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Abstract

Dirichlet proved that for any real irrational number ξ there exist infinitely many rational numbers p/q

such that |ξ − p/q| < q−2. The correct generalization to the case of approximation by algebraic numbers
of degree � n, n > 2, is still unknown. Here we prove a result which improves all previous estimates
concerning this problem for n > 2.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

The problem of approximating real numbers by algebraic numbers is of classical interest in
the theory of Diophantine approximation. In 1842 Dirichlet proved that for any real irrational
number ξ there exist infinitely many rational numbers p/q such that

|ξ − p/q| < q−2. (1.1)

By the theorem of Hurwitz the upper bound q−2 can be replaced by 1/
√

5q−2 and in some sense
this result is best possible. Denote by P the height of a polynomial P , that is the largest absolute
value of the coefficients of P . Multiplying (1.1) by q , we get |qξ − p| < q−1, and so we obtain
the polynomial interpretation of Dirichlet’s theorem, namely that for any real irrational number
ξ there exist infinitely many polynomials P with integer coefficients of first degree such that
|P(ξ)| � P −1. Here � is the Vinogradov symbol and the implicit constant depends on ξ only.
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Let An denote the set of algebraic numbers of degree � n. Using Dirichlet’s box principle, it is
easy to prove a more general statement which claims that for any real number ξ /∈ An there exist
infinitely many polynomials P with integer coefficients of degree � n such that |P(ξ)| � P −n,

where the implicit constant depends on ξ and n only. There are also complex and p-adic analogs
of this theorem. For these reasons it is very natural to suppose that (1.1) can also be generalized
to the case of approximation by algebraic numbers of degree � n. However, finding the correct
generalization turns out to be very difficult.

Denote by H(α) the height of an algebraic number α, that is the largest absolute value of the
coefficients of its minimal polynomial. In 1961 E. Wirsing [14] made the conjecture that for any
real number ξ /∈ An and any ε > 0 there exist infinitely many algebraic numbers α ∈ An such
that

|ξ − α| � H(α)−n−1+ε, (1.2)

where the implicit constant should depend on ξ , n, and ε only. Later W.M. Schmidt [7] conjec-
tured that the optimal exponent in (1.2) is −n − 1. These conjectures have not been resolved
except in some special cases. V.G. Sprindžuk [8] showed that the conjecture of Wirsing is true
for almost all real numbers. In [14] E. Wirsing also proved that for any real number ξ /∈ An

there exist infinitely many algebraic numbers α ∈ An such that |ξ − α| � H(α)−C(n), where
limn→∞(C(n) − n/2) = 2 and the implicit constant depends on ξ and n only. He considered the
complex case as well (the p-adic analog is contained in [6]). The basic idea consists in construct-
ing infinitely many pairs of polynomials with integer coefficients of degree � n that have “small”
absolute values at ξ and have no common root. Considering their resultant gives us the desired
result.

Another approach to this problem was described by H. Davenport and W.M. Schmidt [2]. They
considered linearly independent linear forms L(X) and M(X) in three variables X = (x1, x2, x3)

and proved that there are infinitely many integer points X such that

∣∣L(X)
∣∣ � ∣∣M(X)

∣∣ X −3,

where X = max(|x1|, |x2|, |x3|) and the implicit constant depends on L and M only. To deduce
the conjecture for n = 2, one has to put L(X) = x1ξ

2 + x2ξ + x3, M(X) = 2x1ξ + x2 and use
the well-known inequality

|ξ − α| � n
|G(ξ)|
|G′(ξ)| , (1.3)

where G is a polynomial of degree n and α is the root of G closest to ξ . In [3,4] (see also [7])
H. Davenport and W.M. Schmidt obtained generalizations of their theorem. Unfortunately, these
generalizations do not help to solve the problem for n > 2. Moreover, the investigations of these
authors revealed a fundamental impossibility to proving the conjecture for n > 2 using arbitrary
linear forms. In fact, in [3] they also showed that for any k � 1 and any n � k + 2 there exist
linearly independent linear forms L(X),M1(X), . . . ,Mk(X) in n variables X = (x1, . . . , xn) such
that for every ε > 0 and every integer point X the following inequality holds:

∣∣L(X)
∣∣ � max

(∣∣M1(X)
∣∣, . . . , ∣∣Mk(X)

∣∣) X −k−2−ε,
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where X = max(|x1|, . . . , |xn|) and the implicit constant depends on ε only. For a long period
after this there were no new ideas or methods presented to help resolve the conjecture for n > 2
or even to improve the theorem of Wirsing.

In 1993 V.I. Bernik and K.I. Tsishchanka [1] obtained an improvement of Wirsing’s result.
They proved that for any real number ξ /∈ An there exist infinitely many algebraic numbers
α ∈ An such that |ξ − α| � H(α)−B(n), where limn→∞(B(n) − n/2) = 3 and the implicit
constant depends on ξ and n only. The essence of the proof is to construct infinitely many

polynomials Q with integer coefficients of degree � n such that either |Q(ξ)| � Q − n+δ
1+δ and

|Q′(ξ)| � Q or |Q(ξ)| � Q −n−δ , where δ is some positive number. In the first case we
use (1.3), whereas in the second case we apply Wirsing’s method. Choosing the optimal value
of δ, we get the desired result. The complex and p-adic analogs of this theorem are contained
in [11] and [12], respectively.

In 1996 a new approach to this problem was introduced which became a useful starting point
for further investigations. The first announcement of it was made in [9]. The paper [10] contains
the most comprehensive description of the method. The idea can be interpreted in the following
way. We first construct a sequence of n-tuples of linearly independent auxiliary polynomials with
integer coefficients of degree � n that have “small” absolute values at a given point. Then using
them, we construct infinitely many polynomials with properties similar to Q from above.

In this paper, we develop the described method and prove a result which improves all previous
estimates concerning the real case of this problem for n > 2.

Theorem. Let n be an integer at least 3. Then for any real number ξ /∈ An there exist infinitely
many algebraic numbers α ∈ An such that |ξ − α| � H(α)−A(n), where A(n) is the largest real
root of the polynomial

T (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4x5 − (4n + 18)x4 + (n2 + 11n + 30)x3

− (2n2 + 10n + 22)x2 + (2n2 + 7n + 4)x

+ n2 − 5n + 2 if n = 3,4,5,

2x5 − (n + 12)x4 + (2n + 30)x3 + (2n − 41)x2

− (3n − 29)x + 2n − 10 if n > 5.

(1.4)

The implicit constant depends on ξ and n only.

It can be shown (see Lemma 10.1) that

lim
n→∞

(
A(n) − n/2

) = 4.

Table 1 contains the approximate values of C(n),B(n), and A(n) corresponding to Wirsing’s
theorem, the theorem from [1] and the theorem above, respectively.

From now on, n is a fixed integer at least 3. To shorten notation, we continue to write A

instead of A(n). The proof of the theorem will be indirect. Without loss of generality we can
confine ourselves to the range 0 < ξ < 1/4. So we assume that there exists a real number ξ /∈ An

in this range with the property that for any c1 > 0 there is H1 > 0 such that for all α ∈ An with
H(α) > H1 we have

|ξ − α| > c1H(α)−A. (1.5)



K.I. Tsishchanka / Journal of Number Theory 123 (2007) 290–314 293
Table 1

n C(n) B(n) A(n)

3 3.28 3.5 3.73
4 3.82 4.12 4.45
5 4.35 4.71 5.14
6 4.87 5.28 5.76
7 5.39 5.84 6.36
8 5.90 6.39 6.93
9 6.41 6.93 7.50
10 6.92 7.47 8.06
50 26.98 27.84 28.70
100 51.99 52.92 53.84

This will ultimately lead to a contradiction, and the theorem will follow. A detailed description of
the idea of the proof will be given at the end of Section 4 after the key lemmas and constructions
are introduced in Sections 2 and 3.

