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1 Symplectic and Contact Geometry Basics

1.1 Symplectic Geometry

The original motivation for symplectic geometry comes from classical mechanics. The

classical phase space for a free particle in n dimensions Rn ×Rn with coordinates given qi

and pj (the q
i's representing the generalized position and pj's representing the generalized

momentum of the particle). Given a Hamiltonian H : Rn × Rn × R → R, where the value
H(qi, pj, t) is the energy of a particle with position qi, momentum pj at time t, Hamilton's

equations describe the time evolution of the given particle:

∂H

∂pj
= _qj,

∂H

∂qi
= − _pi

We can interpret the preceding equation as one describing a time dependent vector �eld X

on Rn × Rn and package it as [
0 In

−In 0

][
∂H
∂q
∂H
∂p

]
= X

Recognizing J =

[
0 In

−In 0

]
as a skew symmetric matrix, we can realize this equation as

dH = ιXω

where ω is the constant form dqi ∧ dpi. Note that this equation has a unique solution

because J is invertible. If we take ω to be the object which takes a Hamiltonian and outputs

the corresponding vector �eld which generates the dynamics of the given Hamiltonian, in

wishing to generalize from Rn ×Rn to the setting of smooth manifolds, one may make the

following de�nition:

Definition 1.1. A symplectic manifold is a smooth manifoldM equipped with a two form

ω ∈ Ω2M which is non-degenerate and closed, i.e. ωp(u, v) = 0 for all v ∈ TpM implies that

u = 0 and dω = 0. The Hamiltonian vector �eld of a smooth function H : M → R is the

unique vector �eld XH ∈ X(M) such that ιXH
ω = dH.

Example 1. Our motivating situation of classical mechanics on Rn yields the example of

(R2n,ω = −d
(
pi dq

i
)
) where the equations for the Hamiltonian vector �eld reproduce

Hamilton's equations. We can generalize this example by thinking of R2n as T∗Rn and

θ = pi dq
i as the one form which satis�es

α∗θ = α (1)

for α ∈ Ω1(Rn). Equation (1) uniquely determines θ, and such a form is invariant under

smooth changes of coordinates in the base. One can then show that for any Q a smooth

manifold T∗Q is a symplectic manifold with ω = −dθ for θ de�ned as in Equation (1).
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Definition 1.2. A map f : M → N where (M,ω) and (N,ω ′) are symplectic manifolds

is called a symplectomorphism if it preserves the symplectic form on M, i.e. f∗ω ′ = ω.

The symplectic manifolds M and N are said to be isomorphic if there exists a symplecto-

morphism between them which is bijective, (symplectomorphisms must be local di�eomor-

phisms, so an isomorphism is necessarily a di�eomorphism).

Remark. A few arguments in linear algebra tell us that every symplectic manifold must be

even dimensional. One of the �rst things one should take into account when dealing with

symplectic manifolds, is their relatively high amount of exibility. This is �rst seen in the

following theorem, which tells us that symplectic manifolds have no local invariants.

Theorem 1.3. (Darboux) Let (M2n,ω) be a symplectic manifold. Then there exist

local coordinates (q1, . . . , qn, p1, . . . , pn) on M such that the local expression for ω is

the standard symplectic form on Rn × Rn, i.e. ω = dqi ∧ dpi.

This means that all symplectic manifolds of the same dimension are necessarily locally

isomorphic to one another. This contrasts with Riemannian geometry, where the Riemann

curvature tensor measures the failure of the manifold to be locally at. This di�erence comes

from the requirement that a symplectic form be closed, a kind of integrability requirement,

which is lacking in the Riemannian case.

An important part of the study of symplectic geometry is the dynamics of the Hamilto-

nian vector �elds. The Hamiltonian vector �elds generate automorphisms of a symplectic

manifold, as is manifest through the following proposition.

Proposition 1.4. Let (M,ω) be a symplectic manifold and f ∈ C∞(M). The Hamil-

tonian vector �eld associated to f, Xf has LXf
ω = 0 and hence if ϕt : M → M is the

ow of Xf then ϕ
∗
tω = ω.

Proof. Let f be as above. By Cartan's magic formula

LXf
ω = dιXf

ω+ ιXf
dω = ddH+ 0 = 0

One other important theorem which shows the exibility of symplectic manifolds is

Moser's theorem

Theorem 1.5. (Moser) LetM be a compact symplectic manifold with symplectic forms

ω0 and ω1 connected by a smooth family of symplectic forms ωt with t ∈ [0, 1] such

that [ωt] = [ω0] for each t. Then there exists an isotopy ϕt : M → M such that

ϕ∗1ω1 = ω0.

1.2 Contact Geometry

We now turn to the sister subject of symplectic geometry, the study of an odd dimen-

sional analogue of symplectic manifolds; contact geometry which plays an important roll in

symplectic cohomology.
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Definition 1.6. Let M2n−1 be a smooth manifold. A (vector)-subbundle of ξ ⊂ TM is

called a distribution and is said to be a contact distribution if it is of codimension 1 and

is maximally non-integrable, i.e. if α ∈ Ω1M has ξ
∣∣
U
= kerα then α ∧ (dα)n−1 is nowhere

vanishing.

This condition does not depend on the choice of α since any other de�ning α ′ must have

α ′ = fα for some nonvanishing f ∈ C∞(U). We then have fα ∧ (d(fα))n−1 = fα ∧ (df ∧

α + fdα)n−1 = fnα ∧ dαn−1 . Note that the preceding equation means that dα
∣∣
ξ
is a non-

degenerate form and hence makes ξ into a symplectic vector bundle and guarantees that

any manifold which satis�es this condition is necessarily of odd dimension. These reasons

are part of why contact geometry is known as the odd dimensional sister to symplectic

geometry. A contact manifold in which there exists a globally de�ned one form α ∈ Ω1M
with ξ = kerα is called co-orientable. For the rest of this lecture series we will assume

that all contact manifolds are cooriented, as these are the ones which naturally occur in

symplectic cohomology, and will assume a choice of α to be part of the data of a contact

manifold.

