In this chapter we will consider simultaneous first-order differential equations in several variables, that is, equations of the form

\[
\begin{align*}
\frac{dx_1}{dt} &= f_1(t, x_1, \ldots, x_n) \\
\frac{dx_2}{dt} &= f_2(t, x_1, \ldots, x_n) \\
& \vdots \\
\frac{dx_n}{dt} &= f_n(t, x_1, \ldots, x_n)
\end{align*}
\]

(1)

In addition to equation (1), we will often impose initial conditions on the functions \(x_1(t), \ldots, x_n(t)\). These will be of the form

\[
x_1(t_0) = x_1^0, \quad x_2(t_0) = x_2^0, \quad \ldots, \quad x_n(t_0) = x_n^0
\]

(1’)

Equation (1), together with the initial conditions (1’), is referred to as an initial-value problem.

First-order systems of differential equations also arise from higher-order equations for a single variable \(y(t)\). Every \(n\)th-order differential equation for the single variable \(y\) can be converted into a system of \(n\) first-order equations for the variables

\[
x_1(t) = y, \quad x_2(t) = \frac{dy}{dt}, \quad x_3(t) = \frac{d^2y}{dt^2}, \quad \ldots, \quad x_n(t) = \frac{d^{n-1}y}{dt^{n-1}}
\]

EXAMPLE: Convert the differential equation

\[
4 \frac{d^2y}{dt^2} + \frac{dy}{dt} + 3y = 0
\]

into a system of 2 first-order equations.

Solution: Let

\[
x_1(t) = y \quad \text{and} \quad x_2(t) = \frac{dy}{dt}
\]

From this it immediately follows that

\[
\frac{dx_1}{dt} = \frac{dy}{dt} = x_2(t) \quad \text{and} \quad \frac{dx_2}{dt} = \frac{d}{dt} \left(\frac{dy}{dt} \right) = \frac{d^2y}{dt^2}
\]

But the original equation implies

\[
4 \frac{d^2y}{dt^2} = -\frac{dy}{dt} - 3y
\]

\[
\frac{d^2y}{dt^2} = -\frac{\frac{dy}{dt} + 3y}{4}
\]

therefore

\[
\frac{dx_2}{dt} = -\frac{x_2 + 3x_1}{4}
\]

So

\[
\begin{align*}
\frac{dx_1}{dt} &= x_2 \\
\frac{dx_2}{dt} &= -\frac{x_2 + 3x_1}{4}
\end{align*}
\]
EXAMPLE: Convert the differential equation

\[a_n(t) \frac{d^n y}{dt^n} + a_{n-1}(t) \frac{d^{n-1} y}{dt^{n-1}} + \ldots + a_0(t)y = 0 \]

(2)

into a system of \(n \) first-order equations.

Solution: Let

\[x_1(t) = y \]
\[x_2(t) = \frac{dy}{dt} = \frac{dx_1}{dt} \]
\[x_3(t) = \frac{d^2 y}{dt^2} = \frac{d}{dt} \left(\frac{dy}{dt} \right) = \frac{dx_2}{dt} \]
\[x_4(t) = \frac{d^3 y}{dt^3} = \frac{d}{dt} \left(\frac{d^2 y}{dt^2} \right) = \frac{dx_3}{dt} \]
\[\vdots \]
\[x_n(t) = \frac{d^{n-1} y}{dt^{n-1}} = \frac{d}{dt} \left(\frac{d^{n-2} y}{dt^{n-2}} \right) = \frac{dx_{n-1}}{dt} \]
\[\frac{d^n y}{dt^n} = \frac{d}{dt} \left(\frac{d^{n-1} y}{dt^{n-1}} \right) = \frac{dx_n}{dt} \]