2. Auxiliary lemmas

In this section, we recall some relevant lemmas from [5,10,13].

Lemma 2.1. (See [10, Lemma 3.1].) Let G(x) = gnx
n +· · ·+g1x+g0 be a polynomial with inte-

ger coefficients such that |G(ξ)| < 1/2. Then there is an index j ∈ {1, . . . , n} such that |gj | = G .

Lemma 2.2. (See [10, Lemma 3.2].) Let G be a polynomial and j an index as in Lemma 2.1.
Suppose |gi | � ξn−1 G for every i ∈ {1, . . . , n} \ {j}. Then |G′(ξ)| > ξn−1 G .

Lemma 2.3. (See [5, Lemma 2].) Let G,G1, . . . ,Gk be polynomials such that G = G1 · · ·Gk

and degG = �. Then

e−� G1 · · · Gk � G � (� + 1)k−1 G1 · · · Gk . (2.1)

Lemma 2.4. (See [10, Lemma 3.6].) Let G1, G2 be polynomials with integer coefficients of
degree � �. Let G1 be irreducible over Z and G1 > e� G2 . Then G1 and G2 have no common
root.

Lemma 2.5. Let G1,G2 ∈ Z[x] be polynomials with degG1 = �, degG2 = m, 1 � �,m � n.
Suppose that G1 and G2 have no common root. If �m � 2, then at least one of the following
estimates is true:

(i) 1 < c2 max
{∣∣G1(ξ)

∣∣, ∣∣G2(ξ)
∣∣}2 max

{
G1 , G2

}m+�−2
,

(ii) 1 < c2 max
{∣∣G1(ξ)

∣∣∣∣G′
1(ξ)

∣∣∣∣G′
2(ξ)

∣∣, ∣∣G2(ξ)
∣∣∣∣G′

1(ξ)
∣∣2}

G1
m−2 G2

�−1,

(iii) 1 < c2 max
{∣∣G2(ξ)

∣∣∣∣G′
1(ξ)

∣∣∣∣G′
2(ξ)

∣∣, ∣∣G1(ξ)
∣∣∣∣G′

2(ξ)
∣∣2}

G1
m−1 G2

�−2, (2.2)

where

c2 = (2n)!((n + 1)!)2n−2
.
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If � = m = 1, then

1 � 2 max
{∣∣G1(ξ)

∣∣, ∣∣G2(ξ)
∣∣}max

{
G1 , G2

}
. (2.3)

Proof. The first part of this lemma was already proved in [10] (see Lemma 3.4). To obtain (2.3),
we put G1(x) = g

(1)
1 x + g

(1)
0 , G2(x) = g

(2)
1 x + g

(2)
0 . Then

1 �
∥∥∥∥g

(2)
1 g

(2)
0

g
(1)
1 g

(1)
0

∥∥∥∥ =
∥∥∥∥g

(2)
1 G2(ξ)

g
(1)
1 G1(ξ)

∥∥∥∥ � 2 max
{∣∣G1(ξ)

∣∣, ∣∣G2(ξ)
∣∣}max

{
G1 , G2

}
. �

Lemma 2.6. (See [13, Theorem 1].) Let

Λμ(X) =
m∑

ν=1

gμνxν, μ = 1, . . . , k,

be k linear forms in m variables X = (x1, . . . , xm). Suppose that the forms Λμ are real for
μ = 1, . . . , p and that the remaining forms consist of q pairs of complex conjugate forms
arranged so that Λp+2t−1 = Λp+2t for t = 1, . . . , q . Let also S be a positive integer and suppose
that

S2

{
m∏

ν=1

α−2
ν

}{
k∏

μ=1

(
1 + β−2

μ

m∑
η=1

α2
η|gμη|2

)}
� 1,

where αν � 1 for ν = 1, . . . ,m, βμ > 0 for μ = 1, . . . , k, and βp+2t−1 = βp+2t for t = 1, . . . , q .
Then there exist S distinct pairs of nonzero lattice points

±Vs = ±
⎛
⎝ v1s

...

vms

⎞
⎠ , s = 1, . . . , S,

in Z
m each of which satisfies the following conditions:

∣∣Λμ(±Vs)
∣∣ � βμ, μ = 1, . . . , p,

∣∣Λμ(±Vs)
∣∣ �

(
2

π

)1/2

βμ, μ = p + 1, . . . , k,

|vνs | � αν, ν = 1, . . . ,m.

3. Construction of auxiliary polynomials

In this section, the word “polynomial” shall mean a nonzero polynomial with integer coeffi-
cients of degree � n. Put

c3 = max
(
ξ−n+1, n!).

We first construct a sequence of polynomials Pi such that
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(i)
1

2
>

∣∣P1(ξ)
∣∣ > c3

∣∣P2(ξ)
∣∣ > · · · > ci−1

3

∣∣Pi(ξ)
∣∣ > · · · ,

(ii) P1 < P2 < · · · < Pi < · · · ,
(iii) for any polynomial P with P < Pi+1 we have

∣∣P(ξ)
∣∣ � c−1

3

∣∣Pi(ξ)
∣∣. (3.1)

Fix some h � 1. Consider the set of polynomials P with P � h. Their values at ξ are distinct.
Hence there is a unique (up to the sign) polynomial P1 with P1 � h and minimal absolute value
at ξ . Now increase h until a polynomial P2 with P2 � h, |P2(ξ)| < c−1

3 |P1(ξ)| appears. If there
are several polynomials of this kind, pick one with minimal absolute value at ξ , etc. Repeating
this process, we obtain the sequence of polynomials (3.1).

For any integer i > 1 we set Q
(0)
i (x) = Pi(x). Write

Q
(0)
i (x) = b(0)

n xn + · · · + b
(0)
1 x + b

(0)
0 .

By Lemma 2.1 there is an index j1 ∈ {1, . . . , n} such that |b(0)
j1

| = Q
(0)
i .

We now successively construct polynomials Q
(0)
i , . . . ,Q

(n−1)
i and distinct integers j1, . . . , jn

from {1, . . . , n}. Write

Q
(�)
i (x) = b(�)

n xn + · · · + b
(�)
1 x + b

(�)
0 (� = 0, . . . , n − 1).