Since we now have a distinguished 1 form on our contact manifold, we may study it by

studying the dynamics which this form produces. The easiest way to do this is using the

Reeb vector �eld R ∈ X(M) de�ned by ιRdα = 0 and ιRα = 1. The �rst condition guarantees

that R is never lies in kerα and the second condition makes such a choice unique. We then

see that LRα = ιRdα + dιRα = 0 meaning that the Reeb vector �eld preserves the contact

form and LRdα = dιRdα = 0 means that it acts via symplectomorphism when restricted to

kerα.

Another way in which the connection between symplectic geometry and contact geome-

try is manifest is the following procedure for creating a symplectic manifold from a contact

manifold. Let (M,α) be a contact manifold. Consider the subbundle of S(M) ⊂ T∗M with

�ber given by S(M)p = {β ∈ T∗pM : kerβ = ξp} = R∗αp. In fact S(M) ∼= M × R∗ under
the map (tαp) 7→ (p, t). One sees that since α∗θ = α, under the map ψ : S(M) →M× R∗

we have ψ∗θ = tα. Then ψ∗ω = d(tα) = dt ∧ α + tdα. Note that ψ∗ω
∣∣
kerα

=

dt∧α
∣∣
kerα

+ tdα
∣∣
kerα

= tdα
∣∣
kerα

, meaning that ψ∗ω is non-degenerate when restricted to

kerα. The contact condition requires that dt∧ α is nondegenerate when restricted to the

kernel of dα and hence ψ∗ω actually yields a symplectic form on S(M). This space, S(M)

is called the symplectization of (M,α) and we can study M by studying the symplectic

geometry of S(M).

Example 2. One of the motivating examples for de�nitions in contact geometry is that of

an energy hyper surface of a symplectic manifold. Let (M,ω) be a symplectic manifold and

H ∈ C∞(M) with E a regular value. We haveME = H−1(E) a codimension one submanifold

of M. If we choose a primitive for ω (now we necessarily assume that M is not compact

and/or is with boundary, as there are no exact compact symplectic manifolds without

boundary of positive dimension), θ, we may give ME the distribution de�ned by ker θ
∣∣
ME

.
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If X is the symplectic dual to θ, i.e. ιXω = θ (this vector �eld is called the Liouville �eld)

then, assuming that θ
∣∣
ME

is nonvanishing, we see that θ ∧ ωn−1 = 1
n ιXω

n which never

vanishes meaning that θ makes ME a contact manifold. Using Gray's stability theorem (a

contact analog of Moser's theorem), one can show that all such contact structures we may

give ME in this manner are isomorphic given an orientability assumption.

Example 3. The previous example, applying to every exact symplectic manifold, furnishes

many simple contact manifolds. Consider (M,ω) = (Cn,
∑

dxi ∧ dyi), given coordinates

(x1, . . . , xn, y1, . . . , yn) and H = 1
2‖z‖

2, the energy hyper surfaces are copies of S2n−1. If we

take the primitive θ = 1
2(x

i dyi − yi dxi), which has symplectic dual X = 1
2

(
xi ∂
∂xi

+ yi ∂
∂yi

)
the radial vector �eld on Cn. This means that ιXω

n, up to a constant multiple yields the

standard volume form on S2n−1 and θ
∣∣
H−1(E)

yields a contact structure. A short calculation

shows that the Reeb vector �eld is given by R = 1
n

(
1
yi

∂
∂xi

− 1
xi

∂
∂yi

)
as

ιR
1

2

∑(
xidyi − yidxi

)
=

n∑
i=1

1

n
= 1

ιR
∑

dxi ∧ dyi =
1

n

∑(
1

yi
dyi +

1

xi
dxi
)
.

We can see that when restricted to ME, the Reeb vector �eld corresponds with a multiple

of the standard U(1) action on an odd sphere and the space of orbits of this action is given

by CPn−1.

1.3 Liouville Domains

We will now de�ne the principal object of study for the rest of the course, symplectic

manifolds with contact type boundary, or shortly, Liouville domains. In order to motivate

the �nal form of the de�nition, we start by stating a few relevant facts about compact

symplectic manifolds.

Let (Mn, µ) be a compact oriented manifold with volume form µ. If µ = dα for α ∈
Ωn−1M , Stokes' theorem tells us that

VolµM =

∫
M

dα =

∫
∂M

α.

If M is closed, the right hand side of this equation is necessarily 0 and hence M is given

0 volume by this form. But a local calculation shows that the integral of a volume form is

necessarily positive over contracitble neighborhood meaning that this equality may not hold

ifM is closed. If we assume that ω is a symplectic form onM, ωn/2 is a volume form, and if

ω = dθ then ωn/2 = d
(

1
n/2−1θ∧ω

n/2−2
)
meaning that a closed symplectic manifold may

not be exact, i.e. it's symplectic form does not have a primitive. For reasons we may touch

upon later, compactness of the underlying symplectic manifold is important for proving

the compactness of the moduli space of solutions to the Floer equations, which are the
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objects counted by any Floer Homology. Compactness of this moduli space is essential for

the well de�nedness of chain map of a Floer Homology theory. Requiring your symplectic

form to be exact allows one to de�ne the Floer complex without having to worry about

the issue of sphere bubbling, a phenomenon in Floer theories which also causes issues with

compactness.