From this and (2) it follows that

\[a_n(t) \frac{d^n y}{dt^n} + a_{n-1}(t) \frac{d^{n-1} y}{dt^{n-1}} + \ldots + a_0(t)y = 0 \]

\[a_n(t) \frac{d^n y}{dt^n} = -a_{n-1}(t) \frac{d^{n-1} y}{dt^{n-1}} - a_{n-2}(t) \frac{d^{n-2} y}{dt^{n-2}} - \ldots - a_0(t)y \]

\[a_n(t) \frac{d^n y}{dt^n} = -\frac{a_{n-1}(t) \frac{d^{n-1} y}{dt^{n-1}} + a_{n-2}(t) \frac{d^{n-2} y}{dt^{n-2}} + \ldots + a_0(t)y}{a_n(t)} \]

\[\frac{dx_n}{dt} = -\frac{a_{n-1}(t)x_n + a_{n-2}(t)x_{n-1} + \ldots + a_0(t)x_1}{a_n(t)} \]

So

\[
\begin{align*}
\frac{dx_1}{dt} &= x_2 \\
\frac{dx_2}{dt} &= x_3 \\
\vdots & \\
\frac{dx_{n-1}}{dt} &= x_n \\
\frac{dx_n}{dt} &= -\frac{a_{n-1}(t)x_n + a_{n-2}(t)x_{n-1} + \ldots + a_0(t)x_1}{a_n(t)}
\end{align*}
\]
Example: Convert the initial-value problem
\[
\frac{d^3 y}{dt^3} + \left(\frac{dy}{dt}\right)^2 + 3y = e^t; \quad y(0) = 1, \quad y'(0) = 0, \quad y''(0) = 0 \quad (3)
\]
into an initial-value problem for the variables \(y, \frac{dy}{dt},\) and \(\frac{d^2 y}{dt^2}\).

Solution: Let
\[
x_1(t) = y \\
x_2(t) = \frac{dy}{dt} = \frac{dx_1}{dt} \\
x_3(t) = \frac{d^2 y}{dt^2} = \frac{d}{dt} \left(\frac{dy}{dt} \right) = \frac{dx_2}{dt} \\
\frac{d^3 y}{dt^3} = \frac{d}{dt} \left(\frac{d^2 y}{dt^2} \right) = \frac{dx_3}{dt}
\]
From this and (3) it follows that
\[
\frac{d^3 y}{dt^3} + \left(\frac{dy}{dt}\right)^2 + 3y = e^t \\
\frac{d^3 y}{dt^3} = e^t - \left(\frac{dy}{dt}\right)^2 - 3y \\
\frac{dx_3}{dt} = e^t - x_2^2 - 3x_1
\]
So
\[
\begin{cases}
\frac{dx_1}{dt} = x_2 \\
\frac{dx_2}{dt} = x_3 \\
\frac{dx_3}{dt} = e^t - x_2^2 - 3x_1
\end{cases}
\]
Moreover, the functions \(x_1, x_2,\) and \(x_3\) satisfy the initial conditions
\[
x_1(0) = y(0) = 1, \quad x_2(0) = y'(0) = 0, \quad x_3(0) = y''(0) = 0
\]
The most general system of \(n\) first-order linear equations has the form
\[
\begin{cases}
\frac{dx_1}{dt} = a_{11}(t)x_1 + a_{12}(t)x_2 + \ldots + a_{1n}(t)x_n + g_1(t) \\
\frac{dx_2}{dt} = a_{21}(t)x_1 + a_{22}(t)x_2 + \ldots + a_{2n}(t)x_n + g_2(t) \\
\vdots \\
\frac{dx_n}{dt} = a_{n1}(t)x_1 + a_{n2}(t)x_2 + \ldots + a_{nn}(t)x_n + g_n(t)
\end{cases} \quad (4)
\]
If each of the functions \(g_1, g_2, \ldots g_n\) is identically zero, then the system (4) is said to be homogeneous; otherwise it is nonhomogeneous.
Now, even the homogeneous linear system with constant coefficients

