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1 Introduction

Consider the following elliptic equation:

L(u)(x) = −div(A(x)∇u(x)) = 0 ∈ Ω

for some open, bounded region Ω in Rn, and A a uniformly bounded, uniformly elliptic matrix of
coefficients. Given solutions u ∈ H1(Ω) to this equation, the first methods of establishing higher
regularity for u were as follows:

1. Energy methods (see Chapter 6.3 of [1] for an overview of this)

2. Perturbative methods, aka Schauder estimates (see [2] for an overview of this)

The main obstruction to being satisfied with these results is that they require regularity of the
coefficients and initial data to establish regularity for u. Roughly, the energy methods require that
all the coefficients aij(x) be in Ck(Ω) to establish that u is in Ck+2(Ω), while the Schauder estimates
require that the coefficients aij(x) be in Ck,α(Ω) to establish that u is in Ck+2,α(Ω). However, in
1957, De Giorgi introduced a breakthrough method to establish partial regularity for u without
requiring anything of the coefficients. More precisely, De Giorgi proved the following:

Theorem 1. Let u ∈ H1(Ω) solve L(u) = 0, for A uniformly bounded & elliptic. Then, u ∈ C0,α(Ω̃)
for any Ω̃ ⊂⊂ Ω, and we have:

||u||C0,α(Ω̃) ≤ C||u||L2(Ω)

for α depending only on the ellipticity constant and the dimension n.

The proof proceeds in two steps:

1. Given u ∈ L2(Ω), show that u ∈ L∞(Ω̃).

2. Given u ∈ L∞(Ω̃), show that u ∈ C0,α(Ω̃).

The first step is where De Giorgi introduced the technique of ”De Giorgi iteration” and this note is
mostly dedicated to giving a clear exposition of the iteration in that step.

Step 1

We will only show the results for the special case Ω = B1, Ω̃ = B 1
2
. The general case can be

recovered from a simple covering argument (see [2]). The argument here is based off the one in [2],
which is in turn derived from [3]. First, we need an energy inequality, sometimes referred to as the
Caccioppoli inequality:
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Theorem 2. Let v ≥ 0 ∈ H1(B1) be such that Lv ≤ 0. Then, for any ϕ ∈ C∞
0 (B1), we have:∫

B1

|∇(vϕ)|2dx ≤ C||∇ϕ||2L2(B1)

∫
B1∩suppϕ

u2dx

Proof. The weak formulation of Lv ≤ 0 is:

⟨A∇v,∇(η)⟩ ≤ 0 ∀ η ∈ C∞
0 (B1), η ≥ 0

where ⟨ , ⟩ denotes the L2 inner product. Choosing η = ϕ2v:

⟨A∇v,∇(ϕv)⟩ ≤ 0

⟨A∇v, ϕ∇(ϕv) + ϕv∇(ϕ)⟩ ≤ 0

⟨A∇v, ϕ∇(ϕv)⟩+ ⟨A∇v, ϕv∇(ϕ)⟩ ≤ 0

⟨Aϕ∇v,∇(ϕv)⟩+ ⟨Aϕ∇v, v∇(ϕ)⟩ ≤ 0

⟨Aϕ∇v,∇(ϕv)⟩+ ⟨Aϕ∇v, v∇(ϕ)⟩ ≤ 0

⟨A[∇(ϕv)− v∇(ϕ)],∇(ϕv)⟩+ ⟨A[∇(ϕv)− v∇(ϕ)], v∇(ϕ)⟩ ≤ 0

⟨A∇(ϕv),∇(ϕv) ≤ ⟨Av∇(ϕ), v∇(ϕ)⟩+ ⟨Av∇(ϕ), v∇(ϕ)⟩+ |⟨A∇(ϕv), v∇(ϕ)⟩|

By uniform ellipticity with constant λ, and also boundedness of A with constant Λ:

λ

∫
B1

|∇(ϕv)|2dx ≤ 2Λ

∫
B1

v2|∇(ϕ)|2 + Λ

∫
B1

|∇(ϕv)||v∇(ϕ)|dx

Now, using Young’s inequality and choosing ϵ such that Λϵ < λ
2 :

λ

2

∫
B1

|∇(ϕv)|2dx ≤ 2Λ

∫
B1

v2|∇(ϕ)|2 + Λ

4ϵ

∫
B1

v2|∇(ϕ)|2dx

Rearranging terms and gathering constants gives the desired result.