If we wish to have both of these properties which insure convenient compactness results,

one may ask for their symplectic manifold of study to be both compact and exact. But

now the manifold must necessarily be with boundary! Now, in order to have our cake and

eat it too we must work with manifolds with boundary and deal with how dynamics may

occur there. In order to control the dynamics on the boundary, we will combine symplectic

geometry with contact geometry, by requiring that the primitive we choose for our given

symplectic form yields a contact structure on the boundary.

Definition 1.7. Let M2n be a smooth compact manifold. For θ ∈ Ω1M, the pair (M,θ)

is called a symplectic manifold with contact type boundary (or simply a Liouville domain)

if dθ is a symplectic form on M and the Liouville vector �eld X is outward facing along

∂M, i.e. ιX(ω
n)
∣∣
∂M

is a volume form. This condition means that θ
∣∣
∂M

imbues ∂M with a

contact structure.

The condition on the Liouville vector �eld, means that LXω = ω and hence under the

ow of X, ϕ∗tω = exp(t)ω. The requirement that X face outward along the boundary ofM

means that there is a neighborhood of ∂M which is trivially foliated by copies of ∂M and

in fact, there is a neighborhood of ∂M which is symplectomorphic to (−ε, 0]×∂M seen as a

submanifold with boundary of S(M). By gluingM and (−ε,∞)× ∂M along (−ε, 0]× ∂M,

we yield an exact symplectic manifold with a complete Lioville ow. The result of this

gluing is written as M̂ and is referred to as the symplectic completion of M.

Figure 1: Sketch of a Liouville domain and its completion
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Because of the gluing process, far from M we may control the dynamics on M̂ by

considering hamiltonians which either level o� su�ciently far from M or those which grow

with a particular rate as the t coordinate goes to ∞. These allow us to do clever accounting

and later solve many pesky compactness issues that often arise in the non compact setting.

Example 4. Consider the closed unit ball �B2n ⊂ Cn with the restriction of the exact

symplectic form ω = d 12
∑ (

xi dyi − yi dxi
)
. Because ∂�B2n is a hypersurface of constant

energy, we can conclude that �B2n is a Liouville domain. Since we can extend the Liouville

vector �eld to all of Cn, we can conclude that �̂B2n ∼= Cn.

Definition 1.8. A Lioville isomorphism between two domains (M,θ), (N, λ) is a di�eo-

morphism ϕ :M→ N such that ϕ∗λ = θ+ df for f a compactly supported function on M.

Such isomorphisms preserve the Liouville ow outside of the support of f (e.g. at in�nity)

and are symplectomorphisms. One �nds that the following Moser/Gray theorem holds for

Liouville isomorphisms as well:

Theorem 1.9. If θt is a smooth family of Liouville structures on M, θ0 and θ1 are

Liouville isomorphic.

2 Floer Theory

2.1 Motivations

Remark. Much of the content of these notes and the rest of the series come from Paul

Seidel's A Biased View of Symplectic Cohomology with parts coming from Alexandru

Oancea's A Survey of Floer Homology for Manifolds with Contact Type Boundary.

As symplectic geometry arises as the study of generalized classical mechanics, it is only

natural to attempt to relate the dynamics on symplectic manifolds to their topology. One

of the great conjectures of early symplectic geometry is Arnold's conjecture:

Conjecture 2.1. (Arnold) Let (M,ω) be a closed symplectic manifold. If H ∈ C∞(M×
R), and P(H) denotes the set of �xed points of the time 1 hamiltonian ow,

|P(H)| ≥ rk(H∗(M,Q))

Much of the work in symplectic geometry in the latter half of the 20th century was

devoted to the solution of this problem and we will sketch the method by which it has been

proved for many cases as this will give us new tools to study many classes of symplectic

manifolds. As our �nal setting will be dealing with exact symplectic manifolds, we will

present the set up for the exact setting. For the remainder of this section, let (M,ω = dθ)

be an exact symplectic manifold. The main motivation of Floer theory is to set up a

homology theory whose chain complex is generated by the 1 periodic orbits of a given

Hamiltonian, and to (at least in the compact case) show that corresponding homology
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groups are isomorphic to the homology ofM by way of Morse homology. Since the number

of generators of a freely generated cochain complex is bounded below by its total rank, the

existence of such an isomorphism proves the Arnold conjecture. This conjecture concerns

closed symplectic manifolds, but our object of interest for this series is in Liouville domains,

which are expressly non-compact.

2.2 Floer Basics

In Darboux coordinates,

AH(x) =

∫ 1
0

(
pi(t) _q

i(t) −H(q(t), p(t), t)
)
dt .

In the proper setup, we can �nd the extrema of the action functional by solving the corre-

sponding Euler-Lagrange equations. Taking the Lagrangian to be L = pi _q
i − H, we have

∂L
∂qi

= ∂H
∂qi
, ∂L
∂ _qi

= pi,
∂L
∂pi

= _qi − ∂H
∂pi

, and ∂L
∂ _pi

= 0. Then d
dt

(
∂L
∂ _qi

)
= _pi and

d
dt

(
∂
∂L( _pi)

)
= 0.

More rigorously, one has

dAH,γ(u) =

∫ 1
0

〈dHγ(t), u〉dt+
∫ 1
0

ω( _γ(t), u(t))dt =

∫ 1
0

ω(XHt − _γ(t), u)dt .

