SMC 2023: HILBERT'S $19{ }^{\text {TH }}$ PROBLEM - Day IX

Jeffrey Cheng

June 5, 2023

1 Difference Quotients

Today is the last day. Recall we have the following: let u be a weak solution to $\operatorname{div}(D L(\nabla u))=0$. Then, we had:

$$
u \in H^{1} \underbrace{\Longrightarrow}_{\text {difference quotients }} u \in H^{2} \underbrace{\Longrightarrow}_{\text {de Giorgi-Nash-Moser }} \nabla u \in C^{0, \alpha} \underbrace{\Longrightarrow}_{\text {Schauder }} u \in C^{\infty}
$$

It remains to show the first step. The techniques here are very similar to section 6.3 in Evans PDE (energy methods to show regularity).

Theorem 1. Let $u \in H^{1}(\Omega)$ be a weak solution to:

$$
\operatorname{div}(D L(\nabla u))=0
$$

Then, $\forall \tilde{\Omega} \Subset \Omega, u \in H^{2}(\tilde{\Omega})$, and for all $i, w=\partial_{i} u$ is a weak solution to:

$$
\operatorname{div}\left(D^{2} L(\nabla u) \nabla w\right)=0
$$

Proof. We will show that for $u \in H^{1}\left(B_{3}\right)$, for any i, that $w \in H^{2}\left(B_{1}\right)$ and w solves $\operatorname{div}\left(D^{2} L(\nabla u) \nabla w\right)=$ 0 weakly (move from localized version to $\tilde{\Omega}$ via a partition of unity argument).

Fix $1 \leq i \leq n$, and $\forall-1 \leq h \leq 1$, consider the difference quotient map $T_{h}: C\left(\mathbb{R}^{n}\right) \rightarrow C\left(\mathbb{R}^{n}\right)$ defined by:

$$
T_{h} \phi(x)=\frac{\phi\left(x+h e_{i}\right)-\phi(x)}{h}
$$

Now, fix a non-negative, smooth, compactly supported cutoff function η such that:

1. $\eta \equiv 1$ in B_{1}
2. $\operatorname{supp}(\eta) \subset \overline{B_{2}}$

Now, we can define two operators:

1. $\eta T_{h}: L^{2}\left(B_{3}\right) \rightarrow L^{2}\left(B_{3}\right)$
2. $T_{h}(\eta \cdot): H^{1}\left(B_{3}\right) \rightarrow H_{0}^{1}\left(B_{3}\right)$

These operators have the following properties:
Lemma 1. For all $\tilde{\phi}, \tilde{\psi} \in L^{2}\left(B_{3}\right), \phi \in H^{1}\left(B_{3}\right), \Phi \in\left[L^{2}\left(B_{3}\right)\right]^{N}$, we have:

1. $\int T_{h}(\eta \tilde{\phi}) \tilde{\psi} d x=-\int \tilde{\phi} \eta T_{-h} \tilde{\psi} d x$ (the dual operator to $T_{h}(\eta \cdot)$ is ηT_{-h})
2. $\nabla\left[\eta^{2} T_{h} \phi\right]=\eta^{2} T_{h}[\nabla \phi]+2 \eta\left[T_{h} \psi\right] \nabla \eta$
3. $\eta T_{h}[D F(\Phi)](x)=\eta T_{h} \Phi(x) \int_{0}^{1} D^{2} F\left(\Phi(x)+t\left(\Phi\left(x+h e_{i}\right)-\Phi(x)\right)\right) d t$
4. $\left\|\eta T_{h} \phi\right\|_{L^{2}\left(B_{3}\right)} \leq C_{\eta}\|\nabla \phi\|_{L^{2}\left(B_{3}\right)}$
5. if $\sup _{|h| \leq 1}\left\|\eta T_{h} \tilde{\phi}\right\|_{L^{2}\left(B_{3}\right)}=C<\infty$, then $\partial_{i} \tilde{\phi} \in L^{2}\left(B_{1}\right)$, and:

$$
\left\|\partial_{i} \tilde{\phi}\right\|_{L^{2}\left(B_{1}\right)} \leq C
$$

and $\eta T_{h} \tilde{\phi} \rightarrow \partial_{i} \tilde{\phi}$ as $h \rightarrow 0$ weakly in $L^{2}\left(B_{1}\right)$.
Proof. 1. Make a change of variables in the integral $x \mapsto x-h e_{i}$
2. Product rule
3. Calculation using Fundamental theorem of Line Integrals \& change of variables
4. $\eta T_{h} \phi=\eta \int_{0}^{1} \partial_{i}\left(\phi\left(x+h e_{i}\right)\right) d t$, so $\left\|\eta T_{h} \phi\right\|_{L^{2}} \leq\|\eta\|_{L^{\infty}}^{2}\left\|\partial_{i} \phi\right\|_{L^{2}}$
5. Let δ be the standard mollifier, $\delta_{\epsilon}(x)=\epsilon^{-n} \delta\left(\frac{x}{\epsilon}\right)$. Let $\tilde{\phi}_{\epsilon}:=\tilde{\phi} * \delta_{\epsilon} . \tilde{\phi}_{\epsilon}$ is smooth, so for $x \in B_{2}$, $\eta T_{h} \tilde{\phi}_{\epsilon}(x) \rightarrow \eta \partial_{i} \tilde{\phi}_{\epsilon}(x)$ as $h \rightarrow 0$. But, $\eta T_{h} \tilde{\phi}_{\epsilon}=\eta\left(T_{h} \tilde{\phi}\right)_{\epsilon}$ is uniformly bounded w.r.t both $h, \epsilon(h$ via $4, \epsilon$ via some convolution inequality type thing). So, pass into the limit in h to find that $\partial_{i} \tilde{\phi}_{\epsilon}$ is uniformly bounded in $L^{2}\left(B_{1}\right)$. Finally, $\partial_{i} \tilde{\phi} \in L^{2}\left(B_{1}\right)$, and the convergence is weak via Banach-Alaoglu (see theorem 3 in 5.8.2 of Evans).

Let's get back to the proof. Consider the test function $\phi=T_{-h}\left(\eta^{2} T_{h} u\right) \in H_{0}^{1}\left(B_{3}\right)$. We have:

$$
\begin{gathered}
0=\int \nabla \phi D F(\nabla u) d x= \\
-\int \eta \nabla\left(T_{h} u\right) T_{h} D F(\nabla u) d x-2 \int \nabla \eta\left(T_{h} y\right) \eta T_{h} D F(\nabla u) d x= \\
-\int \eta \nabla\left(T_{h} u\right)\left[\int_{0}^{1} D^{2} F\left(\nabla u(x)+t\left(\nabla u\left(x+h e_{i}\right)-\nabla u(x)\right)\right) d t\right] \eta \nabla\left(T_{h} u\right) d x- \\
2 \int(\nabla \eta)\left(T_{h} u\right)\left[\int_{0}^{1} D^{2} F\left(\nabla u(x)+t\left(\nabla u\left(x+h e_{i}\right)-\nabla u(x)\right)\right) d t\right] \eta \nabla\left(T_{h} u\right) d x
\end{gathered}
$$

Finally, we use the ellipticity to get uniform bounds:

$$
\int \eta^{2}\left|\nabla\left(T_{h} u\right)\right|^{2} d x \leq(2 \Lambda \lambda)^{2} \int|\eta \nabla|^{2}\left|T_{h} u\right|^{2} d x \leq C\|u\|_{H^{1}\left(B_{3}\right)}^{2}
$$

So, by $5, \partial_{i} u \in H^{1}\left(B_{1}\right) \Longrightarrow u \in H^{2}\left(B_{1}\right)$. Finally, for any $\phi \in H_{0}^{1}\left(B_{1}\right), T_{-h} \phi \in H^{1}\left(B_{2}\right)$. So, we have:

$$
0=-\int \nabla \phi T_{h} D F(\nabla u)
$$

$\partial_{i} u \in H^{1}\left(B_{1}\right)$, so $T_{h} D F(\nabla u) \rightarrow \partial_{i}(D F(\nabla u))=D^{2} F(\nabla u) \nabla w$ weakly in $L^{2}\left(B_{1}\right)$. So, in the limit:

$$
0=-\int \nabla \phi T_{h} D F(\nabla u) \rightarrow \int \nabla \phi D^{2} F(\nabla u) \nabla w d x
$$

