Let c_{1} and c_{2} be real numbers such that $x^{3}+c_{2} x^{2}+c_{1} x-1=0$ has a real root $0<\xi<1$. Consider the following recursions

$$
\begin{array}{ll}
P_{i}(x)=-c_{2} P_{i-1}(x)-c_{1} P_{i-2}(x)+P_{i-3}(x), & i=1,2, \ldots, \\
Q_{i}(x)=c_{1} Q_{i-1}(x)+c_{2} Q_{i-2}(x)+Q_{i-3}(x), & i=1,2, \ldots, \\
R_{i}(x)=c_{1} R_{i-1}(x)+c_{2} R_{i-2}(x)+R_{i-3}(x), & i=1,2, \ldots,
\end{array}
$$

where

$$
\begin{aligned}
& P_{0}(x)=x^{2}, P_{-1}(x)=x, P_{-2}(x)=1 \\
& Q_{0}(x)=c_{1} x-1, Q_{-1}(x)=x, Q_{-2}(x)=0, \\
& R_{0}(x)=c_{1} x^{2}, R_{-1}(x)=x^{2}, R_{-2}(x)=-1
\end{aligned}
$$

Put

$$
K_{i, p}=\left|P_{i}(\xi)\right|\left\|P_{i}\right\|_{p}^{2}, \quad K_{i, p}^{*}=\left\|\left|Q _ { i } (\xi) \left\|\left.q_{i}\right|^{1 / 2},\left|R_{i}(\xi)\left\|\left.q_{i}\right|^{1 / 2}\right\|_{p},\right.\right.\right.\right.
$$

where $\|\cdot\|_{p}$ is the ℓ^{p} - norm and q_{i} is the leading coefficient of Q_{i}.
Statement 1. Let c_{1} and c_{2} be nonnegative integers such that

$$
c_{1} \geq \begin{cases}1 & \text { if } c_{2}=0 \tag{1}\\ \left\lfloor c_{2}^{2} / 4\right\rfloor & \text { if } 1 \leq c_{2} \leq 8 \\ \left\lfloor c_{2}^{2} / 4\right\rfloor+1 & \text { if } c_{2}>8\end{cases}
$$

Then

$$
\sup K_{i, 2}<\infty \quad \text { and } \quad \sup K_{i, 2}^{*}<\infty
$$

Moreover,

$$
\sup K_{i, 2}<1 \quad \text { and } \quad \sup K_{i, 2}^{*}<1
$$

if

$$
c_{1} \geq\left\{\begin{array}{l}
\left\lfloor c_{2}^{2} / 4\right\rfloor+1 \quad \text { if } \quad 0 \leq c_{2} \leq 8 \tag{2}\\
\left\lfloor c_{2}^{2} / 4\right\rfloor+2 \quad \text { if } \quad c_{2}>8
\end{array}\right.
$$

Suppose c_{1} and c_{2} satisfy (1) or (2). Put

$$
\begin{aligned}
& I=\inf K_{i, 2}, \quad S=\sup K_{i, 2}, \quad \tilde{K}_{i, 2}=\left(K_{i, 2}-I\right) / S \\
& I^{*}=\inf K_{i, 2}^{*}, \quad S^{*}=\sup K_{i, 2}^{*}, \quad \tilde{K}_{i, 2}^{*}=\left(K_{i, 2}^{*}-I^{*}\right) / S^{*}
\end{aligned}
$$

and create histograms for $\left\{\tilde{K}_{i, 2}\right\}$ and $\left\{\tilde{K}_{i, 2}^{*}\right\}$.
Statement 2. A frequency curve for $\left\{\tilde{K}_{i, 2}\right\}$ and $\left\{\tilde{K}_{i, 2}^{*}\right\}$ is $f(x)=\frac{1}{\pi \sqrt{x(1-x)}}$.
Statement 3. Let $c_{1}=1, c_{2}=0$ or $c_{1}=0, c_{2}=1$. Then there is a subsequence \tilde{P}_{i} of P_{i} such that
(i) $\left|\tilde{P}_{1}(\xi)\right|>\left|\tilde{P}_{2}(\xi)\right|>\ldots>\left|\tilde{P}_{i}(\xi)\right|>\ldots$,
(ii) $\left\|\tilde{P}_{1}\right\|_{\infty}<\left\|\tilde{P}_{2}\right\|_{\infty}<\ldots<\left\|\tilde{P}_{i}\right\|_{\infty}<\ldots$,
(iii) for any nonzero $\tilde{P} \in \mathbb{Z}[x]$ with $\|\tilde{P}\|_{\infty}<\left\|\tilde{P}_{i+1}\right\|_{\infty}$ we have $|\tilde{P}(\xi)| \geq\left|\tilde{P}_{i}(\xi)\right|$.