Regarding a path in LM with end points x− and x+ as a map v : R × S1 → M with

limt→±∞ v = x±. Since dAH,γ(u) = ∫1
0ω(XH − _γ, u)dt if J is a compatible almost complex

structure (ω(J·, ·) is a Riemannian metric), we can write this as dAH,γ(u) =
∫1
0 g(J(XH −

_γ), u)dt and hence ∇AH,γ(t) = J(XHt− _γ(t)), so a solution to the gradient ow must satisfy

∂su = J(XHt − ∂tu) or

∂su+ J∂tu− J(XHt) = 0 (2)

This equation is known as Floer's equation. The solution theory for such an equation is not

well behaved everywhere on LM, but has nice properties when connecting critical points

of AH. Note: for Ht = 0, we recover the Cauchy-Riemann equation. For this reason the

Floer equation is often also referred to as the perturbed Cauchy-Riemann equation. We

de�ne ~Mx−,x+((H, J)) to be the space of solutions to the Floer equation connecting x− and

x+, we will refer to this as the space of Floer solutions. R acts freely on ~Mx−,x+((H, J))

by translations on the domain when x− 6= x+, since these translated solutions are the same

in some sense, we work with the quotient Mx−,x+(H, J) := ~Mx−,x+((H, J))/R and refer to

these unparametrized ows as Floer trajectories.

Definition 2.2. Let (M,ω) be a symplectic manifold with J a compatible almost complex

structure, and H :M× S1 → R a time dependent Hamiltonian with discrete critical points.

We de�ne the Symplectic cochain group of (M,ω, J,H) to be SC∗(M, J,H) := 〈critAH〉, the
free vector space over Z/2Z generated (as a direct sum) by 1 periodic orbits of Ht.

The space of maps R× S1 →M connecting x− to x+ has a natural vector bundle living

over it, given by ξu := Γ(S1 × R, u∗TM). The Floer equation de�nes a section σ : u 7→
7
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(∂su+ J∂tu− JXHt) and hence the space of Floer solutions is the intersection of im σ with

0ξ. As such, assuming the relevant transversality results hold, we can calculate the expected

dimension of a component by calculating the Fredholm index of the linearization of σ at

a given solution by way of a generalized implicit function theorem. For this reason, when

calculating the di�erential we only consider components of ~Mx−,x+((H, J)) of dimension 1.

Denote the local dimension of ~Mx−,x+((H, J)) at u by µ(u).

Because the space of compatible almost complex structures is contractible, the isomor-

phism type of TM as a complex vector bundle is an invariant ofM as a symplectic manifold.

As such, it makes sense to speak of the Chern classes of a symplectic manifold, denoted

by c1(M). If we assume that c1(M) is zero, this implies that the (complex) determinant

line of TM,
∧n

C TM is trivial. Fix a trivialization ψ :
∧n

C TM → C. If ϕt : M → M is the

Hamiltonian ow of H, then det(Tϕt)
∣∣
x
for a 1 periodic orbit of the ow de�nes a path γ in

U(1). We de�ne the index of x, ι(x) to be the intersection number of γ with 1 ∈ U(1). In
the case where c1(M) = 0, if u is a Floer trajectory from x− to x+ that µ(u) = ι(x+)−ι(x−).

This means that we can de�ne a Z grading on SC∗(M,ω, J,H) in such cases. We can de�ne

δ : SC∗(M,ω,H, J) → SC∗−1(M,ω,H, J) by

δ(x−) =
∑

ι(x+)−ι(x−)=1

|Mx−,x+(H, J)|x+.

In order to prove that δ makes SC∗ a chain complex, it is necessary to prove two things.

First of all, one must show thatMx−,x+(H, J) is compact so that the count |Mx−,x+(H, J)| is
�nite and that for ι(y) = ι(x−) + 2, the closure of moduli spaceMx−,y(H, J) can be written

as

Mx−,y(H, J)
⋃

ι(x+)ι(x−)=1

My,x+(H, J)×Mx+,x−(H, J),

i.e. as the union of honest trajectories and broken trajectories. The latter condition ensures

that δ2 = 0 since

δ2x− =
∑

ι(y)−ι(x−)=2,ι(x+)−ι(x−)=1

|Mx−,x+ ×Mx+,y|y

, Mx−,x+ ×Mx+,y = ∂Mx−,y, and the count of the boundary components of a 1 manifold

with boundary is necessarily 0.

3 Symplectic Cohomology

3.1 First Defintion

For the rest of the lecture we will restrict ourselves to a class of Hamiltonians which are

adapted to the Liouville domain setting. A Hamiltonian H : M̂×R → R is said to have slope

λ if for r = exp(t)� 0, where t is the time coordinate on the cylindrical ends of M̂, H = λr,
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and more generally we consider Hamiltonians which for large r are given by H = h(r) for

some smooth h : R → R. One has dH = h ′(r)dr and hence far away XH = h ′(r)R where R

is the Reeb vector �eld onM. We will refer to Hamiltonians which take the form H = h(r)

for large r as being contact type at in�nity or simply of contact type. By studying the

1-periodic orbits of XH for h ′ < a we can study the Reeb orbits with period less than 1/a.

For a general hamiltonian and almost complex structure,Mx−,x+ may not be compact and

a sequence of solutions to Floer's equation may be allowed to "run away" and limit to two

separate solutions connecting x− to in�nity and in�nty to x+. If we restrict to particular

Hamiltonians and complex structures of contact type, (these are ones for which dr◦ J = −θ

near in�nty),Mx−,x+ is now compact by the application of a weak maximum principle.

Proposition 3.1. Let u : R × S1 → M̂ be a solution to Floer's equation contained in

a region where H = h(r) with h ′ > 0. The function ρ = r ◦ u obeys a weak maximum

principle, i.e. if D ⊂ R×S1 is precompact, the maximum of ρ
∣∣
�D
occurs on the boundary

of D.