The polynomials Q
(�)
i and the integers j�+1 (which we call the indices of the Qi -system) will

have the following properties:

(i)
∣∣Q(�)

i (ξ)
∣∣ < c−1

3

∣∣Pi−1(ξ)
∣∣,

(ii)
∣∣b(�)

jμ

∣∣ � c−1
3 Q

(μ−1)
i (μ = 1, . . . , �),

(iii)
∣∣b(�)

j�+1

∣∣ = Q
(�)
i ,

(iv) Q
(�)
i � c

�+1
n−�

3

(∣∣Pi−1(ξ)
∣∣ �−1∏
ν=0

Q
(ν)
i

)− 1
n−�

(3.2)

(if � = 0, we have (3.2)(i) and (3.2)(iii) only). Moreover, if for some � with 0 � � � n − 1 there
is a polynomial Q(x) = bnx

n + · · · + b1x + b0 satisfying

∣∣Q(ξ)
∣∣ < c−1

3

∣∣Pi−1(ξ)
∣∣,

|bjμ | � c−1
3 Q

(μ−1)
i (μ = 1, . . . , �)

(if � = 0, we have |Q(ξ)| < c−1
3 |Pi−1(ξ)| only), then Q � Q

(�)
i . In other words, Q(�)

i has min-
imum height among polynomials with (3.2)(i) and (3.2)(ii). We call this the minimality property
of Q

(�).
i
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The pair (Q
(0)
i , j1) has the desired properties. Let t be some integer with 0 � t < n − 1

and suppose (Q
(0)
i , j1), . . . , (Q

(t)
i , jt+1) have been constructed so that (3.2)(i)–(iv) and the min-

imality property hold, and j1, . . . , jt+1 are distinct integers in {1, . . . , n}. We now construct
(Q

(t+1)
i , jt+2). By Minkowski’s theorem on linear forms there is a polynomial Q

(t+1)
i (x) =

b
(t+1)
n xn + · · · + b

(t+1)
1 x + b

(t+1)
0 having

(i)
∣∣Q(t+1)

i (ξ)
∣∣ < c−1

3

∣∣Pi−1(ξ)
∣∣,

(ii)
∣∣b(t+1)

jμ

∣∣ � c−1
3 Q

(μ−1)
i (μ = 1, . . . , t + 1),

(iii)
∣∣b(t+1)

η

∣∣ � c
t+2

n−t−1
3

(∣∣Pi−1(ξ)
∣∣ t∏
ν=0

Q
(ν)
i

)− 1
n−t−1

(3.3)

for all η ∈ {1, . . . , n}\{j1, . . . , jt+1}. If there are several polynomials of this kind, pick one whose
height is minimal. By Lemma 2.1 there is an index jt+2 ∈ {1, . . . , n} such that

∣∣b(t+1)
jt+2

∣∣ = Q
(t+1)
i . (3.4)

We show that

jt+2 ∈ {1, . . . , n} \ {j1, . . . , jt+1}, (3.5)

that is j1, . . . , jt+2 are distinct integers in {1, . . . , n}. In fact, by the minimality property we have

Q
(μ−1)
i � Q

(t+1)
i for μ = 1, . . . , t + 1. Thanks to this, (3.3)(ii), (3.4) and the definition of c3

we get

∣∣b(t+1)
jμ

∣∣ � c−1
3 Q

(μ−1)
i < Q

(μ−1)
i � Q

(t+1)
i = ∣∣b(t+1)

jt+2

∣∣,
so |b(t+1)

jμ
| < |b(t+1)

jt+2
| for μ = 1, . . . , t + 1. This gives (3.5). Finally, (3.2)(iv) with � = t + 1

follows from (3.3)(iii), (3.4) and (3.5). The arguments above imply that (3.2)(i)–(iv) with � =
t + 1 and the minimality property hold for (Q

(t+1)
i , jt+2) and j1, . . . , jt+2 are distinct integers in

{1, . . . , n}. In this way (Q
(0)
i , j1), . . . , (Q

(n−1)
i , jn) are constructed.

By (3.1)(ii) and the minimality property we have

Pi−1 < Q
(0)
i � Q

(1)
i � · · · � Q

(n−1)
i . (3.6)

Lemma 3.1. For any integer i > 1 the polynomials Pi−1,Q
(0)
i , . . . ,Q

(n−2)
i are linearly indepen-

dent.
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Proof. Put

D =

∣∣∣∣∣∣∣∣∣

Pi−1(ξ) Q
(0)
i (ξ) . . . Q

(n−2)
i (ξ)

aj1 b
(0)
j1

. . . b
(n−2)
j1

...
...

...

ajn−1 b
(0)
jn−1

. . . b
(n−2)
jn−1

∣∣∣∣∣∣∣∣∣
, d =

∣∣∣∣∣∣∣
b

(0)
j1

. . . b
(n−2)
j1

...
...

b
(0)
jn−1

. . . b
(n−2)
jn−1

∣∣∣∣∣∣∣ ,

where aj1, . . . , ajn−1 are the coefficients of Pi−1. Let μ and � be some integers with 1 � μ �
� � n − 2. By (3.2)(ii), (3.6) and the definition of c3 we have

∣∣b(�)
jμ

∣∣ � c−1
3 Q

(μ−1)
i � c−1

3 Q
(�)
i � 1

n! Q
(�)
i ,

hence

|d| >
n−2∏
ν=0

∣∣b(ν)
jν+1

∣∣ − 1

n

n−2∏
ν=0

Q
(ν)
i = n − 1

n

n−2∏
ν=0

Q
(ν)
i (3.7)

by (3.2)(iii). On the other hand, by (3.6) the absolute values of other minors from the last n − 1

rows of D are < (n − 1)!∏n−2
ν=0 Q

(ν)
i . By this, (3.2)(i), (3.7) and the definition of c3 we get

|D| > n − 1

n

∣∣Pi−1(ξ)
∣∣ n−2∏
ν=0

Q
(ν)
i − (n − 1)!

(
n−2∑
ν=0

∣∣Q(ν)
i (ξ)

∣∣) n−2∏
ν=0

Q
(ν)
i

>
n − 1

n

∣∣Pi−1(ξ)
∣∣ n−2∏
ν=0

Q
(ν)
i − n − 1

n

∣∣Pi−1(ξ)
∣∣ n−2∏
ν=0

Q
(ν)
i

= 0.

So, D 	= 0, therefore the polynomials Pi−1,Q
(0)
i , . . . ,Q

(n−2)
i are linearly independent. �

4. Construction of polynomials Li,τ

Let i and τ be integers greater than 1 and let κ1, . . . , κn−1 be the indices of the Qτ -system.
Consider the following system of n inequalities:

∣∣∣∣∣Pi−1(ξ)x1 +
n−2∑
ν=0

Q
(ν)
i (ξ)xν+2

∣∣∣∣∣ � (2n)n/2cn−1
3

∣∣Pi−1(ξ)
∣∣ n−2∏
ν=0

Q
(ν)
i

n−2∏
ν=0

Q
(ν)
τ

−1,

∣∣∣∣∣aκ1x1 +
n−2∑
ν=0

b(ν)
κ1

xν+2

∣∣∣∣∣ � c−1
3 Q

(0)
τ ,

...∣∣∣∣∣aκn−1x1 +
n−2∑

b(ν)
κn−1

xν+2

∣∣∣∣∣ � c−1
3 Q

(n−2)
τ . (4.1)
ν=0
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Lemma 4.1. The system (4.1) has a nonzero integer solution (x̃1, . . . , x̃n) which satisfies the
following conditions:

|x̃1| � R Pi−1
−1, |x̃ν | � R Q

(ν−2)
i

−1 (ν = 2, . . . , n), (4.2)

where

R = max

{
2n/2n(n−1)/2cn−1

3

n−2∏
ν=0

Q
(ν)
i

n−2∏
ν=0

Q
(ν)
τ

−1 Pi−1 , n−1/2c−1
3 Q

(n−2)
τ

}
. (4.3)

