Matrix ordered operator algebras.

Juschenko Kate

Mathematical Sciences, Chalmers University of Technology,

Mathematical Sciences, Göteborg University,

SE-412 96 Göteborg, Sweden

jushenko@math.chalmers.se

Popovych Stanislav

Mathematical Sciences, Chalmers University of Technology,

Mathematical Sciences, Göteborg University,

SE-412 96 Göteborg, Sweden

stanislp@math.chalmers.se

 $^{^02000\} Mathematics\ Subject\ Classification: 46L05,\ 46L07\ (Primary)\ 47L55,\ 47L07,\ 47L30\ (Secondary)$

Abstract

We study the question when for a given *-algebra \mathcal{A} a sequence of cones $C_n \subseteq M_n(\mathcal{A})_{sa}$ can be realized as cones of positive operators in a faithful *-representation of \mathcal{A} on a Hilbert space. We present a criterion analogous to Effros-Choi abstract characterization of operator systems. A characterization of operator algebras which are completely boundedly isomorphic to C^* -algebras is also presented.

KEYWORDS: *-algebra, faithful representation, Archimedean order, operator system.

1 Introduction.

An operator system S is a not necessarily closed subspace in $B(\mathcal{H})$ containing the identity operator $I_{\mathcal{H}}$, such that $x^* \in S$ for all $x \in S$.

In [3] Choi and Effros obtained an abstract characterization of operator systems among *-vector spaces. More precisely, a *-vector space V is a vector space over \mathbb{C} with a given conjugate-linear map $x \to x^*$ such that $(x^*)^* = x$. A *-vector space is called *matrix ordered* if it possesses a sequence of cones C_n with the following properties:

- 1. For every $n \geq 1$ we have $C_n \subseteq M_n(S)_{sa}$.
- 2. $C_n \cap (-C_n) = \{0\}.$
- 3. For all $m, n \geq 1$ and every $A \in M_{n \times m}(\mathbb{C})$ we have $A^*C_nA \subseteq C_m$.

Here $M_n(S)_{sa}$ denotes the set of self-adjoint matrices $x^* = x$.

Two matrix ordered *-vector spaces S and S' are called *complete or-der isomorphic* if there exists a linear isomorphism $\phi \colon S \to S'$ such that $\phi^{(n)}(C_n) = C'_n$. Here $\phi^{(n)}((a_{ij})) = (\phi(a_{ij}))$ for every matrix $(a_{ij}) \in M_n(S)$.

An element $e \in S_{sa}$ is called a matrix order unit provided that for every $n \in \mathbb{N}$ and every $x \in M_n(S)_{sa}$ there exists r > 0 such that $re_n + x \in C_n$, where $e_n = e \otimes I_n$. A matrix order unit is called Archimedean matrix order unit if for all $n \in \mathbb{N}$ the inclusion $re_n + x \in C_n$ for all r > 0 implies that $x \in C_n$.

Theorem 1. (Choi-Effros'77) If S is a matrix ordered *-vector space with an Archimedean matrix order unit e. Then there exist a Hilbert space \mathcal{H} , an operator system $S_1 \subseteq B(\mathcal{H})$ and a complete order isomorphism $\phi: S \to S_1$ such that $\phi(e) = I_{\mathcal{H}}$.

We refer the reader to Section 2 for the definition of Archimedean matrix order unit.

A *-algebra \mathcal{A} is matrix ordered if it is a matrix ordered *-vector space and for all n and m and all $A \in M_{n \times m}(\mathcal{A})$, we have that $A^*C_nA \subseteq C_m$. The main result of the paper is the following analog of the above theorem valid for matrix ordered *-algebras.

Theorem 2. Let \mathcal{A} be a matrix ordered unital *-algebra with unit e. If e is an Archimedean matrix order unit then there exist Hilbert space \mathcal{H} and a unital *-subalgebra $\mathcal{A}_1 \subseteq B(\mathcal{H})$ such that \mathcal{A} and \mathcal{A}_1 are complete order *-isomorphic.

Here complete order *-isomorphism is a complete order isomorphism between \mathcal{A} and \mathcal{A}_1 considered as matrix ordered *-vector spaces which is also a unital *-homomorphism. The *-algebra \mathcal{A}_1 is endowed with the matrix order consisting of the cones $M_n(A)_{sa} \cap B(\mathcal{H})^+$ of positive operators. The proof of Theorem 2 will be given in Section 3.

In other words Theorem 2 gives a characterization of the collections of cones $C_n \subseteq M_n(\mathcal{A})$ for which there exist a faithful *-representation π of \mathcal{A} on a Hilbert space H such that C_n coincides with the cone of positive operators contained in $\pi^{(n)}(M_n(\mathcal{A}))$. Here $\pi^{(n)}((x_{i,j})) = (\pi(x_{i,j}))$ for every matrix $(x_{i,j}) \in M_n(\mathcal{A})$. Note that we do not assume that \mathcal{A} has any faithful *-representation. This follows from the requirements imposed on the cones.

Recall that subspaces of $B(\mathcal{H})$ can be abstractly characterized as L^{∞} matrix normed spaces (see [10]). Namely, a space V is called L^{∞} -matrix
normed space if we are given norms $\|\cdot\|_{m,n}$ on $M_{m,n}(V)$ such that for all $A \in M_{p,m}(\mathbb{C}), X, Y \in M_{m,n}(V), B \in M_{n,q}(\mathbb{C})$ we have

$$||AXB|| \le ||A|| ||X|| ||B|| \tag{1}$$

and

$$||X \oplus Y|| = \max\{||X||, ||Y||\}$$
 (2)

It follows from the famous Blecher-Ruan-Sinclair theorem (see [1] and [2]) that in order to obtain an abstract characterization of subalgebras of $B(\mathcal{H})$

we need to allow matrices A and B in (1) to have coefficients in algebra V. The motivation of the present paper was to find similar modification of the axioms of matrix ordered *-vector space which works for *-algebras.

The proof of Ruan's theorem (see [10, 8]) uses reduction to the selfadjoint case and then Effros-Choi theorem. It looks attractive to deduce Blecher-Ruan-Sinclair theorem from Theorem 2.

The key ingredient of the proof of Theorem 2 is the case of one cone $C \subset \mathcal{A}_{sa}$ considered in Section 2. The cones C with property that $a^*Ca \subseteq C$ for all $a \in \mathcal{A}$ were introduced by R. Powers for the study of representations in unbounded operators in [9]. In Theorem 6 we prove that such cones C with the property that the unit of the algebra is an Archimedean order unit can be represented as a cone of positive operators. In Section 3 we prove the main result Theorem 2.

Based on the above characterization of *-subalgebras in $B(\mathcal{H})$ we study the question when an operator algebra is similar to a C^* -algebra.