Proof. One has

∆ρds∧ dt = −ddcρ

= −d(d(u∗r) ◦ J)

= −d
(
−u∗θ+ ρh ′(ρ)dt

)
= u∗ω− h ′(ρ)dρ∧ dt− ρdh ′(ρ)∧ dt

= ω(∂su, ∂tu)ds∧ dt− h ′(ρ)∂sρds∧ dt− ρh ′′(ρ)∂sρds∧ dt

= (ω(∂su, ∂tu− XH) − ρh
′′(ρ)∂sρ))ds∧ dt

= (|∂su|2 − ρh ′′(ρ)∂sρ)ds∧ dt

Because |∂su|2 ≥ 0 we have ∆ρ + ρh ′′(ρ)∂sρ ≥ 0 and hence ρ satis�es the weak maximum

principle.

This maximum principle tells us that Floer trajectories connecting two one periodic

orbits of a given H as above, never leave a compact subset of M̂ and hence there are no

issues arising from compactness in this way. We are now able to give the �rst de�nition of

symplectic cohomology

Definition 3.2. Let M,θ be a Liouville domain. The symplectic cohomology of M with

respect to a contact type Hamiltonian H, such that H = h(r) at in�nity and h ′(r) → ∞
as r → ∞ is the Floer cohomology SH∗(M,H, J) with respect to J a complex structure of

contact type.

This de�nition depends on the choice of Hamiltonian and almost complex structure,

so in order to yield a well de�ned invariant one must show that all such choices lead to

isomorphic groups. This is done through the use of continuation maps. For two given
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choices (H−, J−), (H+, J+), by interpolating Hs, Js which are as above for each s, we can get

a chain map ψ : SH∗(M,H−, J−) → SH∗(M,H+, J+) by counting solutions to a modi�ed

Floer equation

∂su+ Js(∂tu− XHs) = 0.

where lims→±∞ u = x± ∈ SC∗(M,H±, H±). Since the time symmetry is broken by the

interpolation we do not quotient the relevant moduli space, and look at solutions which

connect trajectories which have equal index. Directly this map has

ψ(x−) =
∑

x+∈SC∗(H+,J+),ι(x+)=ι(x−)

|Minterp(x−, x+, Js, Hs)|x+.

Furthermore, through substantial analytical work one can show that ψ does not depend on

the choice of Hs and Js and that such a map is an isomorphism, meaning that SH∗(M) :=

SH∗(M,H, J) is well de�ned. This de�nition can be somewhat unwieldy since it produces

the whole of symplectic cohomology at once, and its chain complex is necessarily in�nitely

generated if ∂M has closed Reeb orbits.

3.2 Second Definition

One way to deal with the lack of �nite dimensional data in our original de�nition is to build

the symplectic cohomology as a direct limit of �nitely generated cohomology groups.

Let λ > 0 such that λ is not a multiple of a period of any Reeb orbit on ∂M. If we take a

Hamiltonian of contact type, where for su�ciently large r we have Hλ = λr+c. This means

that XH = λR for r large and the one periodic orbits of this correspond to λ periodic Reeb

orbits. Considering Hamiltonians of these forms guarantee that SC∗(M,H, J) is generated

by 1 periodic orbits of H lying in a compact neighborhood of M and the Reeb orbits with

period less than λ (a �nite set under the proper transversality conditions). De�ne

SH∗(M)<λ := SH∗(M,Hλ, J)

If λ+ < λ− are two such values, λs is a family interpolating from λ− to λ+ and Hs a

corresponding family of interpolating Hamiltonians. By studying the interpolation map

given by this family Hs, we can �rst show that SC∗(M)<λ does not depend on our choice of

Hλ by yielding a quasisomorphism between any two such chain complexes. One also yields

a map

SC∗(M)<λ+ → SC∗(M)<λ−

Remark. In order to set up the moduli space for the continuation maps in this case, we

may only look at λ+ < λ− as the maximum principle we relied on only works for families of

Hamiltonians with ∂sHs ≤ 0. In the compact case, the continuation maps work for generic

Hamiltonians.

10
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If we consider the ordered category C with objects given by λ ∈ R+ not a multiple of a

Reeb period inheriting morphisms as a subcategory of the (R+, <), the continuation maps

yield a functor F : C → GrAb, the symplectic cohomology is the limit of this functor

SC∗(M) := lim→ F

(or more appropriately, the symplectic cohomology is the target of the morphisms given by

the limit of the functor). That is, SC∗(M) is the the graded abelian group (equipped with

maps SC∗(M)<λ → SC∗(M)) for which given maps ψ1 : SC
∗(M)<λ → A,ψ2 : SC

∗(M)<λ
′ →

A, with λ < λ ′ such that the following diagram commutes

SC∗(M)<λ SC∗(M)<λ
′

A
ψ ψ ′

there is a unique map Ψ : SC∗(M) → A making the following diagram commute

SC∗(M)<λ SC∗(M)<λ
′

SC∗(M)

A

Ψ

ψ ψ ′

By �nding a system of Hamiltonians which interpolate between H− with unbounded

growth at in�nity and H+ with slope λ, the interpolation maps yield chain maps

CF∗(Hλ) → CF∗(H).

By choosing the interpolating Hamiltonians, one can make this map the inclusion of a sub

complex meaning that taking the limit and cohomology yields an isomorphism SC∗(M) →
SC∗(H). Hence, the de�nitions coincide.

3.3 Calculation for the closed ball

Proposition 3.3. Consider the Liouville domain M = �B2nr ⊂ Cn equipped with the

standard symplectic form with Liouville form given by 1
2

∑
j(y

jdxj − xjdyj). One has

SH∗(M) = 0.

