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1 Introduction

Let L(u)(x) = −div(A(x)∇u(x))+b·∇u+cu be an elliptic operator. Then, consider the following
parabolic problem:

ut + L(u) = f ∈ Ω× [0, t]

u = 0 ∈ ∂Ω× [0, T ]

u = g ∈ Ω× {t = 0}

for g ∈ L2(Ω) given, A uniformly bounded & elliptic, b, c ∈ L∞(Ω). Fixing 0 ≤ t ≤ T and integrating
by parts, we define:

B[u, v; t] =

∫
Ω

(A(x)∇u∇v + b · ∇uv + cuv)dx

Then, we define a weak solution as follows:

Definition. We call a function u ∈ L2(0, T ;H1
0 (Ω)), with u′ ∈ L2(0, T, ;H−1(Ω)) a weak solution

to the parabolic problem if:

1. ⟨u′, v⟩+B[u, v; t] = (f, v) ∀ v ∈ H1
0 (Ω), and a.e. 0 ≤ t ≤ T

2. u(0) = g

where ⟨ , ⟩ denotes the duality pairing of H1
0 (Ω) and H−1, and ( , ) denotes the L2 inner product.

There are two relatively orthogonal ways to show existence of weak solutions: the first is via
discretization of the time variable, while the second is via Galerkin approximation: making a limiting
argument in the space variables. In this note, we showcase how to do both of these methods.

2 Time Discretization

The strategy of discretization of the time variable is to solve a sequence of elliptic problems, and
piece them together to approximate a solution to the parabolic problem. We make this rigorous as
follows: taking our original formulation ut + L(u) = f and moving L(u) to the other side, we get:

ut = Lu+ f, where Lu = div(A(x)∇u)− b · ∇u− cu

So, it will suffice to show that we can find a weak solution to the problem:

ut = L(u) + f ∈ Ω× [0, t]

u = 0 ∈ ∂Ω× [0, T ]

u = g ∈ Ω× {t = 0}
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for the elliptic operator Lu = div(A(x)∇u(x))− b · ∇u− cuv. Now, consider the sequence of elliptic
problems:

L(uk) =
uk − uk−1

τ
+ f x ∈ Ω (*)

uk = 0 x ∈ ∂Ω

where u0 = g ∈ L2(Ω). Firstly, we will use Lax-Milgram to show that there is a unique sequence of
weak solutions to these elliptic problems:

The variational form of (*) is exactly:

Bτ [uk, v] = ⟨uk−1

τ
+ f, v⟩ ∀ v ∈ H1

0 (Ω)

where Bτ [u, v] =
∫
Ω
A∇u∇vdx +

∫
Ω
b · ∇uvdx +

∫
Ω
cuvdx + 1

τ

∫
Ω
uvdx, where uk−1

τ + f ∈ L2(Ω) is
given. Now, by checking the hypotheses of the Lax-Milgram theorem (a la Section 6.2 in [1]), we
see that for τ sufficiently small, there is a unique solution uk ∈ H1

0 (Ω).
Now, for τ = T

N , define the piecewise linear function:

uτ (t, x) =

N−1∑
k=1

uk(x)χ[tk,tk+1)

where tk = kτ . The claim is that uτ converges weakly in L2(0, T ;H1
0 (Ω) to a weak solution of the

problem:

ut = L(u) ∈ Ω× [0, t]

u = 0 ∈ ∂Ω× [0, T ]

u = g ∈ Ω× {t = 0}

Indeed, to show this, we first need to be able to pass to limits. Considering L(uk) =
uk−uk−1

τ and
integrating both sides against uk:

⟨L(uk), uk)⟩ = −⟨A∇uk,∇uk⟩ − ⟨b · ∇uk, uk⟩ − ⟨cuk, uk⟩
≤ −C||uk||2H1

0 (Ω) + µ||uk||2L2(Ω)

for C, µ ≥ 0 by Young’s inequality & ellipticity. On the other hand:

⟨uk − uk−1

τ
+ f, uk⟩ =

1

τ

∫
Ω

u2
k − ukuk−1dx+

∫
Ω

fukdx ≥ 1

2τ

∫
Ω

u2
k − u2

k−1 +

∫
Ω

fukdx =

1

2τ
(||uk||2L2(Ω) − ||uk−1||2L2(Ω)) +

∫
Ω

fukdx

Equating these and using Cauchy-Schwarz, we get:

1

2τ
(||uk||2L2(Ω) − ||uk−1||2L2(Ω)) ≤ −C||uk||2H1

0 (Ω) + µ||uk||2L2(Ω) + ||f ||2L2(Ω)||uk||2L2 =

−C||uk||2H1
0 (Ω) + C ′||uk||2L2(Ω)

Ignoring the H1
0 term for a second, we see by the discrete form of Gronwall’s inequality that, for

1− 2τC ′ > 0:

||uk||2L2(Ω) ≤ (1− 2′)−k||g||2L2(Ω) +
1

µ
((1− 2τµ)−k − 1)||f ||2L2(Ω) ≤ ||g||2L2(Ω) + C||f ||2L2(Ω)
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Thus, for sufficiently small τ , we see the above inequality actually tells us:

||uk||2H1
0 (Ω) ≤ C||g||2L2(Ω) +

C

2τ
(||g||2L2(Ω) + ||f ||2L2(Ω))

Finally, by integrating uτ from 0 to T : ||uτ ||2
L2(0,T,H1

0 (Ω))
=

∑N−1
k=0 τ ||uk||2H1

0 (Ω)
≤

∑N−1
k=0 τ(C||g||2L2(Ω)+

C
2τ (||g||

2
L2(Ω) + ||f ||2L2(Ω))) ≤ C(T )||g||2L2(Ω) +

C
2 (||g||

2
L2(Ω) + ||f ||2L2(Ω)), showing that uτ is uniformly

bounded in L2(0, T,H1
0 (Ω)).

So, by Banach-Alaoglu, we see that there is a subsequence (we’ll just keep calling it {uτ}) that
converges weakly to u ∈ L2(0, T,H1

0 (Ω). It remains to show that u is a weak solution to the
original problem. Let ϕ ∈ C1

c (0, T ;H
1
0 (Ω)). Then, letting ⟨ , ⟩ denote the inner product w.r.t.

L2(0, T ;H1
0 (Ω)), and ( , ) denote the inner product w.r.t. L(Ω):

⟨ut, ϕ⟩ =
∫ T

0

⟨ut, ϕ⟩H1
0 (Ω)dt = −

∫ T

0

⟨u, ϕt⟩H1
0 (Ω)dt =

−⟨u, ϕt⟩ = limτ→0 − ⟨uτ , D−τ
t ϕ⟩ = limτ→0⟨D−τ

t (uτ ), ϕ⟩ =

limτ→0⟨L(uτ ) + f, ϕ⟩ = limτ→0

∫ T

0

−B[uτ , ϕ; t]dt+ (f, v) =

∫ T

0

−B[u, ϕ; t]dt+

∫ T

0

(f, v)dt

By density, this result also holds for any ϕ ∈ L2(0, T,H1
0 (Ω)). So, in particular, ⟨ut, ϕ⟩H1

0 (Ω) =

−B[u, ϕ; t] + (f, v) for all ϕ ∈ H1
0 (Ω) and a.e. 0 ≤ t ≤ T . Finally, the initial and boundary

conditions are satisfied by design: indeed, u = 0 on ∂U × [0, T ] as u ∈ L2(0, T ;H1
0 (Ω)). Finally,

u0 = g, as uτ (0, x) = g(x) for all x.

3 Galerkin Approximation

Another strategy to show the existence of weak solutions is to instead approximate in the space
variables, without touching the time variable. This approach is the one used in [1].

