Calculus II - Fall 2013

Quiz \#4, December 5, 2013
In the following problem you are required to show all your work and provide the necessary explanations everywhere to get full credit.

Find the Maclaurin series for $f(x)=x^{3} \cos x$.
Solution: We arrange our computation in two columns as follows:

$$
\begin{array}{ll}
f(x)=\cos x & f(0)=1 \\
f^{\prime}(x)=-\sin x & f^{\prime}(0)=0 \\
f^{\prime \prime}(x)=-\cos x & f^{\prime \prime}(0)=-1 \\
f^{\prime \prime \prime}(x)=\sin x & f^{\prime \prime \prime}(0)=0 \\
f^{(4)}(x)=\cos x & f^{(4)}(0)=1
\end{array}
$$

Since the derivatives repeat in a cycle of four, we can write the Maclaurin series as follows:

$$
\begin{aligned}
\cos x & =f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x^{4}+\ldots \\
& =1+\frac{0}{1!} x+\frac{-1}{2!} x^{2}+\frac{0}{3!} x^{3}+\frac{1}{4!} x^{4}+\ldots \\
& =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
\end{aligned}
$$

Therefore

$$
x^{3} \cos x=x^{3} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+3}}{(2 n)!}
$$

