Calculus II - Spring 2014
Quiz #4, April 16, 2014

In the following problems you are required to show all your work and provide the necessary explanations every-
where to get full credit.

1. Determine whether the series is convergent or divergent. If it is convergent, find its sum.
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2. Determine whether the series converges or diverges.
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Solution 1: Put a, = ——, b, = . Then
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diverges by the p-test with p = 1/3, it follows that
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Z ———— also diverges by the Limit Comparison Test.
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Solution 2: One can show (see below) that
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it follows that Z ———— also diverges by the Comparison Test. To prove (x) we note that
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Solution 3 (version 1): The function f(z) = is continuous, positive and decreasing on [1, 00),
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therefore we can apply the Integral Test. We have
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The integral / u”Y3du diverges by the p-test, since p = 1 /3 < 1. Therefore the series Z
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Solution 3 (version 2): The function f(z) = is continuous, positive and decreasing on [1, 00),
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therefore we can apply the Integral Test. We have
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Since this integral diverges, the series Z —=—— also diverges.
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Solution 3 (version 3): The function f(z) = is continuous, positive and decreasing on [1, 00),
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therefore we can apply the Integral Test. First we note that
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Solution (version 1): The function f(z) = g is continuous, positive and decreasing on [2, 00), therefore
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we can apply the Integral Test. We have

o0 t Inz =u Int

1 1 _
/ —dz = lim —dy = | dnz)=du |y —du—/—du
xln®x t—oo | xln’x d o t—00

2 2 —dz = du In2 In2

The integral / —du converges by the p-test, since p = 5 > 1. Therefore the series Z also
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Solution (version 2): The function f(z) = g is continuous, positive and decreasing on [2, 00), therefore
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we can apply the Integral Test. We have
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Since this integral converges, the series Z ——— also converges.
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Solution (version 3): The function f(z) = =— is continuous, positive and decreasing on [2, 00), therefore
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we can apply the Integral Test. First we note that
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Since this integral converges, the series g also converges.
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Solution: Since T P < e =5 and nZ::l 3 converges by the p-test with p = 2, it
1

follows that Z also converges by the Comparison Test.
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