Let \mathcal{B} be a unital (closed) operator algebra in $B(\mathcal{H})$. The algebra $M_n(B(\mathcal{H}))$ of $n \times n$ matrices with entries in $B(\mathcal{H})$ has a norm $\|\cdot\|_n$ via the identification of $M_n(B(\mathcal{H}))$ with $B(\mathcal{H}^n)$, where \mathcal{H}^n is the direct sum of n copies of a Hilbert space \mathcal{H} . The algebra $M_n(\mathcal{B})$ inherits a norm $\|\cdot\|_n$ via natural inclusion into $M_n(B(\mathcal{H}))$. The norms $\|\cdot\|_n$ are called matrix norms on the operator algebra \mathcal{B} . If $\phi \colon \mathcal{B} \to \mathcal{B}_1$ is a linear bounded map between two operator algebras then $\phi^{(n)}$ maps $M_n(\mathcal{B})$ into $M_n(\mathcal{B}_1)$ and $\|\phi\|_{cb} = \sup_n \|\phi^{(n)}\|$ is called the completely bounded norm of ϕ . The map ϕ is called completely bounded if $\|\phi\|_{cb} < \infty$. The map ϕ is called completely isometric if $\phi^{(n)}$ is such for all n. Two operator algebras \mathcal{B}_1 and \mathcal{B}_2 are called completely boundedly isomorphic if there is a completely bounded isomorphism $\phi \colon \mathcal{B}_1 \to \mathcal{B}_2$ with completely bounded inverse.

In [6] C. Le Merdy presented necessary and sufficient conditions for \mathcal{B} to be self-adjoint. These conditions involve all completely isometric repre-

sentations of \mathcal{B} on Hilbert spaces. Our characterization is different in the following respect. If S is a bounded invertible operator in $B(\mathcal{H})$ and \mathcal{A} is a C^* -algebra in $B(\mathcal{H})$ then the operator algebra $S^{-1}\mathcal{A}S$ is not necessarily self-adjoint but only completely boundedly isomorphic to a C^* -algebra. By Haagerup's theorem every completely bounded isomorphism π from a C^* -algebra \mathcal{A} to an operator algebra \mathcal{B} has the form $\pi(a) = S^{-1}\rho(a)S$, $a \in \mathcal{A}$, for some *-isomorphism $\rho: \mathcal{A} \to B(\mathcal{H})$ and invertible $S \in B(\mathcal{H})$. Thus the question whether an operator algebra \mathcal{B} is completely boundedly isomorphic to a C^* -algebra is equivalent to the question if there is bounded invertible operator S such that $S\mathcal{B}S^{-1}$ is a C^* -algebra.

We will present a criterion for an operator algebra \mathcal{B} to be completely boundedly isomorphic to a C^* -algebra in terms of the existence of a collection of cones $C_n \in M_n(\mathcal{B})$ satisfying certain axioms (see def. 9). The axioms are derived from the properties of the cones of positive elements of a C^* -algebra preserved under completely bounded isomorphisms.

2 Faithful *-representation of *-algebras.

In this section, we let \mathcal{A} be a unital *-algebra and we let e denote its unit. Let \mathcal{A}_{sa} denote the set of self-adjoint elements in \mathcal{A} . A subset $C \subset \mathcal{A}_{sa}$ containing e is algebraically admissible cone (see [9]) provided that

- (i) C is a cone in A_{sa} , i.e. $\lambda x + \beta y \in C$ for all $x, y \in C$ and $\lambda \geq 0, \beta \geq 0$, $\lambda, \beta \in \mathbb{R}$;
- (ii) $C \cap (-C) = \{0\};$
- (iii) $xCx^* \subseteq C$ for every $x \in \mathcal{A}$;

With a cone C we can associate a partial order \geq_C on the real vector space \mathcal{A}_{sa} given by the rule $a \geq_C b$ if $a - b \in C$. It is clear that $(\mathcal{A}_{sa}, \leq_C)$

is a preordered real vector space. Henceforth we will suppress subscript C if it will not lead to ambiguity. An element $e \in \mathcal{A}_{sa}$ is called a *order unit* provided that for every $x \in \mathcal{A}_{sa}$ there exists r > 0 such that $re + x \in C$. An order unit is called *Archimedean* provided that the inclusion $re + x \in C$ for all r > 0 implies that $x \in C$.

The following lemma is straightforward.

Lemma 3. For every $x \in \mathcal{A}$, $x^*x \in C$. In particular $a^2 \in C$ for $a \in \mathcal{A}_{sa}$. If for $a, b \in \mathcal{A}_{sa}$, $a \geq b$ then for every $x \in \mathcal{A}$, $x^*ax \geq x^*bx$.

The following lemma is a direct consequence of the above.

Lemma 4. Let \mathcal{A} be a *-algebra with algebraically admissible cone C and unit e which is an order unit. The function $\|\cdot\|$ defined as

$$||a|| = \inf\{r > 0 : re \pm a \in C\}$$

is a seminorm on the \mathbb{R} -space \mathcal{A}_{sa} . Moreover $||x^*ax|| \leq ||x^*x|| ||a||$ for every $x \in \mathcal{A}$ and $a \in \mathcal{A}_{sa}$.

Lemma 5. Let \mathcal{A} be a *-algebra with algebraically admissible cone C and with unit e which is an Archimedean order unit. For $x \in \mathcal{A}$ define $|x| = \sqrt{\|x^*x\|}$. Then

- 1. $|\lambda x| = (\lambda \overline{\lambda})^{1/2} |x|$ for every $\lambda \in \mathbb{C}$ and $x \in \mathcal{A}$;
- 2. $|xy| \le |x||y|$ for every x, y in A;
- 3. $||a|| \le |a|$ for every $a \in \mathcal{A}_{sa}$.

Proof. The first statement is trivial. For x, y in \mathcal{A} , by Lemma 4, we have $\|(xy)^*xy\| = \|y^*(x^*x)y\| \le \|y^*y\| \|x^*x\|$. Hence $|xy| \le |x||y|$. By Lemma 3, $(\|a\|e\pm a)^2 \in C$. Thus $-(\|a\|^2e+a^2) \le 2\|a\|a \le \|a\|^2e+a^2$. If $a^2 \le \varepsilon e$ then $-(\|a\|^2+\varepsilon)e \le 2\|a\|a \le (\|a\|^2+\varepsilon)e$. Consequently, $\|2\cdot\|a\|\cdot a\| \le \|a\|^2+\varepsilon$. Thus, $\|a\|^2 \le \varepsilon$. Letting $\varepsilon \searrow \|a^2\|$ we obtain that $\|a\|^2 \le \|a^2\|$. Therefore, $\|a\| \le |a|$.

Theorem 6. Let \mathcal{A} be a *-algebra with unit e and $C \subseteq \mathcal{A}_{sa}$ be a cone containing e. If $xCx^* \subseteq C$ for every $x \in \mathcal{A}$ and e is an Archimedean order unit then there is a unital *-representation $\pi : \mathcal{A} \to B(H)$ such that $\pi(C) = \pi(\mathcal{A}_{sa}) \cap B(H)^+$. Moreover

- 1. $\|\pi(x)\| = \inf\{r > 0 : r^2 x^*x \in C\}$.
- 2. $\ker \pi = \{x : x^*x \in C \cap (-C)\}.$
- 3. If $C \cap (-C) = \{0\}$ then $\ker \pi = \{0\}$,

$$\|\pi(a)\| = \inf\{r > 0 : r \pm a \in C\} \text{ for all } a \in \mathcal{A}_{sa}$$

and
$$\pi(C) = \pi(A) \cap B(H)^+$$

Proof. By Lemma 4 we have that $\|\cdot\|: \mathcal{A}_{sa} \to \mathbb{R}_+$ is a seminorm on \mathbb{R} -space \mathcal{A}_{sa} . Let us prove that $|x| = \sqrt{\|x^*x\|}$ for $x \in \mathcal{A}$ defines a pre- \mathbb{C}^* -norm on \mathcal{A} .