Proof. We proceed with the calculation using the limit de�nition of cohomology. We begin

by choosing the family of Hamiltonians Hk(z) =
τk
2 ‖z‖

2 where 2πk < τk < 2π(k+ 1), these

are admissible since M̂ = Cn with coordinate given by 1
2‖z‖

2 we can deal with the ow

on this ambient space. This choice of τk guarantees that the only one periodic orbits of

11
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XHk
are the constant orbits at 0. We can thus conclude that SC∗(M)<τk = 〈0〉 with the

appropriate grading.

One has XHk
= −i∇Hk = −iz and hence the Hamiltonian ow is z 7→ exp(−iτkt)z. We

see that the linearization of this ow at z = 0 is simply z 7→ exp(−iτkt) and hence by the

choice of τk, ι(0k) = nk. This means that each of the continuation maps SC∗(M)<τk →
SC∗(M)<τk ′ are 0 and hence the resulting limit de�ning the symplectic cohomology yields

SH∗(M) = 0.

4 Growth Rates and Affine Varieties

4.1 Growth Rates

Recall that if ∂M contains a single periodic Reeb orbit, that SC∗(M) is necessarily in�nitely

generated. This hints at a greater inconvenience in the fact that the symplectic cohomology

itself SH∗(M) is often in�nitely generated and di�cult to compute. The groups SH∗(M)<τ

are always �nite dimensional. These groups are not Liouville invariants as compressing

the neck of the completion in a linear fashion will cause more orbits to be included in

these groups, but we can yield interesting information by measuring the rate at which these

groups grow.

Definition 4.1. Take r(M,τ) = rank(Imψτ) where ψτ : SH
∗(M)<τ → SH∗(M) is the uni-

versal morphism. De�ne the growth rate of a Liouville domain to be Γ(M) := limτ→∞ r(M,τ)
log(τ)

allowing for in�nite values. This measures the polynomial growth rate of the cohomology

and yields a somewhat more tractable invariant.

Remark. We can use the growth rate to detect whether or not the symplectic cohomology

vanishes since in such a case r(M,τ) := 0 meaning that Γ(M) = 0.

4.2 Affine Varieties

We now pivot towards an application of symplectic cohomology which relates to algebraic

geometry, logarithmic geometry, and homological mirror symmetry.

Consider Y a smooth projective variety. This means that Y ⊂ CPn for some n is cut

out as a submanifold by some number of homogeneous polynomials. Let L → Y be a

holomorphic line bundle over Y, D a divisor of Y, and s a holomorphic section for which

s−1(0) = D. One can think of a divisor as the vanishing set of a section of a holomorphic line

bundle over Y. Given a hermitian metric on L, ‖·‖, one has ddch = 4iF away from D where

F is the Chern connection associated compatible with ‖·‖. In this way if 4iF is symplectic

(i.e. Y\U is K�ahler) we can yield a Liouville domain (under the right assumptions on D)

by looking at a sublevel set of h.

Let X now be an smooth a�ne algebraic variety, that is, a submanifold of Cn cut

out by some number of polynomial equations. Resolution of singularities tells us that X

12
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admits a nice compacti�cation by a smooth projective variety, i.e. there is a holomorphic

map ϕ : X → Y for some smooth projective variety where tautological line L over Y is

ample (i.e. its curvature is represented by a K�ahler form) and Imϕ = Y\D for some

normal crossings divisor D = s−1(0) for a section s of L. A normal crossings divisor is one

which at critical points looks like the intersection of some number of codimension 1 hyper

planes. The discussion from the preceding paragraph means that we can associate to X a

Liouville domain given by the sublevel set of h := − log ‖s‖. A few facts about resolutions

of singularity insure that the isomorphism type of this Liouville domain does not depend

on the choice of resolution.

This means that to any a�ne algebraic variety we can associate new invariants, the

symplectic cohomology: SH∗(X) := SH∗(h−1((−∞, C]) and the corresponding growth rate.

One can bound the growth rate of the symplectic cohomology associated to an a�ne

variety by �nding a bound on the growth rates of the generators of the corresponding

cochain complex. This can be done by adapting the Liouville structure of the associated

Liouville domain to explicitly describe the Reeb dynamics as we describe more explicitly

in the following section.

Proposition 4.2. Let X be a smooth a�ne algebraic surface. Γ(X) ≤ 2.

In order to prove this, we must prove lemmata relating to the following procedure

a) Construct local Hamiltonian T 1 actions on X near D.

b) Deform the primitive of ω near the degenerate points of D so that it is preserved

under the local T 2 action and that the Liouville ow commutes with the T 2 action

c) Make the boundary of our Liouville domain symmetric under the T 1 actions.

d) Make the Reeb ow on the boundary symmetric

We begin by proving that there is a metric ‖·‖ ′ on L such that near any crossing the K�ahler

form is standard. Let ‖·‖ be a norm on ω for which the K�ahler form is ω = −ddc log ‖s‖.
Lemma 1.7 from Seidel's paper \A long exact sequence for symplectic Floer cohomology"

tells us that there is a K�ahler form ω ′ on Y for which in a neighborhood of each crossing

point of D, there is a contractable open neighborhood of each crossing for which ω ′ is the

standard form on C2 with respect to the chart in which D = {x1x2 = 0} near a crossing point

and agrees with ω near the boundary of this open neighborhood. This means that ω−ω ′ is

supported on such a ball and hence we may write ω−ω ′ = ddcψ for some smooth function

ψ. Taking ‖·‖ ′ = eψ‖·‖ we then have −ddc log ‖s‖ ′ = −ddc log ‖s‖−ddcψ = ω−ddcψ = ω ′.

By deforming ‖·‖ by etψ we see that the symplectic form de�ned here is isomorphic to the

standard one on Y.

Lemma 4.3. Let K ⊂ D be a smooth component. There is a neighborhood U of K in

Y which carries a T 1 action �xing K.