Let {wk}∞k=1 be an orthonormal basis of L2(Ω) that is also an orthogonal basis of H1
0 (Ω). Let

m ∈ N. The strategy of the Galerkin approximation is to find a function um : [0, T ] → H1
0 (Ω) of the

form:

um(t) =

m∑
k=1

dkm(t)wk

This function should solve the problem:

(u′
m, wk) +B[um, wk; t] = (f, wk) for a.e. 0 ≤ t ≤ T , k = 1, ...,m

dkm(0) = (g, wk) k = 1, ...,m

As Evans remarks, this um solves the ”projection” of the original problem onto the finite dimensional
subspace span{w1, ..., wm}.

We begin by showing that for each m, there actually exists a solution to the problem posed
above.

Theorem 1. For each integer m ∈ N, there exists a unique function um of the desired form solving
the above problem.

Proof. Assuming that um(t) =
∑m

k=1 d
k
m(t)wk, we have:

(u′
m(t), wk) = dkm

′(t)

B[um, wk; t] =

m∑
ℓ=1

B[wℓ, wk; t]d
ℓ
m(t)

3



Then, the problem is equivalent to the linear system of m ODEs:

dkm
′(t) +

m∑
ℓ=1

B[wℓ, wk; t]d
ℓ
m(t) = (f(t), wk) k = 1, ...,m

dkm(0) = (g, wk) k = 1, ...,m

By standard existence & uniqueness theory for ODEs, there is a unique absolutely continuous set of
m functions dkm solving the problem.

Now, just as before, we need energy estimates to pass to limits:

Theorem 2. {um} is uniformly bounded in L2(0, T ;H1
0 (Ω)).

Proof. The proof utilizes the specific form that we have derived for um. um solve the problem:

(u′
m, wk) +B[um, wk; t] = (f, wk) for a.e. 0 ≤ t ≤ T , k = 1, ...,m

dkm(0) = (g, wk) k = 1, ...,m

Multiplying the first equation by dkm and summing from 1 to m, we get:

(u′
m, um) +B[um, um; t] = (f, um) for a.e. 0 ≤ t ≤ T

Now, we use the following:

1. (u′
mum) = d

dt (
1
2 ||u||

2
L2(Ω))

2. β||um||2
H1

0 (Ω)
≤ B[um, um; t] + γ||um||2L2(Ω)

3. |(f, um| ≤ 1
2 ||f ||

2
L2(Ω) + ||um||2L2(Ω)

Putting these together and re-arranging terms:

d

dt
(||u||2L2(Ω)) + 2β||um||2H1

0 (Ω) ≤ C1||um||2L2(Ω) + C2||f ||2L2(Ω)

By ignoring the H1
0 (Ω) term and using Gronwall, we get a uniform bound:

||um||2L2(0,T ;H1
0 (Ω) ≤ C(||g||2L2(Ω) + ||f ||2L2(0,T ;L2(Ω)))

We also need to pass to limits with {u′
m}:

Theorem 3. {u′
m} is uniformly bounded in L2(0, T ;H−1(Ω)).

Proof. Firstly, we show that the operator norm ||u′
m||H−1(Ω) is uniformly bounded. Let v ∈ H1

0 (Ω)
with ||v||H1

0 (Ω) ≤ 1. Then, we can write:

v = v1 + v2

where v1 ∈ S = span{w1, ..., wk} and v2 ∈ S⊥. Note ||v1||H1
0 (Ω) ≤ 1 as the norm of the projection

operator is ≤ 1. Then, by multiplying and summing the equations as before, we get:

(u′
m, v1) +B[um, v1; t] = (f, v1)
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Note that as um is a linear combination of wk for 1 ≤ k ≤ m, we also have:

⟨u′
m, v⟩ = (u′

m, v) = (u′
m, v1) = (f, v1)−B[um, v1; t]

By Cauchy-Schwarz and the boundedness of B, this implies:

|⟨u′
m, v⟩| ≤ C(||f ||L2(Ω) + ||um||H1

0 (Ω)