First we will prove that $|x^*| = |x|$ for every $x \in A$. For this it suffices to show that $|x^*| \le |x|$. In fact, if this is true then $|x| = |(x^*)^*| \le |x^*|$. By definition $|x^*|^2 = ||xx^*||$. Since xx^* is self-adjoint, $||xx^*|| \le |xx^*|$ by Lemma 5. Thus $|x^*|^2 \le |xx^*| \le |x||x^*|$. If $|x^*| = 0$ then $0 \le |x|$ and the required inequality holds, otherwise we have $|x^*| \le |x|$.

For every $x \in A$ by Lemma 5 we have $|x^*x| \le |x||x^*| = |x|^2$ and $|x|^2 = |x^*x| \le |x^*x|$. Thus $|x|^2 = |x^*x|$.

Applying the previous equality to a self-adjoint element a we obtain $|a|^2 = |a^*a| = |a^2|$. Thus $|a^2| = |a|^2$.

We will prove that $|x+y| \le |x| + |y|$. For every $x \in A$ one has $||x^2 + x^{*2}|| \le 2||x^*x||$. Indeed, since $x + x^*$ is self-adjoint we have $(x + x^*)^2 \ge 0$, i.e

$$x^2 + x^{*2} + xx^* + x^*x \ge 0.$$

From this it follows that $x^2 + x^{*2} \ge -\{x, x^*\}$ where $\{x, x^*\} = xx^* + x^*x$. Since $i(x - x^*)$ is also self-adjoint we have $-(x - x^*)^2 \ge 0$. Thus $\{x, x^*\} \ge x^2 + x^{*2}$

and therefore $-\{x, x^*\} \le x^2 + x^{*2} \le \{x, x^*\}$. Hence

$$||x^{2} + x^{*2}|| \le ||\{x, x^{*}\}|| = ||xx^{*} + x^{*}x||$$

$$\le ||xx^{*}|| + ||x^{*}x|| = |x|^{2} + |x^{*}|^{2}$$

$$= 2|x|^{2} = 2||xx^{*}||.$$

We will prove the following.

$$||x^* + x|| \le 2||x^*x||^{1/2} = 2|x|. \tag{3}$$

Indeed, for self-adjoint a by Lemma 5, $||a||^2 \le ||a^2||$ hence

$$||x + x^*||^2 \le ||x^2 + x^{*2} + xx^* + x^*x||$$

$$\le ||x^2 + x^{*2}|| + ||xx^* + x^*x||$$

$$\le 2||x^*x|| + ||x^*x|| + ||xx^*||$$

$$= 4||x^*x||.$$

Thus $||x^* + x|| \le 2|x|$. We will prove that $||x^*y + y^*x|| \le 2|x||y|$. Indeed, the substitution x^*y instead of x in (3) implies $||x^*y + y^*x|| \le 2|x^*y| \le 2|x||y|$.

The inequality $|x+y| \le |x| + |y|$ follows from the following estimates:

$$|x+y|^2 \le ||x^*x|| + ||y^*y|| + ||x^*y + y^*x||$$

$$\le |x|^2 + |y|^2 + 2|x||y|$$

$$= (|x| + |y|)^2.$$

Thus $|\cdot|$ is pre- C^* -norm.

If N denotes the null-space of $|\cdot|$ then the completion $\mathcal{B} = \overline{\mathcal{A}/N}$ with respect to the resulting norm is a C^* -algebra and the canonical epimorphism $\pi: \mathcal{A} \to \mathcal{A}/N$ is a unital *-homomorphism $\pi: \mathcal{A} \to \mathcal{B}$. We can assume without loss of generality that \mathcal{B} is a concrete C^* -algebra in B(H) for some

Hilbert space H. Thus $\pi: \mathcal{A} \to B(H)$ can be regarded as a unital *-representation. Clearly,

$$\|\pi(x)\| = |x| \text{ for all } x \in \mathcal{A}.$$

This implies (1).

To show (2) take $x \in \ker \pi$ then $\|\pi(x)\| = 0$ and $re \pm x^*x \in C$ for all r > 0. Since e is an Archimedean unit we have $x^*x \in C \cap (-C)$. Conversely if $x^*x \in C \cap (-C)$ then $re \pm x^*x \in C$, for all r > 0, hence $\|\pi(x)\| = 0$ and (2) holds.

Let us prove that $\pi(C) = \pi(\mathcal{A}_{sa}) \cap B(H)^+$. Let $x \in \mathcal{A}_{sa}$ and $\pi(x) \geq 0$. Then there exists a constant $\lambda > 0$ such that $\|\lambda I_H - \pi(x)\| \leq \lambda$, hence $|\lambda e - x| \leq \lambda$. Since $\|a\| \leq |a|$ for all self-adjoint $a \in \mathcal{A}$, see Lemma 5, we have $\|\lambda e - x\| \leq \lambda$. Thus given $\varepsilon > 0$ we have $(\lambda + \varepsilon)e \pm (\lambda e - x) \in C$. Hence $\varepsilon e + x \in C$. Since e is Archimedean $x \in C$.

Conversely, let $x \in C$. To show that $\pi(x) \geq 0$ it is sufficient to find $\lambda > 0$ such that $\|\lambda I_H - \pi(x)\| \leq \lambda$. Since $\|\lambda I_H - \pi(x)\| = |\lambda e - x|$ we will prove that $|\lambda e - x| \leq \lambda$ for some $\lambda > 0$. From the definition of norm $|\cdot|$ we have the following equivalences:

$$|\lambda e - x| \le \lambda \iff (\lambda + \varepsilon)^2 e - (\lambda e - x)^2 \in C \text{ for all } \varepsilon > 0$$
 (4)

$$\Leftrightarrow \varepsilon_1 e + x(2\lambda e - x) > 0$$
, for all $\varepsilon_1 > 0$. (5)

By condition (iii) in the definition of an algebraically admissible cone we have that $xyx \in C$ and $yxy \in C$ for every $x,y \in C$. If xy = yx then $xy(x+y) \in C$. Since e is an order unit we can choose r > 0 such that $re - x \in C$. Put y = re - x to obtain $rx(re - x) \in C$. Hence (5) is satisfied with $\lambda = \frac{r}{2}$. Thus $\|\lambda e - \pi(x)\| \le \lambda$ and $\pi(x) \ge 0$, which proves $\pi(C) = \pi(A_{sa}) \cap B(H)^+$.

In particular, for $a = a^*$ we have

$$\|\pi(a)\| = \inf\{r > 0 : rI_H \pm \pi(a) \in \pi(C)\}. \tag{6}$$

We now in a position to prove claim (3). Suppose that $C \cap (-C) = 0$. Then $\ker \pi$ is a *-ideal and $\ker \pi \neq 0$ implies that there exists a self-adjoint $0 \neq a \in \ker \pi$, i.e. |a| = 0. Inequality $||a|| \leq |a|$ implies $re \pm a \in C$ for all r > 0. Since e is Archimedean $\pm a \in C$, i.e. $a \in C \cap (-C)$ and, consequently, a = 0.