Proof. We apply Lemma 2.6 with S = 1, k = m = p = n, q = 0 and

α1 = R Pi−1
−1, αν = R Q

(ν−2)
i

−1 (ν = 2, . . . , n),

β1 = (2n)n/2cn−1
3

∣∣Pi−1(ξ)
∣∣ n−2∏
ν=0

Q
(ν)
i

n−2∏
ν=0

Q
(ν)
τ

−1,

βμ = c−1
3 Q

(μ−2)
τ (μ = 2, . . . , n),

g11 = Pi−1(ξ), g1ν = Q
(ν−2)
i (ξ) (ν = 2, . . . , n),

gμ1 = aκμ−1 (μ = 2, . . . , n),

gμν = b(ν−2)
κμ−1

(ν = 2, . . . , n, μ = 2, . . . , n). (4.4)

We claim that {
n∏

ν=1

α−2
ν

}{
n∏

μ=1

(
1 + β−2

μ

n∑
η=1

α2
η|gμη|2

)}
� 1. (4.5)

In fact, by (4.4) we get

n∏
ν=1

α−2
ν = R−2n Pi−1

2
n−2∏
ν=0

Q
(ν)
i

2. (4.6)

To estimate the second term of (4.5), we note that by (3.2)(i), (3.6) and (4.4) we have

αη � α1, |g1η| � |g11| and αη|gμη| � R,

where η = 1, . . . , n and μ = 2, . . . , n. Therefore

n∏
μ=1

(
1 + β−2

μ

n∑
η=1

α2
η|gμη|2

)
=

(
1 + β−2

1

n∑
η=1

α2
η|g1η|2

)
n∏

μ=2

(
1 + β−2

μ

n∑
η=1

α2
η|gμη|2

)

�
(
1 + nβ−2

1 α2
1 |g11|2

) n∏(
1 + nβ−2

μ R2). (4.7)

μ=2
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We also note that

R = max
{
n−1/2β1 Pi−1

∣∣Pi−1(ξ)
∣∣−1

, n−1/2βn

}
by (4.3) and (4.4). From this, (3.6) and (4.4) it follows that

nβ−2
1 α2

1 |g11|2 = nβ−2
1 R2 Pi−1

−2
∣∣Pi−1(ξ)

∣∣2 � 1

and

nβ−2
μ R2 � nβ−2

n R2 � 1 (μ = 2, . . . , n).

Applying these inequalities to (4.7) and then using (4.4), we obtain

n∏
μ=1

(
1 + β−2

μ

n∑
η=1

α2
η|gμη|2

)
� 2nβ−2

1 α2
1 |g11|2

n∏
μ=2

(
2nβ−2

μ R2) = R2n Pi−1
−2

n−2∏
ν=0

Q
(ν)
i

−2.

This and (4.6) give (4.5). �
We now are in the right position to outline the proof of the theorem. Consider the following

polynomial:

Li,τ (x) = Pi−1(x)x̃1 +
n−2∑
ν=0

Q
(ν)
i (x)x̃ν+2, (4.8)

where, as before, (x̃1, . . . , x̃n) is a nonzero integer solution of the system (4.1) which satis-
fies (4.2). From this and Lemma 3.1 it follows that Li,τ is nonzero and has integer coefficients.
The main goal of the next four sections is to prove that there is an integer k0 such that if i > τ � k0
and

Pi−1 � c4 Pτ , (4.9)

where

c4 = (
2(2n)n/2cn

3

)A−2
n−1 ,

then

∣∣Li,τ (ξ)
∣∣ <

∣∣L′
i,τ (ξ)

∣∣−A+1
. (4.10)

To this end we first deduce the upper bounds for |Pi−1(ξ)|, ∏n−2
ν=0 Q

(ν)
i and Q

(n−2)
i (see

Section 5). Using these estimates and Lemma 4.1, we obtain the upper bounds for |Li,τ (ξ)| and
|L′ (ξ)| in Section 6. To prove (4.10), we also need the lower bounds for |Pi−1(ξ)| which we
i,τ
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derive in Section 7. In Section 8, we combine all these estimates and deduce (4.10). In Section 9,
we use (4.10) to prove that

∣∣Pτ−1(ξ)
∣∣ n−2∏
ν=0

Q
(ν)
τ � (2n)n/2cn

3

∣∣Pi−1(ξ)
∣∣ n−2∏
ν=0

Q
(ν)
i

and then we show that this leads us to a contradiction. This will complete the proof of the the-
orem. Finally, the last section contains the necessary explanations concerning the calculations
from this paper.

5. Upper bounds for |Pi−1(ξ)|, ∏n−2
ν=0 Q

(ν)
i and Q

(n−2)
i

Before we deduce the estimates, several observations are necessary. It follows from (1.3) and
(1.5) that there exists c5 with 0 < c5 < 1 such that∣∣G′(ξ)

∣∣ < c−1
5

∣∣G(ξ)
∣∣ G A (5.1)

for any G ∈ Z[x], G 	≡ 0,degG � n. Put

ω = ω(n) = (n − 1)
A − 1

A − 2
.

Note that ω is well defined by (10.1)(iii). Put also

c6 = c
1/2
2

(
ξn−1c

1−n(A−1)
3 c5

)− 1
A−2 enω,

c7 = min
{∣∣P(ξ)

∣∣: P ∈ Z[x], P 	≡ 0, degP � n, P � max
{
c6, e

n P1
}}

and

c8 = max
{
ξ−n+1(2n)n(A−1)/2c

(2n−1)(A−1)−1
3 c

(n−1)(A−1)
4 ,

c2
6 max{c−2

5 c2
6, c−1

7

}n−1
en(2n−1)

}
. (5.2)

It follows from (1.3) and (1.5) that there exists H2 > 0 such that∣∣G′(ξ)
∣∣ < c−1

8

∣∣G(ξ)
∣∣ G A (5.3)

for any G ∈ Z[x], degG � n, G > H2. From now on, H2 is a fixed number. By (5.1) and (5.3)
we have ∣∣G′(ξ)

∣∣ < δ−1
∣∣G(ξ)

∣∣ G A (5.4)

for any G ∈ Z[x], G 	≡ 0, degG � n, where

δ = δ(G) =
{

c5 if G � H2,

c8 if G > H2.
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Lemma 5.1. Let i be an integer > 1. Then

∣∣Pi−1(ξ)
∣∣ <

(
ξn−1c

1−n(A−1)
3 δ

)− 1
A−2 Pi

−ω, (5.5)

where δ = δ(Pi). Suppose i0 is an integer > 1 such that Pi0 > H2. Then for any i � i0 we have

(i)
∣∣Pi−1(ξ)

∣∣ < Pi
−ω,

(ii)
∣∣Pi−1(ξ)

∣∣ < Pi
−n,

(iii)
n−2∏
ν=0

Q
(ν)
i < (2n)−n/2(c3c4)

−n+1
∣∣Pi−1(ξ)

∣∣− A−2
A−1 ,

(iv) Q
(n−2)
i <

∣∣Pi−1(ξ)
∣∣− A−2

A−1 Pi
−n+2. (5.6)

Suppose i and τ are integers such that i > τ � i0 and (4.9) holds. Then

Q
(n−2)
τ <

∣∣Pi−1(ξ)
∣∣− A−2

A−1 Pi−1
−n+2. (5.7)

Proof. We first note that Q
(n−1)
i satisfies the conditions of Lemma 2.2 by (3.2)(ii) with � = n−1,

(3.6) and the definition of c3. From this lemma, (3.2)(i) and (5.4) it follows that

ξn−1 Q
(n−1)
i <

∣∣Q(n−1)′
i (ξ)

∣∣ < δ−1
∣∣Q(n−1)

i (ξ)
∣∣ Q

(n−1)
i

A < c−1
3 δ−1

∣∣Pi−1(ξ)
∣∣ Q

(n−1)
i

A,

where δ = δ(Q
(n−1)
i ). Hence

Q
(n−1)
i

−A+1 < ξ−n+1c−1
3 δ−1

∣∣Pi−1(ξ)
∣∣.

