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I. On approximation by rational numbers

THEOREM 1 (Dirichlet, 1842). For any real ir-
rational number £ there exist infinitely many
rational numbers p/q such that
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Example: Let £ = e. Consider the continued
fraction expansion:
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and so on.



The first convergents are:
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We also note that
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THEOREM 2. For any real irrational number &
there exist infinitely many rational numbers p/q
such that

D
E—— 5"
q 2q



THEOREM 2. For any real irrational number &
there exist infinitely many rational numbers p/q
such that

THEOREM 1. For any real irrational number &
there exist infinitely many rational numbers p/q
such that
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Finally, some convergents give even better ap-
proximation:
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THEOREM 3 (Hurwitz). For any real irrational

number & there exist infinitely many rational
numbers p/q such that
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THEOREM 3 (Hurwitz). For any real irrational
number & there exist infinitely many rational
numbers p/q such that

c-0<z
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This result is the best possible.
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II. Polynomial Interpretation
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II. Polynomial Interpretation

THEOREM 1. For any real irrational number &
there exist infinitely many rational numbers p/q
such that

P 1 _
-7 <l = ac-ni<ar

THEOREM 4. For any real irrational number &
there exist infinitely many polynomials P € Z|[x]
of the first degree such that

P& < [PI7,
where |[P| denotes the height of P.




II. Polynomial Interpretation

THEOREM 1. For any real irrational number &
there exist infinitely many rational numbers p/q
such that

p 1 _
e-P<l = lae-rl<a
q q
THEOREM 5. For any real number & & A,, there
exist infinitely many polynomials P € Z[x]| of
degree < n such that

P& < P,

where A,, is the set of real algebraic numbers of
degree < n.
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III. Conjecture of Wirsing

CONJECTURE (WIRSING, 1961). For any real num-
ber £ € A, there exist infinitely many algebraic
numbers o« € A,, with

€ —a| K H(a)™" ', e>0,

where H () is the height of a.
Further W. M. Schmidt conjectured that the

exponent

—n—1+4+¢€
can be replaced even by

—n — 1.
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At the moment this Conjecture is proved only for

n=1 = |[£— al < H(a)™? (Dirichlet)
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p ~ _
|«$—E|<q2 g€ — p| < ¢!

£ — o] < H(a)™™ ! |IP(¢)] < [P~

At the moment this Conjecture is proved only for
n=1 = |£— al < H(a)™? (Dirichlet)
n=2 = |£— o < H(a)™® (Davenport — Schmidt)

n>2 = 777



Consider the polynomial

P(x) =a,x" + ...+ a1x + ag

=ap(x —ay) ... (& — ay).

Without loss of generality we can assume that
a is the root of P(x) closest to &.



It is known that

1€ — | K

[P(9)]
[P(&)]

By Theorem 3 there are infinitely many polyno-
mials P € Z[x| of degree < n such that

|[P(¢)| < [PI7™.

Let n = 1. Then

[P'(§)| = |aa| < [Pl

=

1€ — o] K

Wq
P

W—2




It is known that

[P(£)]

[P’(€)|

By Theorem 3 there are infinitely many polyno-
mials P € Z[x| of degree < n such that

|P(¢)| < [PI7™.

Let n = 2. Then for some 6 < 1 we have

1€ — | K

[P'(&)] = 12a26 + a1| X P°= ¢ — oy < %gz _ P29




QUESTION: Can one prove that the following is impos-

sible: All polynomials with |P(§)| < |[PI™"
have a “small” derivative |P’(¢)| < [PI°.




QUESTION: Can one prove that the following is impos-

sible: All polynomials with |P(§)| < |[PI™"
have a “small” derivative |P’(¢)| < [PI°.