\[
\begin{align*}
\frac{dx_1}{dt} &= a_{11}x_1 + a_{12}x_1 + \ldots + a_{1n}x_n \\
\frac{dx_1}{dt} &= a_{21}x_1 + a_{22}x_1 + \ldots + a_{2n}x_n \\
&\vdots \\
\frac{dx_n}{dt} &= a_{n1}x_1 + a_{n2}x_1 + \ldots + a_{nn}x_n
\end{align*}
\]

is quite cumbersome to handle. This is especially true if \(n \) is large. Therefore, we seek to write these equations in as concise a manner as possible. To this end we introduce the concepts of \textit{vectors} and \textit{matrices}.

\textbf{DEFINITION: A vector}

\[
x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}
\]

is a shorthand notation for the sequence of numbers \(x_1, \ldots, x_n \). The numbers \(x_1, \ldots, x_n \), are called the \textit{components} of \(x \). If \(x_1 = x_1(t), \ldots, x_n = x_n(t) \), then

\[
x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix}
\]

is called a vector-valued function. Its derivative \(dx(t)/dt \) (often denoted by \(\dot{x}(t) \)) is the vector-valued function

\[
\begin{bmatrix}
\frac{dx_1(t)}{dt} \\
\frac{dx_2(t)}{dt} \\
\vdots \\
\frac{dx_n(t)}{dt}
\end{bmatrix}
\]

\textbf{DEFINITION: A matrix}

\[
A = \begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{bmatrix}
\]

is a shorthand notation for the array of numbers \(a_{ij} \) arranged in \(m \) rows and \(n \) columns.
We define the product of \(A \) with \(x \), denoted by \(Ax \), as the vector whose \(i \)th component is

\[
a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n, \quad i = 1, 2, \ldots, n
\]

In other words, the \(i \)th component of \(Ax \) is the sum of the product of corresponding terms of the \(i \)th row of \(A \) with the vector \(x \). Thus,

\[
Ax = \begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n \end{bmatrix}
\]

For example,

\[
\begin{bmatrix} 1 & -2 & 3 & 17 \\ 2 & -4 & 9 & 46 \\ 3 & -6 & 4 & 31 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 - 2x_2 + 3x_3 + 17x_4 \\ 2x_1 - 4x_2 + 9x_3 + 46x_4 \\ 3x_1 - 6x_2 + 4x_3 + 31x_4 \end{bmatrix}
\]

Finally, we observe that the left-hand sides of (5)

\[
\begin{align*}
\frac{dx_1}{dt} &= a_{11}x_1 + \ldots + a_{1n}x_n \\
\vdots \\
\frac{dx_n}{dt} &= a_{n1}x_1 + \ldots + a_{nn}x_n
\end{align*}
\]

are the components of the vector \(dx/dt \), while the right-hand sides of (5) are the components of the vector \(Ax \). Hence, we can write (5) in the concise form

\[
\dot{x} = \frac{dx}{dt} = Ax
\]

where

\[
x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \dot{x} = \begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \\ \vdots \\ \frac{dx_n}{dt} \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{bmatrix}
\]

Moreover, if \(x_1(t), \ldots, x_n(t) \) satisfy the initial conditions

\[
x_1(t_0) = x_1^0, \quad x_2(t_0) = x_2^0, \quad \ldots, \quad x_n(t_0) = x_n^0
\]

then \(x(t) \) satisfies the initial-value problem

\[
\dot{x} = Ax, \quad x(t_0) = x^0, \quad \text{where} \quad x^0 = \begin{bmatrix} x_1^0 \\ x_2^0 \\ \vdots \\ x_n^0 \end{bmatrix}
\]
For example, the system of equations

\[
\begin{align*}
\frac{dx_1}{dt} &= 3x_1 - 7x_2 + 9x_3 \\
\frac{dx_2}{dt} &= 15x_1 + x_2 - x_3 \\
\frac{dx_3}{dt} &= 7x_1 + 6x_3
\end{align*}
\]

can be written in the concise form

\[
\dot{x} = Ax
\]

where

\[
x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad \dot{x} = \begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \\ \frac{dx_3}{dt} \end{bmatrix}
\]

and

\[
A = \begin{bmatrix} 3 & -7 & 9 \\ 15 & 1 & -1 \\ 7 & 0 & 6 \end{bmatrix}
\]