We will apply the Cacciopoli inequaltiy to functions of the form uk = (u−ck)+, for some positive
constant ck. We leave it to the reader to show that if u satisfies Lu = 0, then Lu+ ≤ 0.

Now, we can proceed to the main result, where the De Giorgi iteration is utilized:

Theorem 3. Denote u+ = max(u, 0). Then, ∃ a constant δ such that for any u such that L(u+) ≤ 0,
where A is uniformly bounded/elliptic, the following holds:

||u+||L2(B1) ≤ δ =⇒ ||u+||L∞(B 1
2
) ≤ 1

Proof. Define a sequence of:

1. balls: Bk := B(0, 1
2 + 1

2k+1 )

2. constants: ck := 1− 1
2k

3. cutoffs: ϕk(x) ∈ C∞
0 (Bk−1), ϕk = 1 in Bk, ϕk=0 in BC

k−1.

Define uk = (u − ck)+, Uk =
∫
Bk

|uk(x)|2dx. We will do a De Giorgi iteration on Uk. What that
means is that we will establish a non-linear relation of the following form:

Uk ≤ CkUβ
k−1 for C > 1, β > 1
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Although the Ck term looks scary, in the limit, we will see that as long as U0 is sufficiently small
(this is where our δ in the theorem statement comes from), {Uk} → 0.

For k ≥ 1, we have:

Uk =

∫
Bk

|uk|2dx =

∫
Bk

(ϕkuk)
2dx =

∫
Bk

(ϕkuk)
2χ{uk≥0}dx =

∫
Bk

(ϕkuk)
2χ{uk−1≥ 1

2k
}dx

Now, by Holder with p = n
n−2 , p

′ = n
2 :∫
Bk

(ϕkuk)
2χ{uk−1≥ 1

2k
}dx ≤

(

∫
Bk

(ϕkuk)
2n

n−2 dx)
n−2
n (

∫
Bk

χ
n
2

{uk−1≥ 1

2k
})

2
n dx ≤ (

∫
Bk

(ϕkuk)
2n

n−2 dx)
n−2
n (

∫
Bk

χ
n
2

{ϕk−1uk−1≥ 1

2k
}dx)

2
n ≤

(

∫
Bk

(ϕkuk)
2n

n−2 dx)
n−2
n (

∫
Bk−1

χ
n
2

{ϕk−1uk−1≥ 1

2k
}dx)

2
n

By Chebyshev’s inequality:

(

∫
Bk

(ϕkuk)
2n

n−2 dx)
n−2
n (

∫
Bk−1

χ
n
2

{ϕk−1uk−1≥ 1

2k
}dx)

2
n ≤

(

∫
Bk

(ϕkuk)
2n

n−2 dx)
n−2
n (||ϕk−1uk−1||2L2(Bk−1)

22k)
2
n

Now, the second term in the above expression is ok, but we have to deal with the first. By
Sobolev+Caccioppoli inequalities:

(

∫
Bk

(ϕkuk)
2n

n−2 )
n−2
n ≤ C

∫
B1

(∇(ϕkuk))
2dx ≤

C||∇ϕ||2L∞(B1)

∫
supp{ϕk}

u2
kdx ≤ C22k

∫
Bk−1

u2
kdx ≤ C22k

∫
Bk−1

ϕ2
k−1u

2
k−1dx = CkUk−1

as ||∇(ϕk)||L∞(B1) may be chosen to be less than 2k. Putting these together, we get:

Uk ≤ (||ϕk−1uk−1||2L2(Bk−1)
22k)