13
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Proof. Since K is a smooth component, it is a symplectic submanifold of (Y,ω). Let

π : P → K be the unitary frame bundle of the normal bundle to K, NK (equipped with

the restriction of the K�ahler metric). Denote the action of U(1) on P,C and P×C by ϕ,ψ,

and Φ respectively. If µ : C → iR is the moment map of the standard U(1) action on C
and α is a connection one form on P, ~β = 〈π∗1α, π∗2µ〉 is a U(1) invariant form on P × C as

seen below

Φ∗g〈π∗1α, π∗2µ〉 = 〈Φ∗gπ∗1α,Φ∗gπ∗2µ〉 = 〈π∗1ϕ∗gα, π∗2ψg−1µ〉 = β
~β then descends to a form β on N as does ωC the standard symplectic form on C. Because
dβ is zero at (p, 0) in P×C we conclude that there is a neighborhood UK of the zero section

in N where β+ωC+π
∗ω de�nes a symplectic form which coincides with ω when restricted

to the zero section. µ descends to a moment map for an action of U(1) on NK under the

constructed symplectic form, which preserves the 0 section. By the symplectic submanifold

theorem, there is a symplectomorphism ~UK → VK, where VK is an open neighborhood of

K and K is �xed. Pushing the T 1 action on NK forward by this symplectomorphism then

yields the desired action.

Since we have taken ω to be the standard form on a neighborhood of b ∈ K1 ∩ K2, on
the normal bundle of K1 in a neighborhood of b we may take α ′ the trivial connection with

respect to the given trivialization. Then α − α ′ is a T 1 equivariant iR valued 1-form on P

and α + t(α ′ − α) is a connection form for t ∈ [0, 1]. Taking a cuto� function ϕ which is

identically 0 away from b and identically 1 near b and applying the preceding construction

on the connection form α ′′ = α+ϕ(α ′ − α) yields a T 1 action which interpolates between

the starting action away from b and the standard linear action near b. This means that our

T 1 actions glue together near crossing points into T 2 actions given by the standard linear

ones in the standard coordinates.

Lemma 4.4. There is a smooth function λ on X such that the form θ ′ = θ+ dλ is T 2

invariant near any order crossing.

Proof. Near a crossing of order j, we may assume s(x1, x2) = (x1)w1(x2)w2 and the met-

ric takes the form ‖s‖2 = exp(2ψ)|s|2 with respect to our trivialization. Since ω =

ddc(− log ‖s‖) we have ω = ddc( 12 |x|
2) = ddc(−ψ − dc log

∣∣x1∣∣w1
∣∣x2∣∣w2) = ddc(−ψ) as a

quick calculation shows that dc log |s| is closed. We then have dcψ + dc 12 |x|
2 closed and

hence exact by the ddc-lemma. Let λ ′ be a primitive for dcψ + dc 12 |x|
2 and take ϕ a

radially symmetric bump function. We de�ne λ := ϕλ ′. Because

θ = −dch = −dcψ−
∑

wid
c log

∣∣∣xi∣∣∣,
near a crossing point we have θ ′ = −

∑
wid

c log
∣∣xi∣∣ + dc 12 |x|

2 and θ + dλ is symmetric

under the T 2 action.

Near a crossing, the Liouville vector �eld is given by Z ′ = −
∑
wi
(
2i
xi

∂
∂xi

− 2i
�xi

∂
∂�xi

)
+ Z

where Z is the standard Liouville �eld. It is clear that this has dh(Z) < 0 since (Z−Z ′)h =

14
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2i
∑
jwj((x

j)2 − (�xj)2) − (Z − Z ′)ψ which is arbitrarily small as h → 0. Then the sublevel

set {h(x) ≤ ε} is a Liouville domain under θ ′. This means that the family of forms given by

θ + tdλ are Liouville structures and hence for t = 0 and t = 1 de�ne isomorphic Liouville

structures on M = {h(x) ≤ ε} by the following theorem (Gray's Stability).

Theorem 4.5. Let M be a smooth manifold with boundary such that θt de�nes a

continuous family of Liouville structures on M for 0 ≤ t ≤ 1. There exists a Liouville

isomorphism between (M,θ0) and (M,θ1).

Lemma 4.6. There exists a subdomain M ′ of M which is Liouville isomorphic to M

and invariant under the local T 1 actions.

Proof. For K a smooth component of D let m be a moment map for the local T 1 action

such that m
∣∣
K
= 0. For some ε > 0 we have dm (Z ′)(x) < 0 for m(x) < ε. Let ρ be

the local circle action near K. The linearization of ρ along K is given by the standard

circle action on NK by construction. We can then conclude that when K is given locally by

{x1 = 0} we have m(x) = 1
2

∣∣x1∣∣2 + h(x) where h(x) is of order 3 or higher. Consequently

∇m(x) = u1 ∂
∂u1

+ v1 ∂
∂v1

+∇h where x1 = u1 + iv1. Away from a crossing, we have

dm(Z ′) = dm(Z) = ∇m(h) =

(
u1

∂

∂u1
+ v1

∂

∂v1
+∇h

)
(− log

∣∣∣x1∣∣∣+ψ).
In the limit x1 → 0 we have ∇h(− log

∣∣x1∣∣+ψ) → 0 and

(u1
∂

∂u1
+ v1

∂

∂v1
)(− log

∣∣∣x1∣∣∣) = −1

for any x1 meaning that there is some ε > 0 such that (Z ·m)(x) < 0 for m(x) < ε and x

far from a crossing.