Since $\ker \pi = 0$ the inclusion $rI_H \pm \pi(a) \in \pi(C)$ is equivalent to $re \pm a \in C$, and by (6), $\|\pi(a)\| = \inf\{r > 0 : re \pm a \in C\}$. Moreover if $\pi(a) = \pi(a)^*$ then $a = a^*$. Thus we have $\pi(C) = \pi(A) \cap B(H)^+$.

Remark 7. Note that J. Kelley and R. Vaught in 1953 proved that

$$\sup \|\pi(x)\| = \inf \{ t \in \mathbb{R}_+ | t^2 - x^* x \in \mathcal{A}_+ \}$$
 (*)

where $A_+ = \left\{ \sum_{j=1}^n a_j^* a_j, n \in \mathbb{N}, a_j \in A \right\}$, π runs over all *-representations for Banach *-algebras A with isometric involution (see [5]). This is a particular case of claim (1) of Theorem 6 for a special choice of algebraically admissible cone $C = A_+$. The proof of formula (*) based on the Hahn-Banach theorem for any T^* -algebra (every $x \in A_{sa}$ is bounded) presented in monograph [7].

3 Operator realizations of matrix-ordered *-algebras.

The aim of this section is to give necessary and sufficient conditions on a sequences of cones $C_n \subseteq M_n(\mathcal{A})_{sa}$ for a unital *-algebra \mathcal{A} such that C_n coincides with the cone $M_n(\mathcal{A}) \cap M_n(B(H))^+$ for some realization of \mathcal{A} as a *-subalgebra of B(H), where $M_n(B(H))^+$ denotes the set of positive operators acting on $H^n = H \oplus \ldots \oplus H$.

We say that a *-algebra \mathcal{A} with unit e is matrix ordered if the following conditions hold:

- (a) for each $n \geq 1$ we are given a cone C_n in $M_n(\mathcal{A})_{sa}$ and $e \in C_1$,
- (b) $C_n \cap (-C_n) = \{0\}$ for all n,
- (c) for all n and m and all $A \in M_{n \times m}(A)$, we have that $A^*C_nA \subseteq C_m$,

Let $\pi: \mathcal{A} \to B(H)$ be a *-representation. Define $\pi^{(n)}: M_n(\mathcal{A}) \to M_n(B(H))$ by $\pi^{(n)}((a_{ij})) = (\pi(a_{ij}))$.

Theorem 8. If \mathcal{A} is a matrix-ordered *-algebra with a unit e which is Archimedean matrix order unit then there exists a Hilbert space H and a faithful unital *-representation $\tau : \mathcal{A} \to B(H)$, such that $\tau^{(n)}(C_n) = M_n(\tau(\mathcal{A}))^+$ for all n. Conversely, every unital *-subalgebra \mathcal{D} of B(H) is matrix-ordered by cones $M_n(\mathcal{D})^+ = M_n(\mathcal{D}) \cap B(H)^+$ and the unit of this algebra is an Archimedean order unit.

Proof. Consider an inductive system of *-algebras and unital injective *-homomorphisms $\phi_n: M_{2^n}(\mathcal{A}) \to M_{2^{n+1}}(\mathcal{A})$:

$$\phi_n(a) = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$$
 for all $n \ge 0, a \in M_{2^n}(\mathcal{A})$.

Let $\mathcal{B} = \varinjlim M_{2^n}(\mathcal{A})$ be the inductive limit of this system. By (c) in the definition of the matrix ordered algebra we have $\phi_n(C_{2^n}) \subseteq C_{2^{n+1}}$. We will identify $M_{2^n}(\mathcal{A})$ with a subalgebra of \mathcal{B} via canonical inclusions. Let $C = \bigcup_{n \geq 1} C_{2^n} \subseteq \mathcal{B}_{sa}$ and let e_{∞} be the unit of \mathcal{B} .

Let us prove that C is an algebraically admissible cone. Clearly, C satisfies conditions (i) and (ii) of the definition of an algebraically admissible cone. To prove (iii) suppose that $x \in \mathcal{B}$ and $a \in C$, then for some n we have $a \in C_{2^n}$ and $x \in M_{2^n}(\mathcal{A})$. Therefore, by (c), $x^*ax \in C$. Thus (iii) is proved. Since e is an Archimedean matrix order unit we obviously have that e_{∞} is also an Archimedean order unit. Thus the *-algebra \mathcal{B} satisfies the assumptions of

Theorem 6 and therefore there is a faithful *-representation $\pi: \mathcal{B} \to B(H)$ such that $\pi(C) = \pi(\mathcal{B}) \cap B(H)^+$.

Let $\xi_n: M_{2^n}(\mathcal{A}) \to \mathcal{B}$ be the canonical injections $(n \geq 0)$. Then $\tau = \pi \circ \xi_0: \mathcal{A} \to B(H)$ is an injective *-homomorphism.

We claim that $\tau^{(2^n)}$ is unitary equivalent to $\pi \circ \xi_n$. By replacing π with π^{α} , where α is an infinite cardinal, we can assume that π^{α} is unitary equivalent to π . Since $\pi \circ \xi_n : M_{2^n}(\mathcal{A}) \to B(H)$ is a *-homomorphism there exist Hilbert space K_n , *-homomorphism $\rho_n : \mathcal{A} \to B(K_n)$ and unitary operator $U_n : K_n \otimes \mathbb{C}^{2^n} \to H$ such that

$$\pi \circ \xi_n = U_n(\rho_n \otimes id_{M_{2^n}})U_n^*.$$

For $a \in \mathcal{A}$, we have

$$\pi \circ \xi_0(a) = \pi \circ \xi_n(a \otimes E_{2^n})$$
$$= U_n(\rho_n(a) \otimes E_{2^n})U_n^*,$$

where E_{2^n} is the identity matrix in $M_{2^n}(\mathbb{C})$. Thus $\tau(a) = U_0 \rho_0(a) U_0^* = U_n(\rho_n(a) \otimes E_{2^n}) U_n^*$. Let \sim stands for the unitary equivalence of representations. Since $\pi \circ \xi_n \sim \rho_n \otimes id_{M_{2^n}}$ and $\pi^{\alpha} \sim \pi$ we have that $\rho_n^{\alpha} \otimes id_{M_{2^n}} \sim \pi^{\alpha} \circ \xi_n \sim \rho_n \otimes id_{M_{2^n}}$. Hence $\rho_n^{\alpha} \sim \rho_n$. Thus $\rho_n \otimes E_{2^n} \sim \rho_n^{2^n \alpha} \sim \rho_n$. Consequently $\rho_0 \sim \rho_n$ and $\pi \circ \xi_n \sim \rho_0 \otimes id_{M_{2^n}} \sim \tau \otimes id_{M_{2^n}}$. Therefore $\tau^{(2^n)} = \tau \otimes id_{M_{2^n}}$ is unitary equivalent to $\pi \circ \xi_n$.