DEFINITION: Let \(c \) be a number and \(x \) a vector with \(n \) components \(x_1, \ldots, x_n \). We define \(cx \) to be the vector whose components are \(cx_1, \ldots, cx_n \), that is

\[
cx = c \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} cx_1 \\ cx_2 \\ \vdots \\ cx_n \end{bmatrix}
\]

DEFINITION: Let \(x \) and \(y \) be vectors with components \(x_1, \ldots, x_n \) and \(y_1, \ldots, y_n \) respectively. We define \(x + y \) to be the vector whose components are \(x_1 + y_1, \ldots, x_n + y_n \), that is

\[
x + y = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}
\]

THEOREM 1: Let \(x(t) \) and \(y(t) \) be two solutions of (6). Then

(a) \(cx(t) \) is a solution for any constant \(c \)

(b) \(x(t) + y(t) \) is again a solution.

An immediate corollary of Theorem 1 is that any linear combination of solutions of (6) is again a solution of (6).
EXAMPLE: Solve the system \(\dot{x} = Ax \), where
\[
x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 0 & 1 \\ -4 & 0 \end{bmatrix}
\]

Solution 1: We first note that the system can be rewritten as
\[
\begin{align*}
x_1' &= x_2 \\
x_2' &= -4x_1
\end{align*}
\]
(8)

Plugging in the first equation into the second one, we get
\[
\begin{align*}
x_2' &= -4x_1 \\
(x_1')' &= -4x_1 \\
x_1'' &= -4x_1
\end{align*}
\]
(9)

To find two linearly independent solutions of (9) we note that the characteristic equation is
\[
r^2 + 4 = 0
\]
therefore
\[
r^2 = -4 \quad \implies \quad r = \pm \sqrt{-4} = \pm \sqrt{4(-1)} = \pm 2i = 0 \pm 2i
\]

Consequently, two linearly independent solutions to differential equation (9) are
\[
\begin{align*}
x_1^{(1)}(t) &= e^{0t} \cos 2t = \cos 2t \\
x_1^{(2)}(t) &= e^{0t} \sin 2t = \sin 2t
\end{align*}
\]

hence
\[
x_1(t) = c_1 x_1^{(1)}(t) + c_2 x_1^{(2)}(t) = c_1 \cos 2t + c_2 \sin 2t
\]
(10)

is the general solution of (9). But \(x_2(t) = x_1'(t) \) by the first equation of (8), therefore
\[
x_2(t) = (c_1 \cos 2t + c_2 \sin 2t)' = c_1(\cos 2t)' + c_2(\sin 2t)' = -2c_1 \sin 2t + 2c_2 \cos 2t
\]

It follows that
\[
x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} c_1 \cos 2t + c_2 \sin 2t \\ -2c_1 \sin 2t + 2c_2 \cos 2t \end{bmatrix} = \begin{bmatrix} c_1 \cos 2t \\ -2c_1 \sin 2t \end{bmatrix} + \begin{bmatrix} c_2 \sin 2t \\ 2c_2 \cos 2t \end{bmatrix} = c_1 \begin{bmatrix} \cos 2t \\ -2 \sin 2t \end{bmatrix} + c_2 \begin{bmatrix} \sin 2t \\ 2 \cos 2t \end{bmatrix}
\]
(11)

is a solution of (8). Moreover, this is the general solution, since (10) is the general solution of (9).