By this and (3.2)(iv) with � = n − 1 we have

c
−n(A−1)
3

(∣∣Pi−1(ξ)
∣∣ n−2∏
ν=0

Q
(ν)
i

)A−1

< ξ−n+1c−1
3 δ−1

∣∣Pi−1(ξ)
∣∣. (5.8)

Using (3.6) in (5.8), we obtain

c
−n(A−1)
3

(∣∣Pi−1(ξ)
∣∣ Pi

n−1)A−1
< ξ−n+1c−1

3 δ−1
∣∣Pi−1(ξ)

∣∣. (5.9)

Since Q
(n−1)
i � Pi by (3.6), it follows that (5.9) can be rewritten as (5.5) by the definition

of δ.
To deduce (5.6)(i) from (5.5), we note that δ = c8, since Pi > H2 by the assumption above.

This gives the desired result by (5.2). The estimate (5.6)(ii) immediately follows from (5.6)(i),
since ω > n by the definition of ω and (10.1)(iii).
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To obtain (5.6)(iii), we rewrite (5.8) as

n−2∏
ν=0

Q
(ν)
i <

(
ξn−1c

1−n(A−1)
3 δ

)− 1
A−1

∣∣Pi−1(ξ)
∣∣− A−2

A−1 ,

and the result follows by (5.2), since δ = c8. If we rewrite (5.6)(iii) as

Q
(n−2)
i < (2n)−n/2(c3c4)

−n+1
∣∣Pi−1(ξ)

∣∣− A−2
A−1

n−3∏
ν=0

Q
(ν)
i

−1

and apply (3.6) to the right-hand side, we get (5.6)(iv) by the definitions of c3 and c4. Similarly,
since τ � i0, we have

Q
(n−2)
τ < (2n)−n/2(c3c4)

−n+1
∣∣Pτ−1(ξ)

∣∣− A−2
A−1

n−3∏
ν=0

Q
(ν)
τ

−1,

which is

� (2n)−n/2(c3c4)
−n+1

∣∣Pτ−1(ξ)
∣∣− A−2

A−1 Pτ
−n+2

by (3.6). Since i > τ , this gives (5.7) by (3.1)(i), (4.9) and the definitions of c3, c4. �
6. Upper bounds for |Li,τ (ξ)| and |L′

i,τ (ξ)|

Lemma 6.1. Let i0 be an integer as in Lemma 5.1. Suppose i and τ are integers such that
i > τ � i0 and (4.9) holds. Then the following estimates are valid:

(i)
∣∣Li,τ (ξ)

∣∣ <
∣∣Pi−1(ξ)

∣∣ 1
A−1 Pi−1

−n+1,

(ii)
∣∣L′

i,τ (ξ)
∣∣ <

∣∣Pi−1(ξ)
∣∣3−A− A−2

A−1 Pi
−(n−2)(A−1) Pi−1

−n+2. (6.1)

Proof. By (4.1) and (4.8) we have

∣∣Li,τ (ξ)
∣∣ � (2n)n/2cn−1

3

∣∣Pi−1(ξ)
∣∣ n−2∏
ν=0

Q
(ν)
i

n−2∏
ν=0

Q
(ν)
τ

−1.

Applying (5.6)(iii) to
∏n−2

ν=0 Q
(ν)
i and (3.6) with (4.9) to

∏n−2
ν=0 Q

(ν)
τ

−1, we obtain (6.1)(i).
We now estimate |L′

i,τ (ξ)|. Using (3.2)(i), (3.6), (4.2), (4.8), (5.3) and the definitions of c3,
c8, we get ∣∣L′

i,τ (ξ)
∣∣ �

∣∣P ′
i−1(ξ)

∣∣|x̃1| +
n−2∑
ν=0

∣∣Q(ν)
i

′
(ξ)

∣∣|x̃ν+2|

< c−1
8 R

(∣∣Pi−1(ξ)
∣∣ Pi−1

A−1 +
n−2∑∣∣Q(ν)

i (ξ)
∣∣ Q

(ν)
i

A−1

)

ν=0
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< c−1
8 R

∣∣Pi−1(ξ)
∣∣( Pi−1

A−1 + c−1
3

n−2∑
ν=0

Q
(ν)
i

A−1

)

< R
∣∣Pi−1(ξ)

∣∣ Q
(n−2)
i

A−1.

This and (5.6)(iv) imply

∣∣L′
i,τ (ξ)

∣∣ < R
∣∣Pi−1(ξ)

∣∣3−A
Pi

−(n−2)(A−1). (6.2)

We now show that

R <
∣∣Pi−1(ξ)

∣∣− A−2
A−1 Pi−1

−n+2. (6.3)

We first note that

R < max

{
(2n)n/2cn−1

3

n−2∏
ν=0

Q
(ν)
i

n−2∏
ν=0

Q
(ν)
τ

−1 Pi−1 , Q
(n−2)
τ

}
(6.4)

by (4.3) and the definition of c3. We have

(2n)n/2cn−1
3

n−2∏
ν=0

Q
(ν)
i

n−2∏
ν=0

Q
(ν)
τ

−1 Pi−1 � (2n)n/2(c3c4)
n−1

n−2∏
ν=0

Q
(ν)
i Pi−1

−n+2

<
∣∣Pi−1(ξ)

∣∣− A−2
A−1 Pi−1

−n+2 (6.5)

by (3.6), (4.9) and (5.6)(iii). Clearly, (6.3) follows from (5.7), (6.4) and (6.5). Combining (6.2)
with (6.3), we get (6.1)(ii). �
7. Lower bounds for |Pi−1(ξ)|

Put

Φ(x) = Φ(x,n) = max

{
n, 2A + n + x − 3 − 2ω, A + n + x − 3 − ω

2

}
.

Proposition 7.1. Let i0 be an integer as in Lemma 5.1. Suppose k0 is an integer such that

Pk0 > (n + 1)n−1Mn with M = max
{
c

1/2
2 c−2

6 c8, en Pi0

}
. (7.1)

If Pi−1 is irreducible and has degree n for some i > k0, then

∣∣Pi−1(ξ)
∣∣−1

< Pi−1
Φ(n). (7.2)

If Pi−1 is irreducible and has degree < n or is reducible for some i > k0, then

∣∣Pi−1(ξ)
∣∣−1

< Pi−1
Φ(n−1). (7.3)
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We first prove two lemmas.

Lemma 7.2. Let P be a nonzero polynomial with integer coefficients of degree m � n and let

P � max
{
c6, en P1

}
. (7.4)

Then

∣∣P(ξ)
∣∣−1 � c−1

7 P Φ(m). (7.5)

Proof. The result immediately follows from (7.4) by the definitions of c7 and Φ , since

∣∣P(ξ)
∣∣−1 � c−1

7 � c−1
7 P Φ(m). �

Lemma 7.3. Let P be an irreducible polynomial with integer coefficients of degree m � n and
let

P > max
{
c6, en P1

}
. (7.6)

Then

∣∣P(ξ)
∣∣−1

<

{
c−2

5 c2
6 P Φ(m) if P � M,

c−1
8 c2

6 P Φ(m) if P > M.
(7.7)

Proof. By (7.6) there exists a polynomial Ps such that

en Ps < P < en Ps+1 . (7.8)

From this, (5.5) and the definitions of δ, c6 we deduce

∣∣Ps(ξ)
∣∣ <

(
ξn−1c

1−n(A−1)
3 c5

)− 1
A−2 Ps+1

−ω

<
(
ξn−1c

1−n(A−1)
3 c5

)− 1
A−2

(
e−n P

)−ω

= c
−1/2
2 c6 P −ω. (7.9)

Since P is irreducible and P > en Ps , by Lemma 2.4 the polynomials Ps and P have no
common root. Therefore we can apply Lemma 2.5 to them. We distinguish three cases.