ANSWER: Yes, for n=1 (Dirichlet, 1842)
n=2 (Davenport — Schmidt, 1967)




IV. Theorem of Wirsing

THEOREM 6 (Wirsing, 1961). For any real num-
ber £ € A,, there exist infinitely many algebraic
numbers o« € A,, with

€ —a| < H(a)"z7*,  lim A, = 2.

n—oo



By Dirichlet’s Box principle there are infinitely
many polynomials

Px) =ap(x —ay) ... - (x — ay)
such that |P(¢)| < [PI~", therefore
€ —aa| ... |6 — an| < [PTa, .

n

Even if a,, = |P|, we can only prove that
€ —ai| .ot € — o K PIT"T K H(en) ™,
4

n+1

It is also clear, that the worth case for us is when

€ -] =... =] — anl.



QUESTION: Can one prove that for infinitely many
polynomials P € Z[x] with |P(¢)| < [PI™"

the situation

€ —auf =... =6 — ayl

is impossible?




QUESTION: Can one prove that for infinitely many

polynomials P € Z[x] with |P(§)| < [PI™"
the situation

€ —auf =... =6 — gl

is impossible?

ANSWER: For infinitely many polynomials P € Z|[x]
with |P(€)| < [PI~™" we have:

€ — | <6 — ] K1,

& — asl,...,|& — a,| are “big”.




Step 1: Construct infinitly many P, Q € Z[x],
deg P, () < n, such that

|P(¢)| <« [P

Q(6)| K Q™ | and
P < |Q

P,(Q have no

common root




Step 2. Consider the resultant of P, Q :
R(P,Q) =a, by || (ci—B))

1<i,j<n



Step 2. Consider the resultant of P, () :
R(P,Q) = a, by ] (c:—8y).

1<:,5<n
On the one hand,
R(P,Q) # 0,

since P, () have no common root.



Step 2. Consider the resultant of P, () :
R(P,Q) =a, by || (ci—B))

1<7,j<n
On the one hand,

R(P,Q) # 0,

since P, () have no common root. Moreover,
R(P,Q) € Z,

since P, () have integer coefficients.



Step 2. Consider the resultant of P, () :
R(P,Q) = a by || («i—5)).
1<i,j<n
On the one hand,
R(P,Q) # 0,
since P, () have no common root. Moreover,
R(P,Q) € Z,

since P, (Q have integer coefficients. Therefore

we get
|[R(P, Q)| > 1.



Step 3. On the other hand,
[R(P,Q)| =apby ] leu—8jl.

1<i,j<n



Step 3. On the other hand,
IR(P,Q)| =a, by [] lei— 5l

1<i,j<n

< PP ] e — Byl

1<i,j<n



Step 3. On the other hand,
IR(P,Q)| =aby" [] lei— 5l

1<7,5<n

< PP ] e — Bl

1<i,5<n

< PP [ max(l€ — ail, 1€ — Bj))-

1<i,5<n



Step 3. On the other hand,
IR(P,Q)| =aby" [] lei— 5l

1<¢,5<n
< PP ] e — B4l
1<¢,5<n
< PP | max(€ — ail, [€ - B)
1<7,5<n
If s
€ —ai| = ... = |€ — an| < P77,

€ — 0B =...= |- 6| K W‘l—%



Step 3. On the other hand,
IR(P,Q)| =aby" [] lei— 5l

1<2,5<n
< PP ] e — B4l
1<2,5<n
< PP | max(€ — ail, [€ - B)
1<2,5<n
If 1
€ —au| =... =€ —a,| K [PI71 75,
€= Bil = ... =€ — Bul < [PI717,
then

1

IR(P, Q)| < PPI(-1=n)" = [pPIn* < 1



Step 3. On the other hand,
[R(P,Q)| =a/, by |] lei—8i

1<1,j<n
<P 1] e — By
1<1,j<n
< PP [ max(1€ — ail, [€ - B)
1<2,7<n
€ —cul=...= & —an| < PI717n,
€= Bl =... = & — Bu| < [PI7' 7,
then

|R(P, Q)l < W2n’ﬂ(—1—%)n2 _ Wn—nZ <1,

which gives a contradiction, since |R(P, Q)| > 1
by Step 2.