REMARK 1: In general, in order to solve the \(2 \times 2 \) system
\[
\begin{align*}
x_1' &= ax_1 + bx_2 \\
x_2' &= cx_1 + dx_2
\end{align*}
\]
where \(b, c \) are not zero, we either solve the first equation for \(x_2 \) and plug it into the second equation or solve the second equation for \(x_1 \) and plug it into the first equation.

REMARK 2: Another way to solve (8) will be discussed in Section 3.9.
Solution 2: We solve the second equation of (8) for x_1

\[x'_2 = -4x_1 \implies x_1 = -\frac{1}{4}x'_2 \] (12)

and plug it into the first equation of (8):

\[x'_1 = x_2 \]
\[\left(-\frac{1}{4}x'_2 \right)' = x_2 \]
\[-\frac{1}{4}(x'_2)' = x_2 \]
\[x''_2 = -4x_2 \]
\[x''_2 + 4x_2 = 0 \] (13)

therefore (see Solution 1)

\[x_2(t) = c_3 \cos 2t + c_4 \sin 2t \] (14)

is the general solution of (13). Plugging in this into (12), we get

\[
\begin{align*}
x_1(t) &= -\frac{1}{4}x'_2 = -\frac{1}{4}(c_3 \cos 2t + c_4 \sin 2t)' = -\frac{1}{4}(c_3(\cos 2t)' + c_4(\sin 2t)') \\
&= -\frac{1}{4}(-2c_3 \sin 2t + 2c_4 \cos 2t) \\
&= \frac{1}{2}c_3 \sin 2t - \frac{1}{2}c_4 \cos 2t
\end{align*}
\]

It follows that

\[
\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} \frac{1}{2}c_3 \sin 2t - \frac{1}{2}c_4 \cos 2t \\ c_3 \cos 2t + c_4 \sin 2t \end{bmatrix} = \begin{bmatrix} \frac{1}{2}c_3 \sin 2t \\ c_3 \cos 2t \end{bmatrix} + \begin{bmatrix} -\frac{1}{2}c_4 \cos 2t \\ c_4 \sin 2t \end{bmatrix} = c_3 \begin{bmatrix} \frac{1}{2} \sin 2t \\ \cos 2t \end{bmatrix} + c_4 \begin{bmatrix} -\frac{1}{2} \cos 2t \\ \sin 2t \end{bmatrix} = \frac{1}{2}c_3 \begin{bmatrix} \sin 2t \\ 2 \cos 2t \end{bmatrix} - \frac{1}{2}c_4 \begin{bmatrix} \cos 2t \\ -2 \sin 2t \end{bmatrix}
\]

(15)

is a solution of (8). Moreover, this is the general solution, since (14) is the general solution of (13).

REMARK: Put

\[\tilde{c}_1 = -\frac{1}{2}c_4 \quad \text{and} \quad \tilde{c}_2 = \frac{1}{2}c_3 \]

then (15) becomes

\[
\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \tilde{c}_1 \begin{bmatrix} \cos 2t \\ -2 \sin 2t \end{bmatrix} + \tilde{c}_2 \begin{bmatrix} \sin 2t \\ 2 \cos 2t \end{bmatrix}
\]

so (15) can be rewritten as (11).
EXAMPLE: Solve the system

\[
\begin{align*}
\frac{dx_1}{dt} &= x_1 \\
\frac{dx_2}{dt} &= 2x_1 + x_2
\end{align*}
\]

(16)

Solution 1: We solve the second equation of (16) for \(x_1 \)

\[
x_2' = 2x_1 + x_2 \implies x_2' - x_2 = 2x_1 \implies x_1 = \frac{1}{2}(x_2' - x_2)
\]