2
nCkUk−1 = CkU

1+ 2
n

k−1

Now, we want to show that limk→∞Uk = 0. Indeed, notice that:

Uk ≤ CkV
1+ 2

n

k−1 ≤ ... ≤ CkC(k−1)(1+ 2
n )...C(1)(1+ 2

n )k−1

U
(1+ 2

n )k−1

0 = (C

∑k
i=1

i

(1+ 2
n

)i U0)
(1+ 2

n )k−1

Now, denote C̃ = C

∑∞
i=1

i

(1+ 2
n

)i (one can check that the infinite sum actually converges, as i
(1+ 2

n )i
≤

1√
(1+ 2

n )
i for sufficiently large i, so this is well-defined). So, if we pick U0 such that C̃U0 < 1, i.e. we

set δ < 1
C̃
, then {Uk} → 0 as k → ∞. So, we have:

limk→∞Uk = 0 =⇒ limk→∞

∫
B

( 1
2
+ 1

2k+1
)

(u− 1 +
1

2k
)2+dx = 0 =⇒

∫
B 1

2

(u− 1)2+dx = 0 =⇒

||u+||L∞(B 1
2
) ≤ 1

by the Dominated Convergence theorem.

Note that by identical methods, we can establish the same result for u−. Finally, this theorem
is one small step away from an L∞ regularity result:
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Theorem 4. Let u ∈ H1(B1) such that Lu+ ≤ 0 ∈ B1. Then:

||u+||L∞(B 1
2
) ≤ C||u+||L2(B1)

Proof. This is a simple consequence of the previous theorem. Write ũ =
√
δ

||u+||L2(B1)
u. Then, applying

the previous theorem to (̃u), we see ||ũ+||L∞(B 1
2
) ≤ 1 =⇒ ||u+||L∞(B 1

2
) ≤

||u+||L2(B1)√
δ

.

Finally, by writing u = u+ − u−, we establish the De-Giorgi lemma.

Step 1 (Non-homogeneous)

Now, we show that the same result can be established for the elliptic equation:

L(u)(x) = −div(A(x)∇u(x)) = f ∈ Ω

assuming that f ∈ L∞(Ω). The proof of the main result is exactly the same, except for the step
where we apply the Caccioppoli inequality. Although we can no longer hope for such an inequality
in such a general form, we get around this with a little bit of extra work.

Looking back at the step where we applied the Caccioppoli inequality, it suffices to show that∫
B1

(∇(ϕkuk))
2dx ≤ CkUk−1. Indeed, note that in this case, instead of Luk ≤ 0, we have Luk ≤ f .

So, working through the proof of the Caccioppoli inequality (this time with a RHS f , and the specific
functions v = uk, ϕ = ϕk), we arrive at the following:∫

B1

(∇(ϕkuk))
2 ≤ C||∇ϕk||2L∞(B1)

∫
supp{ϕk}

u2
kdx+

∫
B1

fϕ2
kukdx

Now, in the homogeneous case, the first term on the RHS has already been shown to be bounded
by CkUk−1, so it STS that

∫
B1

fϕ2
kukdx may be as well. Indeed, write

∫
B1

fϕ2
kukdx as:∫

B1

fϕ2
kukdx =

∫
B1

fϕ2
kukχsupp(ϕ2

kuk
dx

Now, applying Holder with p = q = 2:∫
B1

fϕ2
kukdx ≤ ||f ||L∞(B1)

∫
B1

fϕ2
kukχsupp(ϕ2

kuk
dx ≤ ||f ||L∞(B1)(||ϕ

2
kuk||L2(B1)||χsupp(ϕ2

kuk)||L2(B1))

||ϕ2
kuk||L2(B1)|| ≤ U

1
2

k−1. Similarly, ||χsupp(ϕ2
kuk)||L2(B1) ≤ 2kU

1
2

k−1 by bumping down k and using

Chebyshev’s inequality as before. In total, we see that
∫
B1

fϕ2
kukdx ≤ ||f ||L∞(B1)2

kUk−1 = CkUk−1,
so we can push the argument through as before.
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