Calculus II - Fall 2013

Quiz \#3, October 31, 2013
In the following problems you are required to show all your work and provide the necessary explanations everywhere to get full credit.

A tank has the shape of an inverted circular cone with height 5 m and base radius 2 m . It is filled with water to a height of 4 m . Find the work required to empty the tank by pumping all of the water to the top of the tank. (The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.)

Solution: Let's measure depths from the top of the tank by introducing a vertical coordinate line. The water extends from a depth of 1 m to a depth of 5 m and so we divide the interval $[1,5]$ into n subintervals with endpoints $x_{0}, x_{1}, \ldots, x_{n}$ and choose x_{i}^{*} in the i th subinterval. This divides the water into n layers. The i th layer is approximated by a circular cylinder with radius r_{i} and height Δx. We can compute r_{i} from similar triangles as follows:

$$
\frac{r_{i}}{5-x_{i}^{*}}=\frac{2}{5} \quad \Longrightarrow \quad r_{i}=\frac{2}{5}\left(5-x_{i}^{*}\right)
$$

Thus an approximation to the volume of the i th layer of water is

$$
V_{i} \approx \pi r_{i}^{2} \Delta x=\frac{4 \pi}{25}\left(5-x_{i}^{*}\right)^{2} \Delta x
$$

and so its mass is

$$
m_{i}=\text { density } \times \text { volume } \approx 1000 \cdot \frac{4 \pi}{25}\left(5-x_{i}^{*}\right)^{2} \Delta x=160 \pi\left(5-x_{i}^{*}\right)^{2} \Delta x
$$

The force required to raise this layer must overcome the force of gravity and so

$$
F_{i}=m_{i} g \approx 160 \pi g\left(5-x_{i}^{*}\right)^{2} \Delta x
$$

Each particle in the layer must travel a distance of approximately x_{i}^{*}. The work W_{i} done to raise this layer to the top is approximately the product of the force F_{i} and the distance x_{i}^{*} :

$$
W_{i} \approx F_{i} x_{i}^{*} \approx 160 \pi g x_{i}^{*}\left(5-x_{i}^{*}\right)^{2} \Delta x
$$

To find the total work done in emptying the entire tank, we add the contributions of each of the n layers and then take the limit as $n \rightarrow \infty$:

$$
\begin{aligned}
W & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 160 \pi g x_{i}^{*}\left(5-x_{i}^{*}\right)^{2} \Delta x=\int_{1}^{5} 160 \pi g x(5-x)^{2} d x \\
& =160 \pi g \int_{1}^{5}\left(25 x-10 x^{2}+x^{3}\right) d x=160 \pi g\left[\frac{25 x^{2}}{2}-\frac{10 x^{3}}{3}+\frac{x^{4}}{4}\right]_{1}^{5} \\
& =160 \pi g \cdot \frac{128}{3}=\pi g \frac{20480}{3} \approx 70059 \mathrm{~J}
\end{aligned}
$$

Other answers: $W=160 \pi g \int_{0}^{4}(5-x) x^{2} d x$ or $W=160 \pi g \int_{0}^{4}(4-x)^{2}(1+x) d x$.