(17)

and plug it into the first equation of (16):

\[
x_1' = x_1
\]

\[
\left(\frac{1}{2}(x_2' - x_2)\right)' = \frac{1}{2}(x_2' - x_2)
\]

\[
\frac{1}{2}(x_2' - x_2)' = \frac{1}{2}(x_2' - x_2)
\]

\[
\frac{1}{2}(x_2'' - x_2') = \frac{1}{2}(x_2' - x_2)
\]

\[
x_2'' - x_2' = x_2' - x_2
\]

\[
x_2'' - 2x_2' + x_2 = 0
\]

(18)

To find two linearly independent solutions of (18) we note that the characteristic equation is

\[r^2 - 2r + 1 = 0 \implies (r - 1)^2 = 0\]

Thus, \(r = 1 \) is a repeated root. Consequently, two linearly independent solutions to differential equation (18) are

\[x_2^{(1)}(t) = e^t \quad \text{and} \quad x_2^{(2)}(t) = te^t\]

hence

\[x_2(t) = c_1x_2^{(1)}(t) + c_2x_2^{(2)}(t) = c_1e^t + c_2te^t\]

(19)

is the general solution of (18). Plugging in this into (17), we get

\[x_1(t) = \frac{1}{2}(x_2' - x_2) = \frac{1}{2}\left((c_1e^t + c_2te^t)' - (c_1e^t + c_2te^t)\right) = \frac{1}{2}\left(c_1(e^t)' + c_2(te^t)' - c_1e^t - c_2te^t\right)\]

\[= \frac{1}{2}\left(c_1e^t + c_2(te^t + t(e^t)') - c_1e^t - c_2te^t\right)\]

\[= \frac{1}{2}\left(c_1e^t + c_2(e^t + te^t) - c_1e^t - c_2te^t\right)\]

\[= \frac{1}{2}\left(c_1e^t + c_2e^t + c_2te^t - c_1e^t - c_2te^t\right)\]

\[= \frac{1}{2}c_2e^t\]

It follows that

\[
x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} c_2e^t/2 \\ c_1e^t + c_2te^t \end{bmatrix} = \begin{bmatrix} c_10 + c_2e^t/2 \\ c_1e^t + c_2te^t \end{bmatrix} = \begin{bmatrix} c_10 \\ c_1e^t \end{bmatrix} + \begin{bmatrix} c_2e^t/2 \\ c_2te^t \end{bmatrix} = c_1 \begin{bmatrix} 0 \\ e^t \end{bmatrix} + c_2 \begin{bmatrix} e^t/2 \\ te^t \end{bmatrix}
\]

is a solution of (16). Moreover, this is the general solution, since (19) is the general solution of (18).
Solution 2: We solve the first equation of system (16). We have
\[
\frac{dx_1}{dt} = x_1 \\
\frac{dx_1}{x_1} = dt \\
\int \frac{dx_1}{x_1} dt = \int dt \\
\ln |x_1| = t + c \\
e^{\ln |x_1|} = e^{t+c} \\
|x_1| = e^{t+c} = e^c e^t
\]
so
\[
x_1 = \pm e^c e^t
\]
We can easily verify that the function \(x_1 = 0\) is also a solution of \(\frac{dx_1}{dt} = x_1\). So we can write the general solution in the form
\[
x_1 = c_3 e^t
\]
where \(c_3\) is an arbitrary constant (\(c_3 = e^c\), or \(c_3 = -e^c\), or \(c_3 = 0\)). We now substitute \(x_1 = c_3 e^t\) into the second equation of system (16):
\[
x'_2 = 2x_1 + x_2 \\
x'_2 = 2c_3 e^t + x_2 \\
x'_2 - x_2 = 2c_3 e^t
\]
This is a first-order linear differential equation (see Section 1.2). Here \(a(t) = -1\) so that
\[
\mu(t) = \exp \left(\int a(t) dt \right) = \exp \left(- \int dt \right) = e^{-t}
\]
Multiplying both sides of the equation \(x'_2 - x_2 = 2c_3 e^t\) by \(\mu(t)\) we obtain the equivalent equation
\[
e^{-t} (x'_2 - x_2) = 2c_3 \quad \text{or} \quad \frac{d}{dt} (e^{-t} x_2) = 2c_3
\]
Hence
\[
e^{-t} x_2 = \int 2c_3 dt = 2c_3 t + c_4
\]
so
\[
x_2 = (2c_3 t + c_4) e^t
\]
Therefore
\[
x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} c_3 e^t \\ (2c_3 t + c_4) e^t \end{bmatrix} = \begin{bmatrix} c_3 e^t + c_4 0 \\ 2c_3 t e^t + c_4 e^t \end{bmatrix} = c_3 \begin{bmatrix} e^t \\ 2te^t \end{bmatrix} + c_4 \begin{bmatrix} 0 \\ e^t \end{bmatrix} = 2c_3 \begin{bmatrix} e^t/2 \\ te^t \end{bmatrix} + c_4 \begin{bmatrix} 0 \\ e^t \end{bmatrix}
\]
REMARK: Another way to solve (16) will be discussed in Section 3.10.
EXAMPLE: Solve the system
\[
\begin{align*}
\begin{cases}
 x'_1 &= 7x_1 + 4x_2 \\
 x'_2 &= -3x_1 - x_2
\end{cases}
\end{align*}
\tag{20}
\]