LEMMA (Wirsing, 1961):

[ |P(&)2|1Q(¢) | P2,
1€ — v| < max <

L 1P(©)]|Q(E) P[P,

where = is a root of P or () closest to &.
Since

P& <P, |Q(§)| <K Q™"

we get

_n_

€ — | < [P35 = [PI73s,

(V][N



V. “Big Derivative” Method

THEOREM 7 (Bernik-Tsishchanka, 1993). For
any real number £ & A, there exist infinitely
many algebraic numbers a € A,, with

€ — a| € H(a)"27™,  lim A, = 3.

n—oo



The following table contains the values of
n L
2 n

corresponding to Wirsing’s Theorem (1961), the
Theorem of Bernik-Tsishchanka (1993), and the

Conjecture:

n | 1961 1993 | Conj.
3 | 3.28 | 3.5 4
4 | 3.82 | 4.12 5]
5 | 4.35 | 4.71 6
10 | 6.92 | 7.47 | 11
50 126.98 27.84| 51
100151.99(52.92| 101




Fix some H > 0. By Dirichlet’s Box Principle
there exists an integer polynomial P such that

a,| < H, ..., |as] < H,

a1| K H'¢, |aog| < H, (1)

P(§)| < H™",

where € > 0.



Case A: Let
max(|ai|, |ao|) > H,
that is
max(|ai|, |ag)) = H'™? =[P, 0<éd<e.

It is clear that in this case the derivative of P is
“big”, that is

|P'(€)] < H'. (2)

We have the following well-known inequality

P(§) .
PINE (3)

[P’ (€)]

where a is the root of the polynomial P closest

to £. Substituting (1) and (2) into (3), we get

—MNn—e

€ —a| K

n+14+e+0

— H™ (1+5)"+114+-§+(s — P 1 L H («x




Case B: Let

max(|ai|, |ao|) < H,
then
P < H. (4)

Using Dirichlet’s Box we construct an integer
polynomial (Q such that

|bn| < Ha s |b2| < Ha |b1| < HH_E, |b0| < H"

Q)| < H™™5,
(5)

If max(|bi|, |bo|) > H, then

n+142e¢

£ — 8| < H(B)™ T+ .
If max(|bi|, |bo|) < H, then

Q < H. (6)

Then we can apply Wirsing’s Lemma:

[ |P(&)2|1Q(¢) | P2,
1€ — v| < max <

| IP©OIIQE)12IP2,
Substituting (4), (5), (6), and |P(¢)| < H™ "¢,
we get:

n 3

€ — 9l < B84« H(y)7E e



Let us compare estimates in the Case A and
Case B:

n+1+2¢

Case A: | —ao| < H(a)™ T+

3

Case B: | —a| <K H(a)™ G—5—35¢
If we take € = 0, then
Case A: |£ —ao| <K H(a) ™!
Case B: ¢ — o] K H(a)—%—%

On the other hand, if we take € = 2, then

n+5

Case A: [ —ao| <K H(a)” 3
Case B: |£ —a| < H(a) 27%°

Finally, if we choose an optimal value of e,
namely

n

we obtain

€ — a| € H(a)™"* lim A, = 3,

n—aoo

in both cases.



VI. “Improvement”

Let us consider an integer polynomial P such
that

a,| < H, ..., |as| < H,
ay| € H' ¢, |a| < HTE, |ao| € HY e,
P&)| < H™ %

We have

n+1-+3e

Case A: | —a| K< H(a)™ T+

Case B: |€ — a| < H(a) 5273,

Put
10

n

then
€ — a| € H(a) ™2™, lim A, = 4.5,

n—aoo

in both cases.
However, the Case A does not work. In fact,

max(|az|, [ai], |ao]) > H # |P'(§)| is “big”.



VII. Method of “Polynomial Staircase”

In 1996 a new approach to this problem was
introduced:

Step 1. Let R®) be a polynomial with k “big”
coefficients. We construct the following n poly-
nomials

Q®¥,...,QntY, phth

which are small at &.

Step 2. We prove that they are linearly inde-
pendent.

Step 3. Using a linear combination of these
polynomials, we construct the polynomial

L? =d;Q® + ... +d,_1Q"™Y 4+ d, PtV

with two “big” coefficients. The Case A does
work for L. Moreover, it is possible to show that
an influence of the numbers d;,...,d, is very
weak, so

|L(&)| < HT" 2.



