SMC 2023: HILBERT'S $19{ }^{\text {TH }}$ PROBLEM - Day VIII

Jeffrey Cheng

June 5, 2023

1 The Theorem of de Giorgi-Nash-Moser: Step 2 (cont.)

Today, we will finish the proof of the theorem of de Giorgi-Nash-Moser. It suffices to show the following theorem on oscillation decay:
Theorem 1. Let $\mathcal{L}(v)=-\operatorname{div}(A(x) \nabla v)$, for A uniformly bounded and elliptic. Then, let $v \in$ $H^{1}\left(B_{2}\right)$ solve:

$$
\mathcal{L}(v)=0 \text { in } B_{2}
$$

Then, osc $_{B_{\frac{1}{2}}}<(1-\theta(n, \lambda, \Lambda)) \operatorname{osc}_{B_{2}}$
Note: This immediately gives Holder regularity of v, as mentioned yesterday.
To start, let's give a lemma, the de Giorgi isomperimetric inequality (FR/RO note that this is a "quantitative version of the fact that $H^{1}(\mathbb{R})$ functions cannot have jumps"):
Lemma 1. Let $w \in H^{1}\left(B_{1}\right)$ be such that:

$$
\int B_{1}|\nabla w|^{2} d x \leq C_{0}
$$

Now, define:

1. $A:=\{w \leq 0\} \cap B_{1}$
2. $D:=\left\{w \geq \frac{1}{2}\right\} \cap B_{1}$
3. $E:=\left\{0<w<\frac{1}{2}\right\} \cap B_{1}$

Then:

$$
C_{0}|E| \geq c(n)|A|^{2}|D|^{2}
$$

Proof. Define \tilde{w} in B_{1} as:

$$
\tilde{w}(x)= \begin{cases}w & x \in E \\ 0 & x \in A \\ \frac{1}{2} & x \in D\end{cases}
$$

(essentially, we are cutting off w between 0 and $\frac{1}{2}$. Note that $\nabla \tilde{w} \equiv 0$ in $B_{1} \backslash E$ (recall that the gradient of Sobolev functions vanishes on level sets), and $\int_{B_{1}}|\nabla \tilde{w}|^{2} d x \leq C_{0}$. Define $\bar{w}:=f_{B_{1}} \tilde{w}(x) d x$. Then:

$$
\begin{gathered}
|A| \cdot|D|=\int_{A}|D| d y \leq \int_{A} \int_{D} 2 w(x) d x d y \leq 2 \int_{A} \int_{D}|\tilde{w}(x)-\tilde{w}(y)| d x d y \leq \\
2 \int_{B_{1}} \int_{B_{1}}|\tilde{w}(x)-\bar{w}+\bar{w}-\tilde{w}(y)| d x d y \leq 2 \int_{B_{1}} \int_{B_{1}}(|\tilde{w}(x)-\bar{w}|+|\bar{w}-\tilde{w}(y)|) d x d y= \\
4 \int_{B_{1}}|\tilde{w}(x)-\bar{w}| d x \underbrace{\leq}_{\text {Poincare }} c \int_{E}|\nabla \tilde{w}(x)| d x
\end{gathered}
$$

Finally, we use Holder's inequality:

$$
|A| \cdot|D| \leq c \int_{E}|\nabla \tilde{w}(x)| d x \leq c| | \nabla \tilde{w} \|_{L^{2}\left(B_{1}\right)}|E|^{\frac{1}{2}} \leq c C_{0}|E|^{\frac{1}{2}}
$$

Lemma 2. Let \mathcal{L} be as above, $v \in H^{1}\left(B_{2}\right)$ such that:

1. $v \leq 1$ in B_{2}
2. $\mathcal{L} v \leq 0$ in B_{2}

Assume that $\left|\{v \leq 0\} \cap B_{1}\right| \geq \mu>0$. Then:

$$
\sup _{B_{\frac{1}{2}}} v \leq 1-\gamma(n, \lambda, \Lambda, \mu)
$$

for some $\gamma>0$ small.
Proof. Consider the sequence:

$$
\left\{w_{k}\right\}:=2^{k}\left[v-\left(1-2^{-k}\right)\right]_{+}
$$

Note that $w_{k} \leq 1$ in B_{2}, as $v \leq 1$ in B_{2}. Moreover, $\mathcal{L} w_{k} \leq 0$ in B_{2}. So, using the Cacioppoli energy inequality:

$$
\int_{B_{1}}\left|\nabla w_{k}\right|^{2} d x \leq C \int_{B_{2}} w_{k}^{2} \leq C_{0}:=C\left|B_{2}\right|
$$

By assumption, $\left|\{v \leq 0\} \cap B_{1}\right| \geq \mu \Longrightarrow\left|\left\{w_{k} \leq 0\right\} \cap B_{1}\right| \geq \mu$. Now, let $\delta>0$, assume for the sake of contradiction that $\int_{B_{1}} w_{k}^{2} \geq \delta^{2}$ for all k. Then, the isoperimetric inequality 1 yields:
$\left|\left\{w_{k} \geq \frac{1}{2}\right\} \cap B_{1}\right| \geq\left|\left\{w_{k+1}>0\right\} \cap B_{1}\right| \geq \int_{B_{1}} w_{k+1}^{2} d x \geq \delta^{2} \underbrace{\Longrightarrow}_{\text {Iso. }=1}\left|\left\{0<w_{k}<\frac{1}{2}\right\} \cap B_{1}\right| \geq \frac{c}{C_{0}} \delta^{4} \mu^{2}=\beta>0$
where β is independent of k, and depends only on n, δ, μ.
Now, notice that the sets $\left\{0<w_{k}<\frac{1}{2}\right\}$ are disjoint $\forall k$, so the previous inequality cannot hold $\forall k$ (if it did, we would get $\left|B_{1}\right|=\infty$, a contradiction). So, $\exists k_{0}$ such that $\int_{B_{1}} w_{k_{0}}^{2} d x<\delta^{2}$. So, by the de Giorgi $L^{2} \rightarrow L^{\infty}$ lemma:

$$
\left\|w_{k_{0}}\right\|_{L^{\infty}\left(B_{\frac{1}{2}}\right.} \leq C \delta \leq \frac{1}{2}
$$

for δ sufficiently small. So, $w_{k_{0}} \leq \frac{1}{2}$ in $B_{\frac{1}{2}} \Longrightarrow v \leq \frac{1}{2} 2^{-k_{0}}+\left(1-2^{-k_{0}}\right) \leq 1-2^{-k_{0}-1}=1-\gamma$.
Finally, the oscillation decay is a simple consequence of this lemma.
Proof. Let $w(x):=\frac{2}{\operatorname{osc}_{B_{2}} v}\left[v(x)-\frac{\sup _{B_{2}} v+\inf _{B_{2}} v}{2}\right]$. Then, $-1 \leq w \leq 1$ in B_{2}. WLOG, let $\mid\{w \leq$ $0\} \left.\cap B_{1}\left|\geq \frac{1}{2}\right| B_{1} \right\rvert\,$ (otherwise, take $-w$). Then, via the lemma:

$$
w \leq 1-\gamma \text { in } B_{\frac{1}{2}}
$$

So, $\operatorname{osc}_{B_{\frac{1}{2}}} w \leq 2-\gamma$. Finally, this implies:

$$
\operatorname{osc}_{B_{\frac{1}{2}}} v \leq\left(1-\frac{\gamma}{2}\right) \operatorname{osc}_{B_{2}} v
$$