Case A. Suppose (2.2)(i) or (2.3) is valid. Then by (7.8) and the definition of c2 we have

1 < c
1/2
2 max

{∣∣Ps(ξ)
∣∣, ∣∣P(ξ)

∣∣}max
{

Ps , P
}n−1

= c
1/2
2 max

{∣∣Ps(ξ)
∣∣, ∣∣P(ξ)

∣∣} P n−1. (7.10)

If |Ps(ξ)| � |P(ξ)|, then (7.9) and (7.10) yield

1 < c
1/2∣∣Ps(ξ)

∣∣ P n−1 < c6 P −ω+n−1,
2
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which is < c6 P −1, since ω > n by the definition of ω and (10.1)(iii). This is a contradiction, for
P > c6 by (7.6). Hence |Ps(ξ)| < |P(ξ)|, therefore by (7.10) and the definition of Φ we obtain

1 < c
1/2
2

∣∣P(ξ)
∣∣ P n−1 � c

1/2
2 P −1

∣∣P(ξ)
∣∣ P Φ(m). (7.11)

This gives (7.7). In fact, (7.11) and the definitions of c2, c5, c6 imply

∣∣P(ξ)
∣∣−1

< c−2
5 c2

6 P Φ(m).

Similarly, using the definition of M in (7.11), we get

∣∣P(ξ)
∣∣−1

< c2
6c

−1
8 P Φ(m) if P > M.

Case B. Suppose (2.2)(ii) is valid. Then by (5.4), (7.8), (7.9) and the definition of δ we have

1 < c2 max
{∣∣Ps(ξ)

∣∣∣∣P ′
s (ξ)

∣∣∣∣P ′(ξ)
∣∣, ∣∣P(ξ)

∣∣∣∣P ′
s (ξ)

∣∣2}
Ps

m−2 P n−1

< c2δ
−2

∣∣Ps(ξ)
∣∣2∣∣P(ξ)

∣∣ P 2A+n+m−3

< c2
6δ

−2
∣∣P(ξ)

∣∣ P 2A+n+m−3−2ω,

where δ = δ(Ps). Note that if P > M , then P > en Pi0 > enH2 by the definition of M . From

this and (7.8) it follows that Ps > H2. So, δ(Ps) = c8 if P > M . This gives (7.7) by the
definitions of δ and Φ .

Case C. Finally, suppose (2.2)(iii) is valid. Then by (5.4), (7.8), (7.9) and the definition of δ

we have

1 < c2 max
{∣∣P(ξ)

∣∣∣∣P ′
s (ξ)

∣∣∣∣P ′(ξ)
∣∣, ∣∣Ps(ξ)

∣∣∣∣P ′(ξ)
∣∣2}

Ps
m−1 P n−2

< c2δ
−2

∣∣P(ξ)
∣∣2∣∣Ps(ξ)

∣∣ P 2A+n+m−3

< c
1/2
2 c6δ

−2
∣∣P(ξ)

∣∣2
P 2A+n+m−3−ω,

where δ = δ(Ps). Using the arguments above, we deduce (7.7) from here by the definitions of c2,
c6, δ, M and Φ . �
Proof of Proposition 7.1. Let degPi−1 = m, 1 � m � n, and let Pi−1 = P

(1)
i−1 . . . P

(γ )

i−1,

1 � γ � m, where the polynomials P
(1)
i−1, . . . ,P

(γ )

i−1 have integer coefficients and are irreducible

over Z. We first note that there is an index ν with 1 � ν � γ such that P
(ν)
i−1 > M. In fact, in the

contrary case by the right-hand side of (2.1) we obtain

Pi−1 � (n + 1)n−1 P
(1)
i−1 · · · P

(γ )

i−1 � (n + 1)n−1Mn,

which contradicts (7.1). From this and Lemma 7.3 it follows that

∣∣P (ν)
(ξ)

∣∣−1
< c2

6c
−1 P

(ν) Φ(m) (7.12)
i−1 8 i−1
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for some ν with 1 � ν � γ . Combining (7.5), (7.7), (7.12) and keeping in mind the definitions of
c5, c6, c7, c8, we get

∣∣Pi−1(ξ)
∣∣−1 =

γ∏
ν=1

∣∣P (ν)
i−1(ξ)

∣∣−1
< c2

6c
−1
8 max

{
c−2

5 c2
6, c−1

7

}n−1
γ∏

ν=1

P
(ν)
i−1

Φ(m),

which is

< c2
6c

−1
8 max

{
c−2

5 c2
6, c−1

7

}n−1
enΦ(m) Pi−1

Φ(m) (7.13)

by the left-hand side of (2.1). Note that Φ(m) < 2n−1 by (10.1)(iii), (10.3)(iii) and the definition
of Φ . From this, (5.2) and (7.13) it follows that

∣∣Pi−1(ξ)
∣∣−1

< Pi−1
Φ(m).

Obviously, if Pi−1 is irreducible and has degree n, then m = n, so Φ(m) = Φ(n). Similarly, if
Pi−1 is irreducible and has degree < n or is reducible, then m � n − 1, so Φ(m) � Φ(n − 1).
This gives the desired result. �
Proposition 7.4. Let k0 be an integer as in Proposition 7.1. If Pi−1 is irreducible and has degree n

for some i > k0, then

∣∣Pi−1(ξ)
∣∣−1

< Pi

2A+n−2
3 Pi−1

n−1
3 . (7.14)

Proof. From (3.1) one easily deduces that Pi−1 and Pi have no common root. Therefore we can
apply Lemma 2.5 to them. We distinguish three cases.

Case A. Suppose (2.2)(i) or (2.3) is valid. Then by (3.1)(i), (3.1)(ii) and the definitions of c2,
c3 we have

1 < c
1/2
2 max

{∣∣Pi−1(ξ)
∣∣, ∣∣Pi(ξ)

∣∣}max
{

Pi−1 , Pi

}n−1 = c
1/2
2

∣∣Pi−1(ξ)
∣∣ Pi

n−1,

which is < c
1/2
2 Pi

−1 by (5.6)(ii). This contradicts (7.1).
Case B. Suppose (2.2)(ii) is valid. Then using (3.1)(i), (3.1)(ii), (5.3) and the definitions of c2,

c3, c8, we get

1 < c2 max
{∣∣Pi−1(ξ)

∣∣∣∣P ′
i−1(ξ)

∣∣∣∣P ′
i (ξ)

∣∣, ∣∣Pi(ξ)
∣∣∣∣P ′

i−1(ξ)
∣∣2}

Pi−1
n−2 Pi

n−1

< c2c
−2
8

∣∣Pi−1(ξ)
∣∣2∣∣Pi(ξ)