THEOREM 8. For any real number & € A,, there

exist infinitely many algebraic numbers a € A,
with

€ —a| << H(a)" 2™, lim A, = 4.

n—0o



The following table contains the values of
n L
2 n

corresponding to Wirsing’s Theorem (1961), the
Theorem of Bernik-Tsishchanka (1993), Theo-

rem 8 (2001), and the Conjecture:

n | 1961 | 1993 | 2001 | Conj.
3 | 3.28 3.5 | 3.73 4
4 | 3.82 | 4.12 | 4.45 5
5 | 4.35 | 4.71 | 5.14 6
10 | 6.92 | 7.47 | 8.06 | 11
50 126.98|27.84|28.70 51
100|51.99 | 52.9253.84 101




VIII. Complex case

THEOREM 9 (Wirsing, 1961). For any com-
plex number £ € A, there exist infinitely many
algebraic numbers a € A,, with

€ — o] < H(a)™4,

where

A=—+1.
4-|-

Method: “Resultant”




In 2000 this result was slightly improved:

n . 3
A=—+)\,, where Ilim A\, = —.
4 2

n—oo

Method: “Big Derivative”.

Method “Polynomial Staircase”: ? 7 7




IX. P-adic case

THEOREM 10 (Morrison, 1978). Let &£ € qp. If
&£ & A,, then there are infinitely many algebraic
numbers o« € A,, with

€ — o] < H(a)™4,
where

(1—|—\/§ when n = 2,
3

5 when n > 2.

=4
2

\



THEOREM 11 (Teulié, 2002). If £ € A,, then
there are infinitely many algebraic numbers o €
A2 with

€ — o] < H(a)™".

The second part of Morrison’s theorem was
also improved:

A= g + A\n, Where lim A\, = 3.

n—oo

Method: “Big Derivative”.

Method “Polynomial Staircase”: ? 7 7?7




X. Two Counter-Examples

1. Simultaneous case.

CONJECTURE. For any two real numbers &, & &
A,, there exist infinitely many algebraic num-
bers 1, a3 such that

&1 — ay| € [PI=(vHD/2,
€2 — | < [PI7(mHD/2,
where P(x) € Z[x], P(a;) = P(az) = 0,deg P <

n. The implicit constant in << should depend on
519 €23 and n.



COUNTER-EXAMPLE (Roy-Waldschmidt, 2001).

For any sufficiently large n there exist real num-
bers & and &3 such that

max{|£1 — Oéll, |€2 — Oézl} > W_B\/ﬁ.

THEOREM 12. For any real numbers &;, & &
A, at least one of the following assertions is
true:

(2) There exist infinitely many algebraic num-
bers a1, s of degree < n such that

&1 — | K< P~ )

|3
ool ee

0|3
o0l o
[ ]

&2 — | < |PI-

(22) For some & € {&1, &2} there exist infinitely
many algebraic numbers a of degree 2 < k <

"TH such that

€ — o] < H(a)™ 5L,



2. Approximation by algebraic integers.

THEOREM 13. (Davenport - Schmidt, 1968)
Let n > 3. Let £ be real, but not algebraic of
degree < 2. Then there are infinitely many al-
gebraic integers o of degree < 3 which satisfy

0 < |€ T OL| < H(a)_n?’o

where

1
ns = (3 + V5) = 2.618...



CONJECTURE. Let & be real, but is not alge-
braic of degree < n. Suppose € > 0. Then there
are infinitely many real algebraic integers o of
degree < n with

£ —a| < H(a) """

THEOREM 14 (Roy, 2001). There exist real
numbers £ such that for any algebraic integer o
of degree < 3, we have

€ —al > H(a)™™.



XI. Most Recent Result

THEOREM 15. For any real number £ & Aj
there exist infinitely many algebraic numbers

o € Asz such that
€ — o] < H(a)™,

where A = 3.7475.. is the largest root of the
equation

203 — 11x° + 112 + 8 = 0.



