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1 Reorienting Ourselves

Recall what we were actually trying to prove:

PROBLEM: Consider any local minimizer u of an energy functional of the form:

E (w) =

ˆ
Ω

L(∇w)dx

where:

1. E : H1(Ω) → R

2. L : Rn → R is smooth & uniformly convex (Jacobian matrix is uniformly positive-definite &
bounded)

3. Ω ⊂ Rn is open, bounded

Then, is it true that u ∈ C∞(Ω)?

Last week, I gave you the following outline:

u ∈ H1 =⇒︸ ︷︷ ︸
difference quotients

u ∈ H2 =⇒︸ ︷︷ ︸
de Giorgi-Nash-Moser

∇u ∈ C0,α =⇒︸ ︷︷ ︸
Schauder

u ∈ C∞

We are now going to talk about the middle step. Recall that any local minimizer u is a weak solution
to:

div(DL(∇u)) = 0

Taking derivatives w.r.t. xi:
div(D2L(∇u)∇w) = 0

where w = ∂iu. This is an equation for which we want some regularity on w, but we have no
information on D2L(∇u) besides the uniform ellipticity. This is called a uniformly elliptic equation
in divergence form with bounded measurable coefficients. The regularity is given by the famous
theorem of de Giorgi-Nash-Moser.
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2 The de Giorgi L2 → L∞ Lemma – I

Theorem 1. Let v ∈ H1(Ω) be a weak solution to div(A(x)∇v) = 0, where A is uniformly elliptic.
Then, ∃ α > 0 such that v ∈ C0,α(Ω̃) ∀ Ω̃ ⋐ Ω. Further:

||v||C0,α(Ω̃) ≤ C||v||L2(Ω)

Note: It is vital that u ∈ H2 so that w ∈ H1 and 1 may be applied to w.

The proof proceeds in 2 steps:

1. v ∈ L2(Ω) =⇒ v ∈ L∞(Ω̃) (This is where the technique of de Giorgi-iteration was introduced)

2. v ∈ L∞(Ω̃) =⇒ v ∈ C0,α(Ω̃)

Today, we will start the first step and introduce the iteration. As before, we show the proof for
Ω = B1. Here is the theorem:

Theorem 2. Let Lv = −div(A(x)∇v), where A is uniformly bounded & elliptic. Then, ∃ δ =
δ(n, λ,Λ) ≥ 0 such that if v ∈ H1(B1) solves:

Lv ≤ 0 in B1,

ˆ
B1

v2+ ≤ δ

then v ≤ 1 in B 1
2
.

This may not look like an L2 → L∞ result, but it is, as seen from the following corollary:

Corollary 1. Let v ∈ H1(B1) such that Lv = 0 in B1. Then:

||v||L∞(B 1
2
) ≤ C||v||L2(B1)

Proof. Let ṽ =
√
δ

||v+||L2(B1)
v+. Then, applying 2 to ṽ we see that ||ṽ||L∞(B 1

2
) ≤ 1 =⇒ ||v+||L∞(B1) ≤

||v+||L2(B1)√
δ

. Doing the same with v−, we get:

||v||L∞(B 1
2
) ≤ C||v+||L2(B1) + C||v−||L2(B1) ≤ C||v||L2(B1)

3 Inequalities

Now, we list the inequalities needed in the proof of the de Giorgi lemma. The first is the Sobolev
embedding theorem.

Theorem 3. ||v||Lp(Ω) ≤ C||∇v||L2(Ω) ∀ p ≤ 2d
d−2

(the case d = 1 is a little different, this holds for any 1 ≤ p ≤ ∞). The second is Chebyshev’s
inequality:

Theorem 4. Let a > 0. Then:

λ({x : |f | ≥ a}) ≤ 1

ap

ˆ
|f |≥a

|f |pdλ ≤ 1

ap
||f ||pp
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The last is a sort of reverse Poincare inequality, called the Caccioppoli inequality:

Theorem 5. Let v ≥ 0 ∈ H1(B1) be such that Lv ≤ 0. Then, ∀ ϕ ∈ C∞
0 (B1), we have:

ˆ
B1

|∇(vϕ)|2dx ≤ C||∇ϕ||2L∞(B1)

ˆ
B1∩supp(ϕ)

u2dx

Proof. The weak formulation of Lv ≤ 0 is:

⟨A∇v,∇η⟩ ≤ 0 ∀ η ∈ H1
0 (B1), η ≥ 0

where ⟨·, ·⟩ denotes the L2 inner product. The energy estimate follows by choosing η = ϕ2v:

⟨A∇v,∇(ϕ2v)⟩ ≤ 0

⟨A∇v, ϕ∇(ϕv)⟩+ ⟨A∇v, ϕv∇(ϕ)⟩ ≤ 0

⟨Aϕ∇v,∇(ϕv)⟩+ ⟨Aϕ∇v, v∇ϕ⟩ ≤ 0

⟨A[∇(ϕv)− v∇ϕ],∇(ϕv) + v∇ϕ⟩ ≤ 0

⟨A∇(ϕv),∇(ϕv)⟩ ≤ ⟨Av∇ϕ, v∇ϕ⟩+ ⟨Av∇ϕ,∇(ϕv)⟩+ |⟨A∇(ϕv), v∇ϕ⟩|

Now, using the uniform ellipticity and boundedness:

λ

ˆ
B1

|∇(ϕv)|2dx ≤ Λ

ˆ
B1

u2|∇ϕ|2dx+ 2Λ

ˆ
B1

|∇(ϕv)||v∇ϕ|dx

Using Young’s inequality with ϵ to split the last term and absorb the bad term into the LHS, then
gathering constants gives the result.

4 The de Giorgi L2 → L∞ Lemma – II

Finally, we can show the de Giorgi iteration.

Proof. Define a sequence of:

1. balls Bk := B(0, 1
2 + 1

2k+1 )

2. constants ck := 1− 1
2k

3. cutoffs ϕk ∈ C∞
0 (Bk−1), such that:{

ϕk(x) ≡ 1 x ∈ Bk

ϕk(x) ≡ 0 x ∈ Bc
k−1

4. ||∇ϕk||L∞(B1) ≤ 2k

Define vk := (v − ck)+, Vk :=
´
Bk

|ϕkvk(x)|2dx. Roughly, this measures the energy above ck in the

ball Bk. The goal is to set up a de Giorgi iteration on the sequence {Vk}, that is to establish a
non-linear relation:

Vk ≤ CkV β
k−1 for β > 1, C ̸= C(k)

Then, we will try to take the limit to see that Vk → 0. Then, passing into the limit, this will say
that: ˆ

B 1
2

|v − 1|2+dx = 0
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So v must be ≤ 1 in B 1
2
. Although the Ck looks scary, as long as V0 is small enough (this is where

the δ in the theorem statement comes from), Vk → 0.

Let’s set up the iteration. For k ≥ 1:

Vk =

ˆ
B1

(ϕkvk)
2dx =

ˆ
B1

(ϕkvk)
2χ{vk≥0}dx =

ˆ
B1

(ϕkvk)
2χ{vk−1≥ 1

2k
}dx

Now, applying Holder with p = n
n−2 , p

′ = n
2 :

ˆ
Bk

(ϕkvk)
2χ{vk−1≥ 1

2k
}dx ≤ [

ˆ
Bk

(ϕkvk)
2n

n−2 dx]
n−2
n [

ˆ
Bk

χ{vk−1≥ 1

2k
}dx]

2
n ≤

[

ˆ
Bk

(ϕkvk)
2n

n−2 dx]
n−2
n [

ˆ
Bk

χ{ϕk−1vk−1≥ 1

2k
}dx]

2
n

Now, using Chebyshev’s inequality:

[

ˆ
Bk

(ϕkvk)
2n

n−2 dx]
n−2
n [

ˆ
Bk

χ{ϕk−1vk−1≥ 1

2k
}dx]

2
n ≤ [

ˆ
Bk

(ϕkvk)
2n

n−2 dx]
n−2
n [||ϕk−1vk−1||2L2(B1)

22k]
2
n

Note that the second term here is exactly CkU
2
n

k−1 (note that (22k)
2
n ≤ 24k = Ck). We still need the

first term to bump the 2
n up to bigger than 1. Let’s deal with it:

[

ˆ
Bk

(ϕkvk)
2n

n−2 dx]
n−2
n ≤︸︷︷︸

Sobolev

C

ˆ
B1

|∇(ϕkvk)|2dx ≤︸︷︷︸
Caccioppoli

C||∇ϕk||2L∞(B1)

ˆ
Bk−1

v2kdx ≤

Ck

ˆ
Bk−1

v2k−1dx ≤ Ck

ˆ
Bk−1

v2k−1ϕ
2
k−1dx = CkVk−1

So, Vk ≤ CkV
1+ 2

n

k−1 .
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