∣∣ Pi
A+n−1 Pi−1

A+n−2

< c2c
−1
3 c−2

8

∣∣Pi−1(ξ)
∣∣3

Pi
2A+n−2 Pi−1

n−1

<
∣∣Pi−1(ξ)

∣∣3
Pi

2A+n−2 Pi−1
n−1.
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Case C. Similarly, from (2.2)(iii), (3.1)(i), (3.1)(ii), (5.3) and the definitions of c2, c3, c8 we
deduce

1 < c2 max
{∣∣Pi(ξ)

∣∣∣∣P ′
i−1(ξ)

∣∣∣∣P ′
i (ξ)

∣∣, ∣∣Pi−1(ξ)
∣∣∣∣P ′

i (ξ)
∣∣2}

Pi−1
n−1 Pi

n−2

< c2c
−2
8

∣∣Pi−1(ξ)
∣∣∣∣Pi(ξ)

∣∣2
Pi

2A+n−2 Pi−1
n−1

< c2c
−2
3 c−2

8

∣∣Pi−1(ξ)
∣∣3

Pi
2A+n−2 Pi−1

n−1

<
∣∣Pi−1(ξ)

∣∣3
Pi

2A+n−2 Pi−1
n−1.

Clearly, Cases B and C give (7.14). �
Corollary 7.5. Let k0 be an integer as in Proposition 7.1. If Pi−1 is irreducible and has degree n

for some i > k0, then for any � with 0 � � � 1 we have

∣∣Pi−1(ξ)
∣∣−1

< Pi

2A+n−2
3 (1−�) Pi−1

n−1
3 (1−�)+Φ(n)�. (7.15)

Proof. We raise (7.2) and (7.14) to the powers � and 1 − �, respectively, and multiply out the
derived inequalities. �
8. Proof of (4.10)

Lemma 8.1. Let k0 be an integer as in Proposition 7.1. Suppose i and τ are integers such that
i > τ � k0 and (4.9) holds. Then

∣∣Li,τ (ξ)
∣∣ <

∣∣Pi−1(ξ)
∣∣A2−3A+1

Pi
(n−2)(A−1)2

Pi−1
(n−2)(A−1). (8.1)

Proof. From (3.1)(ii) and (6.1)(i) it follows that for any α1 and any nonnegative α2 we have

∣∣Li,τ (ξ)
∣∣ <

∣∣Pi−1(ξ)
∣∣ 1

A−1 +α1
∣∣Pi−1(ξ)

∣∣−α1 Pi
α2 Pi−1

−n+1−α2 . (8.2)

Put

α1 = − 1

A − 1
+ A2 − 3A + 1. (8.3)

Since A > 3 by (10.1)(iii), it follows that α1 > 0. We now distinguish two cases.
Case A. Suppose Pi−1 is irreducible and has degree n. By (7.15) and (8.2) we have

∣∣Li,τ (ξ)
∣∣ <

∣∣Pi−1(ξ)
∣∣ 1

A−1 +α1 Pi

2A+n−2
3 (1−�)α1+α2 Pi−1

( n−1
3 (1−�)+Φ(n)�)α1−n+1−α2 . (8.4)

If n = 3,4,5, put

� = 1 − 3(n − 2)(A − 1)2

and α2 = 0. (8.5)

(2A + n − 2)α1
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A straightforward calculation shows that 0 < � < 1. It follows from (8.3), (8.5) and (10.3)(iii)
that

(
n − 1

3
(1 − �) + Φ(n)�

)
α1 − n + 1 = AT (A)

(A − 1)(A − 2)(2A + n − 2)
+ (n − 2)(A − 1),

which is (n − 2)(A − 1) by (1.4). This and (8.3)–(8.5) give (8.1). Similarly, if n > 5, put

� = 0 and α2 = n − 1

3
α1 − n + 1 − (n − 2)(A − 1). (8.6)

One can show (see Lemma 10.3) that

α2 > 0 and
2A + n − 2

3
α1 + α2 < (n − 2)(A − 1)2. (8.7)

From (8.3), (8.4), (8.6) and (8.7) follows (8.1).
Case B. Suppose Pi−1 is irreducible and has degree < n or is reducible. By (7.3) and (8.2) we

have

∣∣Li,τ (ξ)
∣∣ <

∣∣Pi−1(ξ)
∣∣ 1

A−1 +α1 Pi
α2 Pi−1

Φ(n−1)α1−n+1−α2 . (8.8)

Put

α2 = (n − 2)(A − 1)2. (8.9)

A straightforward calculation shows that

Φ(n − 1)α1 − n + 1 − α2 < (n − 2)(A − 1)

if n = 3,4,5. Suppose n > 5. From (8.3), (8.9) and (10.3)(ii) it follows that

Φ(n − 1)α1 − n + 1 − α2 = T (A)

(A − 1)(A − 2)
+ (n − 2)(A − 1),

which is (n − 2)(A − 1) by (1.4). This, (8.3), (8.8) and (8.9) give (8.1). �
Corollary 8.2. Let i and τ be integers as in Lemma 8.1. Then Li,τ satisfies (4.10).

Proof. If we raise both sides of (6.1)(ii) to the power −A + 1, we obtain

∣∣L′
i,τ (ξ)

∣∣−A+1
>

∣∣Pi−1(ξ)
∣∣A2−3A+1

Pi
(n−2)(A−1)2

Pi−1
(n−2)(A−1).

Combining this with (8.1), we get (4.10). �
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9. Proof of Theorem

Lemma 9.1. Let i and τ be integers as in Lemma 8.1. Then

∣∣Pτ−1(ξ)
∣∣ n−2∏
ν=0

Q
(ν)
τ � (2n)n/2cn

3

∣∣Pi−1(ξ)
∣∣ n−2∏
ν=0

Q
(ν)
i .

Proof. Suppose to the contrary

∣∣Pτ−1(ξ)
∣∣ n−2∏
ν=0

Q
(ν)
τ > (2n)n/2cn

3

∣∣Pi−1(ξ)
∣∣ n−2∏
ν=0

Q
(ν)
i . (9.1)

By (4.1) and (4.8) we have

∣∣Li,τ (ξ)
∣∣ � (2n)n/2cn−1

3

∣∣Pi−1(ξ)
∣∣ n−2∏
ν=0

Q
(ν)
i

n−2∏
ν=0

Q
(ν)
τ

−1,

which is < c−1
3 |Pτ−1(ξ)| by (9.1). This, (4.1) and (4.8) imply

(i)
∣∣Li,τ (ξ)

∣∣ < c−1
3

∣∣Pτ−1(ξ)
∣∣,

(ii) |dκν | � c−1
3 Q

(ν−1)
τ (ν = 1, . . . , n − 1), (9.2)

where dκ1, . . . , dκn−1 are coefficients of Li,τ . From (9.2) by the minimality property of Q
(n−2)
τ

we get

Li,τ � Q
(n−2)
τ . (9.3)

This, (3.6), (9.2)(ii) and the definition of c3 give

|dκν | � c−1
3 Q

(ν−1)
τ � c−1

3 Q
(n−2)
τ � c−1

3 Li,τ � ξn−1 Li,τ (ν = 1, . . . , n − 1).

Therefore Li,τ satisfies the conditions of Lemma 2.2, by which

∣∣L′
i,τ (ξ)

∣∣ > ξn−1 Li,τ . (9.4)

We also note that by (3.6) and (9.3) we have Li,τ � Pτ , which is > H2, since τ � k0. Therefore
we can apply (5.3) to Li,τ . From this and (9.4) it follows that

∣∣Li,τ (ξ)
∣∣ > c8

∣∣L′
i,τ (ξ)

∣∣ Li,τ
−A > c8ξ

(n−1)A
∣∣L′

i,τ (ξ)
∣∣−A+1

,

which is > |L′ (ξ)|−A+1 by (5.2). We obtain a contradiction with (4.10). �
i,τ
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Proof of Theorem. Choose an increasing sequence of integers {mt } such that k0 = m1 <

m2 < · · · and

Pmt+1−1 � c4 Pmt < Pmt+1 , t = 1,2, . . . . (9.5)

By Lemma 9.1 we have

∣∣Pmt−1(ξ)
∣∣ n−2∏
ν=0

Q
(ν)
mt

� (2n)n/2cn
3

∣∣Pmt+1−1(ξ)
∣∣ n−2∏
ν=0

Q
(ν)
mt+1 , t = 1,2, . . . .