What is left to show is that $\tau^{(n)}(C_n) = M_n(\tau(\mathcal{A}))^+$. Note that $\pi \circ \xi_n(M_{2^n}(\mathcal{A})) \cap B(H)^+ = \pi(C_{2^n})$. Indeed, the inclusion $\pi \circ \xi(C_{2^n}) \subseteq M_{2^n}(\mathcal{A}) \cap B(H)^+$ is obvious. To show the converse take $x \in M_{2^n}(\mathcal{A})$ such that $\pi(x) \geq 0$. Then $x \in C \cap M_{2^n}(\mathcal{A})$. Using (c) one can easily show that $C \cap M_{2^n}(\mathcal{A}) = C_{2^n}$. Hence $\pi \circ \xi_n(M_{2^n}(\mathcal{A})) \cap B(H)^+ = \pi(C_{2^n})$. Since $\tau^{(2^n)}$ is unitary equivalent to $\pi \circ \xi_n$ we have that $\tau^{(2^n)}(C_{2^n}) = M_{2^n}(\tau(\mathcal{A})) \cap B(H^{2^n})^+$.

Let us now show that $\tau^{(n)}(C_n) = M_n(\tau(A))^+$. For $X \in M_n(A)$ denote

$$\widetilde{X} = \begin{pmatrix} X & 0_{n \times (2^n - n)} \\ 0_{(2^n - n) \times n} & 0_{(2^n - n) \times (2^n - n)} \end{pmatrix} \in M_{2^n}(\mathcal{A}).$$

Then, clearly, $\tau^{(n)}(X) \geq 0$ if and only if $\tau^{(2^n)}(\widetilde{X}) \geq 0$. Thus $\tau^{(n)}(X) \geq 0$ is equivalent to $\widetilde{X} \in C_{2^n}$ which in turn is equivalent to $X \in C_n$ by (c).

Theorem 2 is a direct corollary of the above theorem.

4 Operator Algebras completely boundedly isomorphic to C^* -algebras.

In the sequel all operator algebras will be assumed to be norm closed.

Operator algebras \mathcal{A} and \mathcal{B} are called completely boundedly isomorphic if there is a completely bounded isomorphism $\tau: \mathcal{A} \to \mathcal{B}$ with completely bounded inverse. The aim of this section is to give necessary and sufficient conditions for an operator algebra to be completely boundedly isomorphic to a C^* -algebra. To do this we introduce a concept of *-admissible cones which reflect the properties of the cones of positive elements of a C^* -algebra preserved under completely bounded isomorphism.

Definition 9. Let \mathcal{B} be an operator algebra with unit e. A sequence $C_n \subseteq M_n(\mathcal{B})$ of closed (in the norm $\|\cdot\|_n$) cones will be called *-admissible if it satisfies the following conditions:

- 1. $e \in C_1$;
- 2. (i) $M_n(\mathcal{B}) = (C_n C_n) + i(C_n C_n)$, for all $n \in \mathbb{N}$,
 - (ii) $C_n \cap (-C_n) = \{0\}$, for all $n \in \mathbb{N}$,
 - (iii) $(C_n C_n) \cap i(C_n C_n) = \{0\}$, for all $n \in \mathbb{N}$;
- 3. (i) for all $c_1, c_2 \in C_n$ and $c \in C_n$, we have that $(c_1-c_2)c(c_1-c_2) \in C_n$,
 - (ii) for all n, m and $B \in M_{n \times m}(\mathbb{C})$ we have that $B^*C_nB \subseteq C_m$;

- 4. there is r > 0 such that for every positive integer n and $c \in C_n C_n$ we have $r||c||e_n + c \in C_n$,
- 5. there exists a constant K > 0 such that for all $n \in \mathbb{N}$ and $a, b \in C_n C_n$ we have $||a||_n \leq K \cdot ||a + ib||_n$.

Theorem 10. If an operator algebra \mathcal{B} has a *-admissible sequence of cones then there is a completely bounded isomorphism τ from \mathcal{B} onto a C^* -algebra \mathcal{A} . If, in addition, one of the following conditions holds

- (1) there exists r > 0 such that for every $n \ge 1$ and $c, d \in C_n$ we have $||c+d|| \ge r||c||$.
- (2) there exists $\alpha > 0$ such that

$$||(x-iy)(x+iy)|| \ge \alpha ||x-iy|| ||x+iy||$$

for all $x, y \in C_n - C_n$

then the inverse $\tau^{-1}: \mathcal{A} \to \mathcal{B}$ is also completely bounded.

Conversely, if such an isomorphism τ exists then \mathcal{B} possesses a *-admissible sequence of cones and conditions (1) and (2) are satisfied.

The proof will be divided into 4 lemmas.

Let $\{C_n\}_{n\geq 1}$ be a *-admissible sequence of cones of \mathcal{B} . Let $\mathcal{B}_{2^n}=M_{2^n}(\mathcal{B})$, $\phi_n:\mathcal{B}_{2^n}\to\mathcal{B}_{2^{n+1}}$ be unital homomorphisms given by $\phi_n(x)=\begin{pmatrix} x&0\\0&x\end{pmatrix}$, $x\in\mathcal{B}_{2^n}$. Denote by $\mathcal{B}_{\infty}=\varinjlim\mathcal{B}_{2^n}$ the inductive limit of the system $(\mathcal{B}_{2^n},\phi_n)$. As all inclusions ϕ_n are unital \mathcal{B}_{∞} has a unit, denoted by e_{∞} . Since \mathcal{B}_{∞} can be considered as a subalgebra of the corresponding inductive limit of $M_{2^n}(\mathcal{B}(\mathcal{H}))$ we can define the closure of \mathcal{B}_{∞} in this C^* -algebra denoted by $\overline{\mathcal{B}}_{\infty}$.

Now we will define an involution on \mathcal{B}_{∞} . Let $\xi_n: M_{2^n}(\mathcal{B}) \to \mathcal{B}_{\infty}$ be the canonical morphisms. By (3ii), $\phi_n(C_{2^n}) \subseteq C_{2^{n+1}}$. Hence $C = \bigcup_n \xi_n(C_{2^n})$ is a well defined cone in \mathcal{B}_{∞} . Denote by \overline{C} its completion. By (2i) and (2iii), for every $x \in \mathcal{B}_{2^n}$, we have $x = x_1 + ix_2$ with unique $x_1, x_2 \in C_{2^n} - C_{2^n}$. By (3ii) we have $\begin{pmatrix} x_i & 0 \\ 0 & x_i \end{pmatrix} \in C_{2^{n+1}} - C_{2^{n+1}}$, i = 1, 2. Thus for every $x \in \mathcal{B}_{\infty}$ we have unique decomposition $x = x_1 + ix_2$, $x_1 \in C - C$, $x_2 \in C - C$. Hence the mapping $x \mapsto x^{\sharp} = x_1 - ix_2$ is a well defined involution on \mathcal{B}_{∞} . In particular, we have an involution on \mathcal{B} which depends only on the cone C_1 .

Lemma 11. Involution on \mathcal{B}_{∞} is defined by the involution on \mathcal{B} , i.e. for all $A = (a_{ij})_{i,j} \in M_{2^n}(\mathcal{B})$

$$A^{\sharp} = (a_{ji}^{\sharp})_{i,j}.$$

Proof. Assignment $A^{\circ} = (a_{ji}^{\sharp})_{i,j}$, clearly, defines an involution on $M_{2^n}(\mathcal{B})$. We need to prove that $A^{\sharp} = A^{\circ}$.

