Matlab Homework Problem Set 0

Table of Contents

Problem 0 1
Problem A. 1 1
Problem A. 11 3

Your Name

Problem 0

Warm-up, use matlab to compute $1+1$. You need to write down the question down.

```
1+1 % Remember to comment your code.
% In the next two sections, I will solve a couple problems from Set A
% to illustrate what I want from you guys.
ans=
    2
```


Problem A. 1

Evaluate:
(a) $\frac{\frac{413}{765+295}}{\text { (as a decimal), }}$

413/(768+295) \% If the code is almost self explanatory, then you may leave it.
\% Note: I used something called LaTeX to display the fraction in above question.
ans =

413/1063
(b) 2^{123}, both as an approximate number in scientific notation and as an exact integer,

```
2^123 % This returns an approximate number in scientific notation.
round(vpa(2^123)) % From the output of the above line of code, we know
    there
% are 38 digits. So using vpa with 38 digit of precision, we are able
    to
```

```
% obtain the exact integer presentation of 2^123. The round recast
    output from
% a decimal to an integer.
ans =
10633823966279326983230456482242756608
ans =
10633823966279326983230456482242756608
(c) }\mp@subsup{\pi}{}{2}\mathrm{ and }e\mathrm{ to }35\mathrm{ digits,
vpa(pi^2, 35) % Self explanatory.
vpa(exp(1), 35) % The trick here is to use exp(1) in place of e.
ans =
9.8696044010893579923049401259049773
ans =
2.718281828459045534884808148490265
(d) the fractions }\frac{61}{88},\frac{13563}{20000},\mathrm{ and }\frac{253}{555}\mathrm{ , and determine which is the best approximation to }\operatorname{ln}(2)
61/88, 13863/20000, 253/365 % Self explanatory
Error1 = abs(vpa(log(2)-61/88, 1000)) % Finding the error of the first
    approximation.
Error2 = abs(vpa(log(2) -13863/20000, 1000)) % Finding the error of
    the second approximation.
Error3 = abs(vpa(log(2) - 253/365, 1000)) % Finding the error of the
    third approximation.
% Clearly from the outputs, we see that the second approximation is
    the
% best approximation out of the three approximation.
ans =
    61/88
```

```
ans =
    253/365
ans =
253/365
Error1 =
0.000034637621872946056100772693753242
Error2 =
0.0000028194400547576492499501910060644
Error3 =
0.0000035043715616023263237366336397827
```


Problem A. 11

Alice solved (b); Bob commented the code and checked the Alice and Charlies's solutions; Charlie solved (b).
(a) Use solve to simultaneously solve the pair of equations $x^{2}-y^{2}=1,2 x+y=2$.

```
syms x y
[x, y] = solve(x^2-y^2==1, 2*x+y==2) % Using the solve function to
% find all the solutions the the pair of equations. Note, the are two
% solutions (1, 0) and (5/3, -4/3).
x =
            1
    5/3
y=
    0
    -4/3
```

Use fimplicit to plot the two curves on the same graph and visually corroborate your answer from part (a).

```
figure
hold on % This allows us to graph multiple equations on the same plot.
h1 = fimplicit(@(x,y) x.^2 - y.^2 - 1) % Using fimplicit to plot x^2-
y^2=1
h2 = fimplicit(@(x, y) 2*x+y-2) % Using fimplicit to plot 2x+y = 2
hold off
set(h1, 'color', 'r') % Setting the color of the curve x^2-y^2=1 red
set(h2, 'color', 'b') % Setting the color of the curve 2x+y = 2 blue
legend('x^2-y^2=1', '2x+y=2') % displaying the legend
title('Intersection of }\mp@subsup{x}{}{\wedge}2-\mp@subsup{y}{}{\wedge}2=1 and 2x+y=2'
hold off
% Based on the graph, we see that the solutions from part (a) indeed
% match the visual outcome from part (b).
h1 =
    ImplicitFunctionLine with properties:
            Function: @ (x,y)x.^2-y.^2-1
            Color: [0 0.4470 0.7410]
        LineStyle: '-'
        LineWidth: 0.5000
    Use GET to show all properties
h2 =
    ImplicitFunctionLine with properties:
            Function: @ (x,y)2*x+y-2
            Color: [0.8500 0.3250 0.0980]
        LineStyle: '-'
        LineWidth: 0.5000
    Use GET to show all properties
```


Published with MATLAB® R2018b