We now consider the case near a crossing. Taking m1 and m2 to be the moment maps

for the two T 1 actions near a crossing, given in local coordinates by mj(x) = 1
2

∣∣xj∣∣2, let
κ(s, t) be a smooth function such that κ(s, 0) = κ(0, t) = 0 and ∂

∂sκ > 0 if t > 0 and
∂
∂tκ > 0

if t > 0. e.g. if

fa(x) =

0 x ≤ 0

exp(−1/ax) x > 0

and

ga,b(x) = b

∫x
0

fa(x)

fa(x) + fa(1− x)
dx , ha,b(x) = −ga,b(1− x) + ga,b(1)

then ha,b(s)ha,b(t) satis�es the preceding relations for all a, b > 0. For
∣∣x1∣∣2 su�ciently

large, there are values of a and b such that k(m1,m2) = m2 and vice verse for m2. This

means that if we take ∂M to be the complement of the regions wheremi and k are less than

ε we yield a new Liouville domain which is invariant under the T 1 actions. (Corollary 2.3

Oancea) Two open subsets of M̂ with outward facing Liouville vector �eld have isomorphic

symplectic cohomology.
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Now in order to �nally control the Reeb dynamics on the resulting Liouville domain,

we must make the Reeb ow symmetric under the T 1 actions.

Lemma 4.7. There is a Liouville structure θ̂ on M ′ which is invariant under the local

T 1 actions which is isomorphic to (M ′, θ ′).

Proof. By construction, θ ′ is T 1 invariant near each of the singular points of D. Away from

these singular points, one has ρ∗tZ and Z point outward and hence the integral

~θ =
1

2π

∫ 2π
0

ρ∗tθdt

yields a well de�ned Liouville form on union of the domains of de�nition of the T 1 actions.

Let ϕ : R≥0 → R be a smooth function which is identically 2π on [0, ε] for some ε > 0 and

which is identically 0 on [δ,∞) where m−1(δ) 6= ∅ for all m the normalized moment map

of the T 1 action near a component of D. The form

θ̂ =
1

ϕ ◦m

∫ϕ◦m
0

ρ∗tθ
′ dt

glues with θ ′ to yield a Liouville form with the desired property. By considering a family of

such forms parametrized by the maximum value of ϕ, we see that Gray's theorem insures

that (M ′, θ ′) is Liouville isomorphic to (M ′, θ̂).

We now investigate the Reeb ow of ∂M ′ using our newly constructed invariant contact

structure. Let ξ denote the fundamental vector �eld of the T 1 action on the neighborhood

of D. We denote θ̂ by θ. Because θ is invariant under the action, we conclude that Lξθ = 0.

By Cartan's magic formula dm = −dιξθ. We can then conclude that ιξθ and m di�er by a

locally constant function and ιξθ
′ is locally constant on the level sets ofM. Then when we

restrict ξ to ∂M ′, away from singular points of D, we have ιξθ
′ ∣∣
∂M

= (ιξθ
′)
∣∣
∂M

constant.

Since ιξω = dm, ιξ(ω
∣∣
∂M

) = dm
∣∣
∂M

= 0. We then conclude that up to scaling, ξ coincides

with the Reeb vector �eld away from the singular points of D.

Near a singular point of D with fundamental vector �elds given by ξ1 and ξ2, we have

d(κ(m1,m2))
∣∣
∂M

= (∂sκdm1 + ∂tκdm2)
∣∣
∂M

= 0, so then Ξ = ∂sκξ1 + ∂tκξ2 has

ιΞdθ

∣∣∣∣
∂M ′

= 0.

A short calculation shows that ιξiθ = mi. We have

ιΞθ = (∂sκ)m1 + (∂tκ)m2.

Because mi, ∂sκ, ∂tκ take nonnegative values, this quantity vanishes i� m1 = m2 = 0 if we

take ε small enough. De�ne α = ∂sκm1 + ∂tκm2 and we have Ξ
α the Reeb vector �eld.
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Near the singular points of D we conclude that the Reeb vector �eld restricts to a ow

on the T 2 orbits. On a given torus, the Reeb ow is given by(
∂sκ

(∂sκ)m1 + (∂tκ)m2
,

∂tκ

(∂sκ)m1 + (∂tκ)m2

)
For large m2, we have ∂tκ→ 0 yielding (1/m1, 0) and for large m1 we yield (0, 1/m2).

We can bound the dimension of SH∗(X)<τ by bounding the dimension of SC∗(X)<τ. As

τ increases, new contributions to dimSC∗(X)<τ are from the periodic Reeb orbits on M

with period less than τ. The boundary components near smooth parts of D have Reeb

orbits given by a T 1 action, i.e. every point lies on a periodic orbit. Let Q be the domain

of ∂M on which only one T 1 acts at a time. In this case, there is a pertubation to θ so

that the periodic orbits of the Reeb ow on Q are given by critical points of some Morse

function on Q. The contribution from each critical point is linear in τ, since if γ : S1 → ∂M

is a periodic orbit with period τ ′, the path given by traversing γ n times yields a periodic

orbit with period nτ ′. This gives the following lemma:

Lemma 4.8. Let X be a smooth a�ne algebraic surface. If there exists a resolution

of singularities X→ Y with X ∼= Y\D such that D is smooth, Γ(X) ≤ 1.

We now turn out attention to the regions near singular points of D. Since the Reeb

ow restricts to the orbits of the T 2 action, we must count the periodic tori of this ow.

Assume that an orbit with velocity (ξ1, ξ2). Assuming that neither ξ1 or ξ2 is zero and that

ξ1 > ξ2, then ξ1

ξ2
= p

q for some integers p and q in lowest terms. The �rst periodic orbit of

this torus will occur with τ = q
ξ2

since this has τξ2 = q and τξ1 = p. Then all periodic tori

of lowest period less than τ are given by q < τξ1. This means that the number of distinct

periodic tori grows linearly and hence the total number of periodic tori grows quadratically

as desired.
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