Let $A = (a_{ij})_{i,j} \in M_{2^n}(\mathcal{B})$ be self-adjoint $A^{\circ} = A$. Then $A = \sum_i a_{ii} \otimes E_{ii} + \sum_{i < j} (a_{ij} \otimes E_{ij} + a_{ij}^{\sharp} \otimes E_{ji})$ and $a_{ii}^{\sharp} = a_{ii}$, for all i. By (3ii) we have $\sum_i a_{ii} \otimes E_{ii} \in C_{2^n} - C_{2^n}$. Since $a_{ij} = a'_{ij} + ia''_{ij}$ for some $a'_{ij}, a''_{ij} \in C_{2^n} - C_{2^n}$ we have

$$a_{ij} \otimes E_{ij} + a_{ij}^{\sharp} \otimes E_{ji} = (a'_{ij} + ia''_{ij}) \otimes E_{ij} + (a'_{ij} - ia''_{ij}) \otimes E_{ji}$$

$$= (a'_{ij} \otimes E_{ij} + a'_{ij} \otimes E_{ji}) + (ia''_{ij} \otimes E_{ij} - ia''_{ij} \otimes E_{ji})$$

$$= (E_{ii} + E_{ji})(a'_{ij} \otimes E_{ii} + a'_{ij} \otimes E_{jj})(E_{ii} + E_{ij})$$

$$- (a'_{ij} \otimes E_{ii} + a'_{ij} \otimes E_{jj})$$

$$+ (E_{ii} - iE_{ji})(a''_{ij} \otimes E_{ii} + a''_{ij} \otimes E_{jj})(E_{ii} + iE_{ij})$$

$$- (a''_{ij} \otimes E_{ii} + a''_{ij} \otimes E_{jj}) \in C_{2^{n}} - C_{2^{n}}.$$

Thus $A \in C_{2^n} - C_{2^n}$ and $A^{\sharp} = A$. Since for every $x \in M_{2^n}(\mathcal{B})$ there exist unique $x_1 = x_1^{\circ}$ and $x_2 = x_2^{\circ}$ in $M_{2^n}(\mathcal{B})$, such that $x = x_1 + ix_2$, and unique

 $x_1' = x_1'^{\sharp}$ and $x_2' = x_2'^{\sharp}$, such that $x = x_1' + ix_2'$, we have that $x_1 = x_1^{\sharp} = x_1'$, $x_2 = x_2^{\sharp} = x_2'$ and involutions \sharp and \circ coincide.

Lemma 12. Involution $x \to x^{\sharp}$ is continuous on \mathcal{B}_{∞} and extends to an involution on $\overline{\mathcal{B}}_{\infty}$. With respect to this involution $\overline{C} \subseteq (\overline{\mathcal{B}}_{\infty})_{sa}$ and $x^{\sharp}\overline{C}x \subseteq \overline{C}$ for every $x \in \overline{\mathcal{B}}_{\infty}$.

Proof. Consider a convergent net $\{x_i\} \subseteq \mathcal{B}_{\infty}$ with the limit $x \in \mathcal{B}_{\infty}$. Decompose $x_i = x_i' + ix_i''$ with $x_i', x_i'' \in C - C$. By (5), the nets $\{x_i'\}$ and $\{x_i''\}$ are also convergent. Thus x = a + ib, where $a = \lim x_i' \in \overline{C - C}$, $b = \lim x_i'' \in \overline{C - C}$ and $\lim x_i^{\sharp} = a - ib$. Therefore the involution defined on \mathcal{B}_{∞} can be extended by continuity to $\overline{\mathcal{B}}_{\infty}$ by setting $x^{\sharp} = a - ib$.

Under this involution $\overline{C} \subseteq (\overline{\mathcal{B}}_{\infty})_{sa} = \{x \in \overline{\mathcal{B}}_{\infty} : x = x^{\sharp}\}.$

Let us show that $x^{\sharp}cx \in \overline{C}$ for every $x \in \overline{\mathcal{B}}_{\infty}$ and $c \in \overline{C}$. Take firstly $c \in C_{2^n}$ and $x \in \mathcal{B}_{2^n}$. Then $x = x_1 + ix_2$ for some $x_1, x_2 \in C_{2^n} - C_{2^n}$ and

$$(x_1 + ix_2)^{\sharp} c(x_1 + ix_2) = (x_1 - ix_2)c(x_1 + ix_2)$$

$$= \frac{1}{2} \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} -x_1 & -ix_2 \\ ix_2 & x_1 \end{pmatrix} \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix} \begin{pmatrix} -x_1 & -ix_2 \\ ix_2 & x_1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

By (3i), Lemma 11 and (3ii) $x^{\sharp}cx \in C_{2^n}$.

Let now $c \in \overline{C}$ and $x \in \overline{\mathcal{B}}_{\infty}$. Suppose that $c_i \to c$ and $x_i \to x$, where $c_i \in C$, $x_i \in \mathcal{B}_{\infty}$. We can assume that c_i , $x_i \in B_{2^{n_i}}$. Then $x_i^{\sharp} c_i x_i \in C_{2^{n_i}}$ for all i and since it is convergent we have $x^{\sharp} cx \in \overline{C}$.

Lemma 13. The unit of $\overline{\mathcal{B}}_{\infty}$ is an Archimedean order unit and $(\overline{\mathcal{B}}_{\infty})_{sa} = \overline{C} - \overline{C}$.

Proof. Firstly let us show that e_{∞} is an order unit. Clearly, $(\overline{\mathcal{B}}_{\infty})_{sa} = \overline{C - C}$. For every $a \in \overline{C - C}$, there is a net $a_i \in C_{2^{n_i}} - C_{2^{n_i}}$ convergent to a. Since $\sup_i \|a_i\| < \infty$ there exists $r_1 > 0$ such that $r_1 e_{n_i} - a_i \in C_{2^{n_i}}$, i.e. $r_1 e_{\infty} - a_i \in C$. Passing to the limit we get $r_1 e_{\infty} - a \in \overline{C}$. Replacing a by -a we can

find $r_2 > 0$ such that $r_2 e_{\infty} + a \in \overline{C}$. If $r = \max(r_1, r_2)$ then $re_{\infty} \pm a \in \overline{C}$. This proves that e_{∞} is an order unit and that for all $a \in \overline{C - C}$ we have $a = re_{\infty} - c$ for some $c \in \overline{C}$. Thus $\overline{C - C} \in \overline{C} - \overline{C}$. The converse inclusion, clearly, holds. Thus $\overline{C - C} = \overline{C} - \overline{C}$.

If $x \in (\overline{\mathcal{B}}_{\infty})_{sa}$ such that for every r > 0 we have $r + x \in \overline{C}$ then $x \in \overline{C}$ since \overline{C} is closed. Hence e_{∞} is an Archimedean order unit.

Lemma 14. $\mathcal{B}_{\infty} \cap \overline{C} = C$.

