2.1. 3. \[L[cy_1(t)] = \int^t_a \int^t_a S^2 y(s) ds \]

In order to show \(L \) is linear, I want to show

\[L[c_1 y_1(t) + c_2 y_2(t)] = c_1 L[y_1(t)] + c_2 L[y_2(t)]. \]

\[L[c_1 y_1(t) + c_2 y_2(t)] = \int^t_a S^2 (c_1 y_1(s) + c_2 y_2(s)) ds \]

\[= \int^t_a S^2 c_1 y_1(s) + \int^t_a S^2 c_2 y_2(s) ds \]

\[= c_1 \int^t_a S^2 y_1(s) ds + c_2 \int^t_a S^2 y_2(s) ds \]

\[= c_1 L[y_1(t)] + c_2 L[y_2(t)]. \]

Note: The linearity of \(L \) is basically coming from the linearity of the integration.

4. \(L[y(t)] = y'' + p(t)y' + q(t)y(t). \)

We know \(L[t^2] = \int^t_a t + 1 \) & \(L[t] = -2t + 2. \)

If \(y(t) = t - 2t^2 \) solves \(y'' + p(t)y' + q(t)y = 0, \)

\[L[t - 2t^2] = 0, \]

\[L[t - 2t^2] = L[t] - 2L[t^2] = 2t + 2 - 2(t + 1) = 0. \]

Hence \(t - 2t^2 \) is a solution of \(y'' + p(t)y' + q(t)y = 0. \)

5a. Simply pluging \(y(t) = t - 2t^2 \) into \(2t^2 y'' + 3ty' - y = 0 \)

to see if the equality holds.

b. \(W = y_1 y_2' - y_2 y_1' = \sqrt{E} \cdot \left(1 - \frac{t}{2t^2} \right) - \frac{t}{2t^2} \left(\frac{1}{2t^2} \right) = \frac{1}{t^{3/2}} - \frac{1}{2t^{3/2}} = -\frac{3}{2t^{3/2}}. \)

So \(y_1, y_2 \) form a fundamental set of sol.

c. \(W[y_1, y_2] = \frac{3}{2t^{3/2}} \neq 0 \) for \(0 < t < \infty. \)

d. \(y = c_1 y_1 + c_2 y_2 = c_1 \sqrt{E} + c_2 \frac{1}{t}. \) Since \(y(1) = 2, \ y'(1) = 1, \) I have \(y = 2 \sqrt{E} + \frac{1}{t}. \)