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When tackling regularity issues in PDE, a common idea is to first establish ”a priori” estimates:
estimates on regularity that can be established if it is given that you are working with a sufficiently
regular function. However, once such a priori estimates are established, the final task still remains:
to translate the a priori estimates into statements about weaker functions. This can (mostly) always
be done in a standard way, so it is often skated over in the literature. This note is meant to be
an explicit demonstration of how it is done in one of the simplest cases: the case of the Schauder
estimates for the Laplacian.

The Laplacian: An Overview

In all that follows, Ω will be an open, bounded, sufficiently regular domain in Rn. The basic
problem we are trying to address is finding solutions, and establishing regularity of solutions, to the
problem:

∆u(x) = f x ∈ Ω

for some prescribed function f : Ω → R. In the case of the Laplacian, there are multiple ways to do
this:

1. Convolving the Green’s function for the Laplacian with the initial data f .

2. Using functional analytic methods (e.g. Lax-Milgram) to find weak solutions u ∈ H1(Ω) (for
more on this, see [2].

This note is concerned with an aspect of the second method: once we have a solution in H1(Ω), can
we say that this solution is in fact more regular?

A Priori Schauder Estimates

We start by finding ”a priori” estimates: that is, given a smooth solution u ∈ C∞(Ω), we want
to determine bounds on some norm ||u||Ck,α(Ω). Once we have done that, the hope is that we can
translate these bounds to less regular solutions.

The main ”a priori” estimate that we will try to generalize is the following:

Theorem 1. Let α ∈ (0, 1), u(x) be a smooth solution to:

∆u(x) = f x ∈ BR

where f ∈ C0,α(BR). Then, we have an estimate:

||u||C2,α(BR
2
) ≤ C(R)(||u||L∞(BR) + ||f ||C0,α(BR))
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There is an important covering argument that lets us move from an estimate in a ball of radius
R
2 to an estimate in a ball of any radius r ∈ (0, R):

Theorem 2. Let α ∈ (0, 1), u(x) be a smooth solution to:

∆u(x) = f x ∈ BR

where f ∈ C0,α(BR). Then, for any r ∈ (0, R), we have an estimate:

||u||C2,α(Br) ≤ C(R, r)(||u||L∞(BR) + ||f ||C0,α(BR))

Proof. Firstly, if r ≤ R
2 , then there is nothing to be said, so we will assume that r is very close to

R. The idea is to cover Br with finitely many smaller balls.
Let z = (R − r)/2. Then, by compactness, we may cover Br with finitely many balls Bz(xi)

for xi ∈ Br, 1 ≤ i ≤ m. Note that Bz(xi) ⊂ BR, so applying Theorem 1 (translated) to the balls
Bz(xi)), we get:

||u||C2,αBz(xi)) ≤ C(R, r)(||u||L∞(BR−r(xi)) + ||f ||C0,α(BR−r(xi))) ≤
C(R, r)(||u||L∞(BR−r(xi)) + ||f ||C0,α(BR−r(xi)))

Finally, as the balls Bz(xi) cover Br, we get:

||u||C2,α(Br) ≤
m∑
i=1

||u||C2,αBz(xi)) ≤

mC(R, r)(||u||L∞(BR−r(xi)) + ||f ||C0,α(BR−r(xi)))

Note that the constant C(R, r) blows up as r approaches R.

Supporting Lemmas

The first lemma we will need is the following special case of the Arzela-Ascoli theorem:

Theorem 3. (Arzela-Ascoli) Let Ω ⊂ Rn, and let {uk} be a sequence of functions that are uniformly
bounded:

||uk||C0,α(Ω) ≤ C

Then, ∃ a subsequence {ukj
} that converges uniformly to a function u.

The proof of this follows easily from the classical Arzela-Ascoli theorem, noting that equiconti-
nuity is given by the Holder condition.

Theorem 4. Let {uj} be a sequence of funtions that converge uniformly to u in Ω ⊂ Rn, and
assume that we have a bound:

||uj ||Ck,α(Ω) ≤ C

Then, u ∈ Ck,α(Ω), and:

||u||Ck,α(Ω) ≤ C
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Proof. Firstly, consider the case k = 0. Note that u is continuous as the uniform limit of continuous
functions. Then, for any j, we have

||uj ||L∞(Ω) + supx̸=y,x,y∈Ω

|uj(x)− uj(y)|
|x− y|α

≤ C

As the limit is uniform, taking {uj} → u, we obtain the desired result.
Now, consider k ≥ 1. Then, note that as Ω is sufficiently regular, we have inclusions:

Cm,α(Ω) ⊂ Ck,α(Ω) ∀ m ≤ k

||uj ||Cm,α(Ω) ≤ C

So, by recursively applying Theorem 3 to partial derivatives, after passing through many subse-
quences, we may find a subsequence {ujℓ} such that {Dmujℓ} converges uniformly to Dmu in Ω for
m ≤ k. So, as before, we may take limits in the inequality:

||ujℓ ||Ck(Ω) + supx ̸=y,x,y∈Ω

|Dkujℓ(x)−Dkujℓ(y)|
|x− y|α

≤ C

to obtain the desired result.