Proof. Denote by $\mathcal{D} = \varinjlim M_{2^n}(B(\mathcal{H}))$ the C^* -algebra inductive limit corresponding to the inductive system ϕ_n and denote $\phi_{n,m} = \phi_{m-1} \circ \ldots \circ \phi_n$: $M_{2^n}(B(\mathcal{H})) \to M_{2^m}(B(\mathcal{H}))$. For n < m we identify $M_{2^{m-n}}(M_{2^n}(B(\mathcal{H})))$ with $M_{2^m}(B(\mathcal{H}))$ by omitting superfluous parentheses in a block matrix $B = [B_{ij}]_{ij}$ with $B_{ij} \in M_{2^n}(B(\mathcal{H}))$.

Denote by $P_{n,m}$ the operator $diag(I, 0, ..., 0) \in M_{2^{m-n}}(M_{2^n}(B(\mathcal{H})))$ and set $V_{n,m} = \sum_{k=1}^{2^{m-n}} E_{k,k-1}$. Here I is the identity matrix in $M_{2^n}(B(\mathcal{H}))$ and $E_{k,k-1}$ is $2^n \times 2^n$ block matrix with identity operator at (k, k-1)-entry and all other entries being zero. Define an operator $\psi_{n,m}([B_{ij}]) = diag(B_{11}, ..., B_{11})$. It is easy to see that

$$\psi_{n,m}([B_{ij}]) = \sum_{k=0}^{2^{m-n}-1} (V_{n,m}^k P_{n,m}) B(V_{n,m}^k P_{n,m})^*.$$

Hence by (3ii)

$$\psi_{n,m}(C_{2^m}) \subseteq \phi(C_{2^n}) \subseteq C_{2^m}. \tag{7}$$

Clearly, $\psi_{n,m}$ is a linear contraction and

$$\psi_{n,m+k} \circ \phi_{m,m+k} = \phi_{m,m+k} \circ \psi_{n,m}$$

Hence there is a well defined contraction $\psi_n = \lim_m \psi_{n,m} : \mathcal{D} \to \mathcal{D}$ such that

$$\psi_n|_{M_{2^n}(B(H))} = id_{M_{2^n}(B(\mathcal{H}))},$$

where $M_{2^n}(B(\mathcal{H}))$ is considered as a subalgebra in \mathcal{D} . Clearly, $\psi_n(\overline{\mathcal{B}}_{\infty}) \subseteq \overline{\mathcal{B}}_{\infty}$ and $\psi_n|_{\mathcal{B}_{2^n}} = id$. Consider C and C_{2^n} as subalgebras in \mathcal{B}_{∞} . By (7) we have $\psi_n: C \to C_{2^n}$.

To prove that $\mathcal{B}_{\infty} \cap \overline{C} = C$ take $c \in \mathcal{B}_{\infty} \cap \overline{C}$. Then there is a net c_j in C such that $||c_j - c|| \to 0$. Since $c \in \mathcal{B}_{\infty}$, $c \in \mathcal{B}_{2^n}$ for some n, and consequently $\psi_n(c) = c$. Thus

$$\|\psi_n(c_i) - c\| = \|\psi_n(c_i - c)\| \le \|c_i - c\|.$$

Hence $\psi_n(c_j) \to c$. But $\psi_n(c_j) \in C_{2^n}$ and the latter is closed. Thus $c \in C$. The converse inclusion is obvious.

Remark 15. Note that for every $x \in \mathcal{D}$

$$\lim_{n} \psi_n(x) = x. \tag{8}$$

Indeed, for every $\varepsilon > 0$ there is $x \in M_{2^n}(B(H))$ such that $||x - x_n|| < \varepsilon$. Since ψ_n is a contraction and $\psi_n(x_n) = x_n$ we have

$$\|\psi_n(x) - x\| \le \|\psi_n(x) - x_n\| + \|x_n - x\|$$
$$= \|\psi_n(x - x_n)\| + \|x_n - x\| \le 2\varepsilon.$$

Since $x_n \in M_{2^n}(B(\mathcal{H}))$ also belong to $M_{2^m}(B(\mathcal{H}))$ for all $m \geq n$, we have that $\|\psi_m(x) - x\| \leq 2\varepsilon$. Thus $\lim_n \psi_n(x) = x$.

Proof of Theorem 10. By Lemma 12 and 13 the cone \overline{C} and the unit e_{∞} satisfies all assumptions of Theorem 6. Thus there is a homomorphism $\tau: \overline{\mathcal{B}}_{\infty} \to B(\widetilde{H})$ such that $\tau(a^{\sharp}) = \tau(a)^*$ for all $a \in \overline{\mathcal{B}}_{\infty}$. Since the image of τ is a *-subalgebra of $B(\widetilde{H})$ we have that τ is bounded by [4, (23.11), p. 81]. The arguments at the end of the proof of Theorem 8 show that the restriction of τ to \mathcal{B}_{2^n} is unitary equivalent to the 2^n -amplification of $\tau|_{\mathcal{B}}$. Thus $\tau|_{\mathcal{B}}$ is completely bounded.

Let us prove that $\ker(\tau) = \{0\}$. By item 3 in Theorem 8 it is sufficient to show that $\overline{C} \cap (-\overline{C}) = 0$. If $c, d \in \overline{C}$ such that c + d = 0 then c = d = 0. Indeed, for every $n \geq 1$, $\psi_n(c) + \psi_n(d) = 0$. By Lemma 14, we have

$$\psi_n(\overline{C}) \subseteq \overline{C} \cap \mathcal{B}_{2^n} = C_{2^n}.$$

Therefore $\psi_n(c)$, $\psi_n(d) \in C_{2^n}$. Hence $\psi_n(c) = -\psi_n(d) \in C_{2^n} \cap (-C_{2^n})$ and, consequently, $\psi_n(c) = \psi_n(d) = 0$. Since $\|\psi_n(c) - c\| \to 0$ and $\|\psi_n(d) - d\| \to 0$ by Remark 15, we have that c = d = 0. If $x \in \overline{C} \cap (-\overline{C})$ then x + (-x) = 0, $x, -x \in \overline{C}$ and x = 0. Thus τ is injective.

We will show that the image of τ is closed if one of the conditions (1) or (2) of the statement holds.

Assume firstly that operator algebra \mathcal{B} satisfies the first condition. Since $\tau(\overline{\mathcal{B}}_{\infty}) = \tau(\overline{C}) - \tau(\overline{C}) + i(\tau(\overline{C}) - \tau(\overline{C}))$ and $\tau(\overline{C})$ is exactly the set of positive operators in the image of τ , it is suffices to prove that $\tau(\overline{C})$ is closed. By item 3 in Theorem 6, for self-adjoint (under involution \sharp) $x \in \overline{\mathcal{B}}_{\infty}$ we have

$$\|\tau(x)\|_{B(\widetilde{H})} = \inf\{r > 0 : re_{\infty} \pm x \in \overline{C}\}.$$