Solution 1: We solve the first equation of (20) for \(x \)

is a solution of (20). Moreover, this is the general solution, since (23) is the general solution of (22).

\[x'_1 = 7x_1 + 4x_2 \implies x'_1 - 7x_1 = 4x_2 \implies x_2 = \frac{1}{4}(x'_1 - 7x_1) \tag{21} \]

and plug it into the second equation of (20):

\[
\begin{align*}
 x'_2 &= -3x_1 - x_2 \\
 \left(\frac{1}{4}(x'_1 - 7x_1) \right)' &= -3x_1 - \frac{1}{4}(x'_1 - 7x_1) \\
 \frac{1}{4}(x'_1 - 7x_1)' &= -3x_1 - \frac{1}{4}(x'_1 - 7x_1) \\
 (x'_1 - 7x_1)' &= -12x_1 - x'_1 + 7x_1 \\
 x''_1 - 7x'_1 &= -12x_1 - x'_1 + 7x_1 \\
 x''_1 - 6x'_1 + 5x_1 &= 0 \tag{22}
\end{align*}
\]

To find two linearly independent solutions of (22) we note that the characteristic equation is

\[r^2 - 6r + 5 = 0 \implies (r - 1)(r - 5) = 0 \]

with the roots \(r_1 = 1 \) and \(r_2 = 5 \). Consequently, two linearly independent solutions to differential equation (22) are

\[x^{(1)}_1(t) = e^t \quad \text{and} \quad x^{(2)}_1(t) = e^{5t} \]

hence

\[x_1(t) = c_1 x^{(1)}_1(t) + c_2 x^{(2)}_1(t) = c_1 e^t + c_2 e^{5t} \tag{23} \]

is the general solution of (22). Plugging this into (21), we get

\[
\begin{align*}
x_2(t) &= \frac{1}{4}(x'_1 - 7x_1) = \frac{1}{4} \left(\left(c_1 e^t + c_2 e^{5t} \right)' - 7 \left(c_1 e^t + c_2 e^{5t} \right) \right) \\
&= \frac{1}{4} \left(c_1 (e^t)' + c_2 (e^{5t})' - 7c_1 e^t - 7c_2 e^{5t} \right) \\
&= \frac{1}{4} \left(c_1 e^t + c_2 e^{5t} 5t)' - 7c_1 e^t - 7c_2 e^{5t} \right) \\
&= \frac{1}{4} \left(c_1 e^t + 5c_2 e^{5t} - 7c_1 e^t - 7c_2 e^{5t} \right) \\
&= \frac{1}{4} \left(-6c_1 e^t - 2c_2 e^{5t} \right) \\
&= -\frac{3}{2}c_1 e^t - \frac{1}{2}c_2 e^{5t}
\end{align*}
\]