The Main Theorem

Using the a priori Schauder estimates, via a standard mollifier argument, we can make the
following extension. Our approach is derived from the one found in [3].

Theorem 5. Let α ∈ (0, 1), u(x) ∈ H1(B1) ∩ L∞(B1) be a weak solution to:

∆u(x) = f x ∈ B1

where f ∈ C0,α(B1). Then, for any r ∈ (0, 1), u ∈ C2,α(Br) and we have an estimate:

||u||C2,α(Br) ≤ C(r)(||u||L∞(B1) + ||f ||C0,α(B1))

Note that the constant C(r) blows up as r approaches 1.

Proof. Let r ∈ (0, 1). Consider the standard mollifier:

ϕ(x) =

{
C(n)e

( 1
||x||2−1

) −1 ≤ ||x|| ≤ 1
0 otherwise

where the constant C(n) is chosen such that
∫
Rn ϕ(x)dx = 1. Now, for ϵ < 1−r

2 = ϵ0, define:

ϕϵ(x) :=
1

ϵn
ϕ(

x

ϵ
)

uϵ := u ∗ ϕϵ

fϵ = f ∗ ϕϵ

Note that uϵ ∈ C∞. Further, these functions satisfy:

∆uϵ = f ∗ ϕϵ = fϵ

(for a review of the interaction between (weak) derivatives & convolution, see [1]).
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Now, uϵ is C∞, so by applying Theorem 1 with R = 1− ϵ0, we obtain:

||uϵ||C2,α(B 1−ϵ0
2

) ≤ C(||uϵ||L∞(B1−ϵ0 )
+ ||fϵ||C0,α(B1−ϵ0 )

) (1)

After applying the covering argument outlined in Theorem 2 to move from B 1−ϵ0
2

to Br, we get:

||uϵ||C2,α(Br) ≤ C(||uϵ||L∞(B1−ϵ0 )
+ ||fϵ||C0,α(B1−ϵ0 )

) (2)

where C = C( 1−ϵ0
2 , r). Now, note that for x ∈ B1−ϵ0 , we have:

uϵ(x) =

∫
u(y)ϕϵ(x− y)dy =

∫
u(x− y)ϕϵ(y)dy =

∫
Bϵ

u(x− y)ϕϵ(y)dy ≤

||u||L∞(B1)

∫
Bϵ

ϕϵ(y)dy = ||u||L∞(B1)

So, by taking the sup:

||uϵ||L∞(B1−ϵ0 )
≤ ||u||L∞(B1) (3)

Similarly, for x, y ∈ B1−ϵ0 , we see:

|fϵ(x)− fϵ(y)| = |
∫
Bϵ

(f(x− z)− f(y − z)(ϕϵ(z)dz| ≤∫
Bϵ

|f(x− z)− f(y − z)|ϕϵ(z)dz ≤

||f ||C0,α(B1)|x− y|α
∫
Bϵ

ϕϵ(z)dz = ||f ||C0,α(B1)|x− y|α

and for x ∈ B1−ϵ0 :

fϵ(x) =

∫
f(y)ϕϵ(x− y)dy =

∫
f(x− y)ϕϵ(y)dy =

∫
Bϵ

f(x− y)ϕϵ(y)dy ≤

||f ||L∞(B1)

∫
Bϵ

ϕϵ(y)dy = ||f ||L∞(B1) ≤ ||f ||C0,α(B1)

Combining these estimates, we see that we get a bound:

||fϵ||C0,α(B1−ϵ0
) ≤ 2||f ||C0,α(B1) (4)

Combining 3 & 4 with 2, we get a uniform bound:

||uϵ||C2,α(Br) ≤ C(||u||L∞(B1) + ||f ||C0,α(B1)) (5)

Finally, note that {uϵ} converges to u pointwise as ϵ → 0. By using Theorem 3 and passing to
a subsequence, we have a subsequence {ukj

} that converges uniformly to u. Finally, by applying
Theorem 4, we see that u ∈ C2,α(Br), and:

||u||C2,α(Br) ≤ C

as desired.
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