If $\tau(c_{\alpha}) \in \tau(C)$ is a Cauchy net in $B(\widetilde{H})$ then for every $\varepsilon > 0$ there is γ such that $\varepsilon \pm (c_{\alpha} - c_{\beta}) \in \overline{C}$ when $\alpha \geq \gamma$ and $\beta \geq \gamma$. Since $\overline{C} \cap \mathcal{B}_{\infty} = C$, $\varepsilon \pm (c_{\alpha} - c_{\beta}) \in C$. Denote $c_{\alpha\beta} = \varepsilon + (c_{\alpha} - c_{\beta})$ and $d_{\alpha\beta} = \varepsilon - (c_{\alpha} - c_{\beta})$. The set of pairs (α, β) is directed if $(\alpha, \beta) \geq (\alpha_1, \beta_1)$ iff $\alpha \geq \alpha_1$ and $\beta \geq \beta_1$. Since $c_{\alpha\beta} + d_{\alpha\beta} = 2\varepsilon$ this net converges to zero in the norm of $\overline{\mathcal{B}}_{\infty}$. Thus by assumption 4 in the definition of *-admissible sequence of cones, $\|c_{\alpha\beta}\|_{\overline{\mathcal{B}}_{\infty}} \to 0$. This implies that c_{α} is a Cauchy net in $\overline{\mathcal{B}}_{\infty}$. Let $c = \lim c_{\alpha}$. Clearly, $c \in \overline{C}$. Since τ is continuous $\|\tau(c_{\alpha}) - \tau(c)\|_{\overline{\mathcal{B}}_{\infty}} \to 0$. Hence the closure $\overline{\tau(C)}$ is contained in $\tau(\overline{C})$. By continuity of τ we have $\tau(\overline{C}) \subseteq \overline{\tau(C)}$. Hence $\tau(\overline{C}) = \overline{\tau(C)}$, $\tau(\overline{C})$ is closed.

Let now \mathcal{B} satisfy condition (2) of the theorem. Then for every $x \in \overline{\mathcal{B}}_{\infty}$ we have $||x^{\sharp}x|| \geq \alpha ||x|| ||x^{\sharp}||$. By [4, theorem 34.3] $\overline{\mathcal{B}}_{\infty}$ admits an equivalent

 C^* -norm $|\cdot|$. Since τ is a faithful *-representation of the C^* -algebra $(\overline{\mathcal{B}}_{\infty}, |\cdot|)$ it is isometric. Therefore $\tau(\overline{\mathcal{B}}_{\infty})$ is closed.

Let us show that $(\tau|_{\mathcal{B}})^{-1}: \tau(\mathcal{B}) \to \mathcal{B}$ is completely bounded. The image $\mathcal{A} = \tau(\overline{\mathcal{B}}_{\infty})$ is a C^* -algebra in $B(\widetilde{H})$ isomorphic to $\overline{\mathcal{B}}_{\infty}$. By Johnson's theorem two Banach algebra norms on a semi-simple algebra are equivalent, hence, $\tau^{-1}: \mathcal{A} \to \overline{\mathcal{B}}_{\infty}$ is a bounded homomorphism. Let $R = ||\tau^{-1}||$. Let us show that $||(\tau|_{\mathcal{B}})^{-1}||_{cb} = R$. Since

$$\tau|_{\mathcal{B}_{2^n}} = U_n(\tau|_{\mathcal{B}} \otimes id_{M_{2^n}})U_n^*,$$

for some unitary $U_n: K \otimes \mathbb{C}^{2^n} \to \widetilde{H}$ we have for any $B = [b_{ij}] \in M_{2^n}(\mathcal{B})$

$$\| \sum b_{ij} \otimes E_{ij} \| \leq R \| \tau(\sum b_{ij} \otimes E_{ij}) \|$$

$$= R \| U_n(\sum \tau(b_{ij}) \otimes E_{ij}) U_n^* \|$$

$$= R \| \sum \tau(b_{ij}) \otimes E_{ij} \|.$$

This is equivalent to

$$\|\sum \tau^{-1}(b_{ij}) \otimes E_{ij}\| \leq R\|\sum b_{ij} \otimes E_{ij}\|,$$

hence $\|(\tau^{-1})^{(2^n)}(B)\| \leq R\|B\|$. This proves that $\|(\tau|_{\mathcal{B}})^{-1}\|_{cb} = R$.

The converse statement evidently holds with *-admissible sequence of cones given by $(\tau^{(n)})^{-1}(M_n(\mathcal{A})^+)$.

Conditions (1) and (2) were used to prove that the image of isomorphism τ is closed. The natural question one can ask is wether there exists a Banach operator algebra isomorphic to a non-closed self-adjoint operator algebra via bounded isomorphism. The following example gives the affirmative answer to this question.

Example 16. Consider the algebra $\mathcal{B} = C^1([0,1])$ as an operator algebra in C^* -algebra $\bigoplus_{q \in \mathbb{Q} \cap [0,1]} M_2(C([0,1]))$ via inclusion

$$f(\cdot) \mapsto \bigoplus_{q \in \mathbb{Q} \cap [0,1]} \begin{pmatrix} f(q) & f'(q) \\ 0 & f(q) \end{pmatrix}.$$

The induced norm

$$||f|| = \sup_{q \in \mathbb{Q} \cap [0,1]} \left[\frac{1}{2} (2|f(q)|^2 + |f'(q)|^2 + |f'(q)|\sqrt{4|f(q)|^2 + |f'(q)|^2}) \right]^{\frac{1}{2}}$$

satisfies the inequality $||f|| \ge \frac{1}{\sqrt{2}} \max\{||f||_{\infty}, ||f'||_{\infty}\} \ge \frac{1}{2\sqrt{2}} ||f||_1$ where $||f||_1 = ||f||_{\infty} + ||f'||_{\infty}$ is the standard Banach norm on $C^1([0,1])$. Thus \mathcal{B} is a closed operator algebra with isometric involution $f^{\sharp}(x) = \overline{f(x)}$, $x \in [0,1]$. The identity map $C^1([0,1]) \to C([0,1])$, $f \mapsto f$ is a *-isomorphism of \mathcal{B} with non-closed self-adjoint subalgebra of C([0,1]).

Acknowledgments.

The work was written when the second author was visiting Chalmers University of Technology in Göteborg, Sweden. The second author was supported by the Swedish Institute.

References

- [1] D. Blecher, Z-J. Ruan, A. M. Sinclair, A characterization of operator algebras. Journal of Functional Analysis 89 (1990), 288-301
- [2] D. Blecher, A completely bounded characterization of operator algebras. Math. Annalen **303** (1995), 227-239.
- [3] M.D. Choi, E.G. Effros, Injectivity and operator spaces. *J. Functional Analysis* **24** (1977), no. 2, 156–209.
- [4] R.S. DORAN, V.A. Belfi, Characterizations of C*-algebras. The Gelfand-Naĭmark theorems. Monographs and Textbooks in Pure and Applied Mathematics, 101. Marcel Dekker, Inc., New York, 1986.
- [5] J. L. Kelley, R. L. Vaught, The positive cone in Banach algebras. Trans. Amer. Math. Soc. 74, (1953). 44–55.

- [6] C. Le Merdy, Self adjointness criteria for operator algebras, Arch. Math. 74 (2000), p. 212- 220.
- [7] T. Palmer, Banach algebras and the general theory of *-algebras. Vol.
 2. *-algebras. Encyclopedia of Mathematics and its Applications, 79.
 Cambridge University Press, Cambridge, 2001.
- [8] V. Paulsen, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics 78 Cambridge University Press, Cambridge, 2002.
- [9] R. Powers, Selfadjoint algebras of unbounded operators II, Trans. Amer. Math. Soc. 187 (1974), 261–293.
- [10] Z.J. Ruan, Subspaces of C*-algebras, J. Funct. Anal. **76** (1988), 218-230