Taking the supremum over all such v:

||u′
m||H−1(Ω) ≤ C(||f ||L2(Ω) + ||um||H1

0 (Ω)

Finally, we simply integrate this bound to get a bound in L2(0, T ;H−1(Ω):∫ T

0

||u′
m||2H−1(Ω)dt ≤ C

∫ T

0

(||f ||L2(Ω) + ||um||H1
0 (Ω))dt ≤ C||f ||2L2(0,T ;L2(Ω)) + C||um||2L2(0,T ;H1

0 (Ω) ≤

C(||f ||2L2(0,T ;L2(Ω)) + ||g||2L2(Ω))

by using our uniform bounds for ||um||L2(0,T ;H1
0 (Ω).

Finally, we can pass to limits and show that the limiting function is a solution to the original
problem. By Banach-Alaoglu, there is a subsequence (again, we’ll just keep calling it {um} that
converges weakly to u in L2(0, T : H1

0 (Ω)). Applying Banach-Alaoglu again, we get a subsubsequence
such that further, {u′

m} converges weakly in L2(0, T : H−1(Ω)) to u′.
Now, fix N ∈ N and choose a function v ∈ C1(0, T ;H1

0 (Ω)) of the form:

v(t) =

N∑
k=1

dk(t)wk

where dk are smooth functions. Choosing m ≥ N , multiplying (u′
m, wk) +B[um, wk; t] = (f, wk) by

dk, and summing from 1 to m:

⟨u′
m, v⟩+

∫ T

0

B[um, v; t]dt = ⟨f, v⟩

where ⟨ , ⟩ denotes the L2(0, T ;H1
0 (Ω)) inner product. Passing to weak limits:

⟨u′, v⟩+
∫ T

0

B[u, v; t]dt = ⟨f, v⟩ ⇐⇒∫ T

0

⟨u′, v⟩H1
0 (Ω) +

∫ T

0

B[u, v; t]dt =

∫ T

0

(f, v)dt

As such v are dense, this equality holds for all v ∈ L2(0, T ;H1
0 (Ω)). In particular:

⟨u′, v⟩H1
0 (Ω) +B[u, v; t] = (f, v)

for all v ∈ H1
0 (Ω) and a.e. 0 ≤ t ≤ T .

It remains to show that u(0) = g. By choosing v ∈ C1(0, T ;H1
0 (Ω)) with v(T ) = 0 and integrating

by parts, we have: ∫ T

0

⟨v′, u⟩H1
0 (Ω) +

∫ T

0

B[u, v; t]dt =

∫ T

0

(f, v)dt+ (u(0), v(0))

However, doing this with um and them passing to weak limits, we see:∫ T

0

⟨v′, u⟩H1
0 (Ω) +

∫ T

0

B[u, v; t]dt =

∫ T

0

(f, v)dt+ (g, v(0))

as {um(0)} → g in L2(Ω). As v(0) is arbitrary, this shows g = u(0).
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4 Uniqueness of Solutions

We end with Evans’ proof that the solution to such a problem is unique. This does not see any
of the specific details to either method above.

Theorem 4. Let u, v be weak solutions to the problem:

ut + L(u) = f ∈ Ω× [0, t]

u = 0 ∈ ∂Ω× [0, T ]

u = g ∈ Ω× {t = 0}

Then, u = v.

Proof. It suffices to show that the only solution to the problem with f = g = 0 is u = 0. So, letting
u be a weak solution to the problem, and testing the equality with u, we get:

⟨u′, u⟩+B[u, u; t] = 0 =⇒ d

dt
(
1

2
||u||2L2(Ω)) +B[u, u; t] = 0

By the energy estimates for B :

d

dt
(
1

2
||u||2L2(Ω)) +B[u, u; t] = 0 =⇒ d

dt
(
1

2
||u||2L2(Ω)) ≤ γ||u||2L2(Ω)

By Gronwall, this implies u = 0.
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