It follows that

\[
\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} c_1 e^t + c_2 e^{5t} \\ -3c_1 e^t/2 - c_2 e^{5t}/2 \end{bmatrix} = \begin{bmatrix} c_1 e^t \\ -3c_1 e^t/2 \end{bmatrix} + \begin{bmatrix} c_2 e^{5t} \\ -c_2 e^{5t}/2 \end{bmatrix} = c_1 \begin{bmatrix} e^t \\ -3e^t/2 \end{bmatrix} + c_2 \begin{bmatrix} e^{5t} \\ -e^{5t}/2 \end{bmatrix}
\]

is a solution of (20). Moreover, this is the general solution, since (23) is the general solution of (22).
Solution 2: We solve the second equation of (20) for x_1

$$x'_2 = -3x_1 - x_2 \implies x'_2 + x_2 = -3x_1 \implies x_1 = -\frac{1}{3} (x'_2 + x_2) \quad (24)$$

and plug it into the first equation of (20):

$$x'_1 = 7x_1 + 4x_2$$

$$\left(-\frac{1}{3} (x'_2 + x_2)\right)' = -\frac{7}{3} (x'_2 + x_2) + 4x_2$$

$$-\frac{1}{3} (x'_2 + x_2)' = -\frac{7}{3} (x'_2 + x_2) + 4x_2$$

$$-\frac{1}{3} x'_2 = 7 \left(x'_2 + x_2 \right) - 12x_2$$

$$x''_2 + x'_2 = 7x'_2 + 7x_2 - 12x_2$$

$$x'' - 6x'_2 + 5x_2 = 0 \quad (25)$$

therefore (see Solution 1)

$$x_2(t) = c_3 e^t + c_4 e^{5t} \quad (26)$$

is the general solution of (25). Plugging in this into (24), we get

$$x_1(t) = -\frac{1}{3} (x'_2 + x_2) = -\frac{1}{3} \left(\left(c_3 e^t + c_4 e^{5t} \right)' + (c_3 e^t + c_4 e^{5t}) \right)$$

$$= -\frac{1}{3} \left(c_3 (e^t)' + c_4 (e^{5t})' + c_3 e^t + c_4 e^{5t} \right)$$

$$= -\frac{1}{3} \left(c_3 e^t + c_4 e^{5t} (5t)' + c_3 e^t + c_4 e^{5t} \right)$$

$$= -\frac{1}{3} \left(c_3 e^t + 5c_4 e^{5t} + c_3 e^t + c_4 e^{5t} \right)$$

$$= -\frac{1}{3} \left(2c_3 e^t + 6c_4 e^{5t} \right)$$

$$= -\frac{2}{3} c_3 e^t - 2c_4 e^{5t}$$

It follows that

$$x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} -2c_3 e^t/3 - 2c_4 e^{5t} \\ c_3 e^t + c_4 e^{5t} \end{bmatrix}$$

$$= \begin{bmatrix} -2c_3 e^t/3 \\ c_3 e^t \end{bmatrix} + \begin{bmatrix} -2c_4 e^{5t} \\ c_4 e^{5t} \end{bmatrix}$$

$$= c_3 \begin{bmatrix} -2e^t/3 \\ e^t \end{bmatrix} + c_4 \begin{bmatrix} -2e^{5t} \\ e^{5t} \end{bmatrix} = -\frac{2}{3} c_3 \begin{bmatrix} e^t \\ -3e^t/2 \end{bmatrix} - 2c_4 \begin{bmatrix} e^{5t} \\ -e^{5t}/2 \end{bmatrix}$$

is a solution of (20). Moreover, this is the general solution, since (26) is the general solution of (25).

REMARK: Another way to solve (20) will be discussed in Section 3.8.