Let � be some integer � 1. If we multiply these inequalities together for all t with 1 � t � �, we
obtain

∣∣Pm1−1(ξ)
∣∣ n−2∏
ν=0

Q
(ν)
m1 � (2n)n�/2cn�

3

∣∣Pm�+1−1(ξ)
∣∣ n−2∏
ν=0

Q
(ν)
m�+1 ,

hence

∣∣Pm1−1(ξ)
∣∣ < (2n)n�/2cn�

3

∣∣Pm�+1−1(ξ)
∣∣ n−2∏
ν=0

Q
(ν)
m�+1 . (9.6)

Substituting (5.6)(iii) into (9.6), using the definitions of c3, c4 and then applying (5.6)(i), we get

∣∣Pm1−1(ξ)
∣∣ < (2n)n�/2cn�

3

∣∣Pm�+1−1(ξ)
∣∣ 1

A−1 < (2n)n�/2cn�
3 Pm�+1

− ω
A−1 . (9.7)

By the right-hand side of (9.5) we have

Pmt+1
−1 < c−1

4 Pmt

−1, t = 1,2, . . . .

If we multiply these inequalities together for all t with 1 � t � �, we obtain

Pm�+1
−1 < c−�

4 Pm1
−1 < c−�

4 .

Using this in (9.7) and keeping in mind the definitions of c4, ω, we get

∣∣Pm1−1(ξ)
∣∣ < (2n)n�/2cn�

3 c
− ω

A−1 �

4 = 2−�.

Letting � → ∞, we come to a contradiction. Thus, the assumption (1.5) can not be true. This
completes the proof of the theorem. �
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10. Calculations concerning the exponent A

Lemma 10.1. We have

(i) lim
n→∞(A − n/2) = 4,

(ii)
n

2
+ 3.5 < A <

n

2
+ 4 for n � 26,

(iii) 3 < A < n + 1 for n � 3. (10.1)

Proof. Consider T (x) from (1.4). To prove (10.1)(i), we note that if n > 10 and x > n/2, then

∣∣(2n − 41)x2 − (3n − 29)x + 2n − 10
∣∣ < 7nx2 < 14x3,

so

T (x)

{
< x3(2x2 − (n + 12)x + 2n + 44),

> x3(2x2 − (n + 12)x + 2n + 16).

Of the quadratic factors the second splits into (x − 2)(2x − n − 8) and the first has real roots if
n > 10. Consequently,

B < A <
n

2
+ 4, (10.2)

where B = B(n) is the largest root of 2x2 − (n + 12)x + 2n + 44. Since

B = n

2
+ 4 + O

(
1

n

)
,

the same follows for A. This gives (10.1)(i).
We now prove (10.1)(ii). It is easy to verify that B � n/2 + 3.5 if n � 53. A straightforward

calculation also shows that A > n/2 + 3.5 if 26 � n < 53. This and (10.2) give (10.1)(ii).
Finally, (10.1)(iii) follows from (10.1)(ii) if n � 26. One can check that it is also true

if 3 � n < 26. �
Lemma 10.2. We have

(i) Φ(2) = Φ(2, n) = A + 1 − ω

2
for n = 3,

(ii) Φ(n − 1) = Φ(n − 1, n) = 2A + 2n − 4 − 2ω for n � 4,

(iii) Φ(n) = Φ(n,n) = 2A + 2n − 3 − 2ω for n � 3. (10.3)

Proof. One can check (10.3)(i) directly. To prove (10.3)(ii) and (10.3)(iii), we show that

2A + n + x − 3 − 2ω > max

{
n, A + n + x − 3 − ω

}

2
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for x = n − 1 and x = n. Obviously, we only need to prove it for x = n − 1, i.e.,

2A + 2n − 4 − 2ω > max

{
n, A + n − 2 − ω

2

}
.

We first show that

2A + 2n − 4 − 2ω > A + n − 2 − ω

2
,

which can be rewritten as

2A2 − (n + 5)A − n + 5

2(A − 2)
> 0. (10.4)

It is easy to verify that (10.4) is true if 3 � n < 26. Suppose n � 26. The function

f (x) = 2x2 − (n + 5)x − n + 5

is increasing for x � (n + 5)/4. Since A > n/2 + 3.5 > (n + 5)/4 by (10.1)(ii), we obtain

f (A) > f

(
n

2
+ 3.5

)
= 12,

which gives (10.4).
To show that

A + n − 2 − ω

2
> n,

we rewrite it as

2A2 − (n + 7)A + n + 7

2(A − 2)
> 0,

which is true by (10.1)(iii) and (10.4). �
Lemma 10.3. The estimates (8.7) hold for any n > 5.

Proof. By (8.3) and (8.6) we have

α2 = n − 1

3
α1 − n + 1 − (n − 2)(A − 1)

= (n − 1)A3 − (7n − 10)A2 + (7n − 13)A − 2n + 5

3(A − 1)
.

One can check that α2 > 0 if 5 < n < 26. Suppose n � 26. Then by (10.1)(ii) we get

(n − 1)A3 − (7n − 10)A2 > (n − 1)
n

A2 − (7n − 10)A2 = A2
(

n2

− 15n + 10

)
,

2 2 2
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which is positive. Also, it is easy to see that (7n − 13)A − 2n + 5 > 0. Therefore α2 > 0.
To prove the second estimate from (8.7), we note that by (8.3) and (8.6) we obtain

2A + n − 2

3
α1 + α2

= 2A4 − (n + 5)A3 − (2n − 8)A2 + (2n − 7)A − n + 3

3(A − 1)
+ (n − 2)(A − 1)2. (10.5)

We now show that

2A4 − (n + 5)A3 − (2n − 8)A2 + (2n − 7)A − n + 3 < 0. (10.6)

It is easy to verify that (10.6) is true if 5 < n < 48. Suppose n � 48. Note that (2n − 7)A −
n + 3 < 4A2, since A > n/2 by (10.1)(ii). Hence

2A4 − (n + 5)A3 − (2n − 8)A2 + (2n − 7)A − n + 3 < A2(2A2 − (n + 5)A − 2n + 12
)
.

The function

f (x) = 2x2 − (n + 5)x − 2n + 12

is increasing for x > (n+ 5)/4. Since A > n/2 + 3.5 > (n+ 5)/4 and A < n/2 + 4 by (10.1)(ii),
we get

f (A) < f

(
n

2
+ 4

)
= −n

2
+ 24 � 0,

which gives (10.6). Clearly, (10.5) and (10.6) imply the second estimate from (8.7). �
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