On approximation of quadratic irrationals by rational numbers

Let $\xi=\left[0, \overline{a_{1}, \ldots, a_{n}}\right]$ be a quadratic irrational with discriminant D and let p_{i} / q_{i} be its i th convergent. Put

$$
K_{i}=\left|\xi-\frac{p_{i}}{q_{i}}\right| q_{i}^{2}
$$

We first suppose that $n=1$, i.e. $\xi=\left[0, \overline{a_{1}}\right]$.
Statement 1. We have:

$$
\lim _{i \rightarrow \infty} K_{i}=\frac{1}{\sqrt{D}}
$$

Moreover, $K_{1}<K_{3}<K_{5}<\ldots$ and $K_{2}>K_{4}>K_{6}>\ldots$.
We now generalize Statement 1 to the case $n>1$. Let r be an integer with $0 \leq r \leq n-1$. We define n-tuples $\left(a_{1}^{(r)}, \ldots, a_{n-1}^{(r)}\right)$ in the following way:

$$
\begin{aligned}
& \left(a_{1}^{(0)}, \ldots, a_{n-1}^{(0)}\right)=\left(a_{2}, a_{3}, \ldots, a_{n-1}, a_{n}\right) \\
& \left(a_{1}^{(1)}, \ldots, a_{n-1}^{(1)}\right)=\left(a_{1}, a_{2}, \ldots, a_{n-2}, a_{n-1}\right) \\
& \left(a_{1}^{(2)}, \ldots, a_{n-1}^{(2)}\right)=\left(a_{n}, a_{1}, \ldots, a_{n-3}, a_{n-2}\right) \\
& \left(a_{1}^{(3)}, \ldots, a_{n-1}^{(3)}\right)=\left(a_{n-1}, a_{n}, \ldots, a_{n-4}, a_{n-3}\right) \\
& \cdots \\
& \left(a_{1}^{(n-1)}, \ldots, a_{n-1}^{(n-1)}\right)=\left(a_{3}, a_{4}, \ldots, a_{n}, a_{1}\right)
\end{aligned}
$$

Denote by $N(r)$ the numerator of the continued fraction $\left[a_{1}^{(r)}, \ldots, a_{n-1}^{(r)}\right]$.
Statement 2. If n is even, then

$$
N(0) a_{1}+\sum_{r=1}^{n-1}(-1)^{r} N(r) a_{n-r+1}=0
$$

Statement 3. If n is even, $i>n$ and $i \equiv 0$ or $n-1 \bmod n$, then

$$
N(1) q_{2 i-n}=q_{i} q_{i-1}-q_{i-n} q_{i-n-1}
$$

Put

$$
G=\operatorname{gcd}(N(0), \ldots, N(n-1)), \quad F(k, r)=\frac{C(k) N(0)^{k} N(r)^{k+1}}{G^{2 k+1} D^{k} \sqrt{D}}
$$

where $C(k)=\frac{(2 k)!}{k!(k+1)!}$ are the Catalan numbers.
Statement 4. For any r with $0 \leq r \leq n-1$ we have

$$
\lim _{j \rightarrow \infty} K_{n j+r}=F(0, r)
$$

Moreover, a subsequence of $\left\{K_{n j+r}\right\}$ with odd indexes (if any) is increasing and a subsequence of $\left\{K_{n j+r}\right\}$ with even indexes (if any) is decreasing.

Corollary 5. If n is even, then

$$
\lim _{j \rightarrow \infty}\left(K_{n j} a_{1}+\sum_{r=1}^{n-1}(-1)^{r} K_{n j+r} a_{n-r+1}\right)=0
$$

Statement 6. Let r be an integer as in Statement 4. Let also i be an odd integer ≥ 1 and let m be an integer ≥ 0. Suppose $i \equiv r \bmod n$. Then

$$
\sum_{k=0}^{2 m+1}(-1)^{k} \frac{F(k, r)}{q_{i}^{2 k+2}}<\frac{p_{i}}{q_{i}}-\xi<\sum_{k=0}^{2 m}(-1)^{k} \frac{F(k, r)}{q_{i}^{2 k+2}}
$$

Corollary 7. Let i, m and r be integers as in Statement 6. Then

$$
\left|\xi-\frac{p_{i}}{q_{i}}-\sum_{k=0}^{m}(-1)^{k+1} \frac{F(k, r)}{q_{i}^{2 k+2}}\right|<\frac{F(m+1, r)}{q_{i}^{2 m+4}}
$$

