(x) \equiv 0 & x \in B_{k-1}^{c}\end{cases}
$$

4. $\left\|\nabla \phi_{k}\right\|_{L^{\infty}\left(B_{1}\right)} \leq 2^{k}$

Define $v_{k}:=\left(v-c_{k}\right)_{+}, V_{k}:=\int_{B_{k}}\left|\phi_{k} v_{k}(x)\right|^{2} d x$. Roughly, this measures the energy above c_{k} in the ball B_{k}. The goal is to set up a de Giorgi iteration on the sequence $\left\{V_{k}\right\}$, that is to establish a non-linear relation:

$$
V_{k} \leq C^{k} V_{k-1}^{\beta} \text { for } \beta>1, C \neq C(k)
$$

Then, we will try to take the limit to see that $V_{k} \rightarrow 0$. Then, passing into the limit, this will say that:

$$
\int_{B_{\frac{1}{2}}}|v-1|_{+}^{2} d x=0
$$

So v must be ≤ 1 in $B_{\frac{1}{2}}$. Although the C^{k} looks scary, as long as V_{0} is small enough (this is where the δ in the theorem statement comes from), $V_{k} \rightarrow 0$.

Let's set up the iteration. For $k \geq 1$:

$$
V_{k}=\int_{B_{1}}\left(\phi_{k} v_{k}\right)^{2} d x=\int_{B_{1}}\left(\phi_{k} v_{k}\right)^{2} \chi_{\left\{v_{k} \geq 0\right\}} d x=\int_{B_{1}}\left(\phi_{k} v_{k}\right)^{2} \chi_{\left\{v_{k-1} \geq \frac{1}{2^{k}}\right\}} d x
$$

Now, applying Holder with $p=\frac{n}{n-2}, p^{\prime}=\frac{n}{2}$:

$$
\begin{gathered}
\int_{B_{k}}\left(\phi_{k} v_{k}\right)^{2} \chi_{\left\{v_{k-1} \geq \frac{1}{2^{k}}\right\}} d x \leq\left[\int_{B_{k}}\left(\phi_{k} v_{k}\right)^{\frac{2 n}{n-2}} d x\right]^{\frac{n-2}{n}}\left[\int_{B_{k}} \chi_{\left\{v_{k-1} \geq \frac{1}{\left.2^{k}\right\}}\right.} d x\right]^{\frac{2}{n} \leq} \\
{\left[\int_{B_{k}}\left(\phi_{k} v_{k}\right)^{\frac{2 n}{n-2}} d x\right]^{\frac{n-2}{n}}\left[\int_{B_{k}} \chi_{\left\{\phi_{k-1} v_{k-1} \geq \frac{1}{2^{k}}\right\}} d x\right]^{\frac{2}{n}}}
\end{gathered}
$$

Now, using Chebyshev's inequality:

$$
\left[\int_{B_{k}}\left(\phi_{k} v_{k}\right)^{\frac{2 n}{n-2}} d x\right]^{\frac{n-2}{n}}\left[\int_{B_{k}} \chi_{\left\{\phi_{k-1} v_{k-1} \geq \frac{1}{2^{k}}\right\}} d x\right]^{\frac{2}{n}} \leq\left[\int_{B_{k}}\left(\phi_{k} v_{k}\right)^{\frac{2 n}{n-2}} d x\right]^{\frac{n-2}{n}}\left[\left\|\phi_{k-1} v_{k-1}\right\|_{L^{2}\left(B_{1}\right)}^{2} 2^{2 k}\right]^{\frac{2}{n}}
$$

Note that the second term here is exactly $C^{k} U_{k-1}^{\frac{2}{n}}$ (note that $\left(2^{2 k}\right)^{\frac{2}{n}} \leq 2^{4 k}=C^{k}$). We still need the first term to bump the $\frac{2}{n}$ up to bigger than 1. Let's deal with it:

$$
\begin{gathered}
{\left[\int_{B_{k}}\left(\phi_{k} v_{k}\right)^{\frac{2 n}{n-2}} d x\right]^{\frac{n-2}{n}} \underbrace{\leq}_{\text {Sobolev }} C \int_{B_{1}}\left|\nabla\left(\phi_{k} v_{k}\right)\right|^{2} d x \underbrace{\leq}_{\text {Caccioppoli }} C\left\|\nabla \phi_{k}\right\|_{L^{\infty}\left(B_{1}\right)}^{2} \int_{B_{k-1}} v_{k}^{2} d x \leq} \\
C^{k} \int_{B_{k-1}} v_{k-1}^{2} d x \leq C^{k} \int_{B_{k-1}} v_{k-1}^{2} \phi_{k-1}^{2} d x=C^{k} V_{k-1}
\end{gathered}
$$

So, $V_{k} \leq C^{k} V_{k-1}^{1+\frac{2}{n}}$.

