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with 1 < d < n. Suppose that P and Q have no common
root. Then at least one of the following estimates is true:

1 < max {|P(¢)|,1Q(&)[}* max {[PI, @|}*"

1 < max {|P(&)||P'(&)[1Q' (&), Q&I P'(&)1*} Pr=Q"~*

1 < max {|Q(&)||P'(&)IIQ'(&)], IP(O)I1Q' (&)1} [P~ Q~2
P <P Q)| < P™ Q<[P

P& < [P |Q/(e)] < [Pl
1 < max {|P(¢)],|Q(¢)[}* max { P, [@)}"

< W—2nw2n—2



LEMMA 3: Let P,Q € Z[x| be polynomials of degree d
with 1 < d < n. Suppose that P and Q have no common
root. Then at least one of the following estimates is true:

1 < max {|P(¢)|,1Q(&)[}* max {[PI, @|}*"

1 < max {|P(&)||P'(&)[1Q' (&), Q&I P'(&)1*} Pr=Q"~*

1 < max {|Q(&)||P'(&)IIQ'(&)], IP(O)I1Q' (&)1} [P~ Q~2
P <P Q)| < P™ Q<[P

PO <P Q] < P
1 < max {|P(€)], |Q(¢)[}* max {|P], [Q]}*"
< W—2nw2n—2

< [Pl



LEMMA 3: Let P,Q € Z[x| be polynomials of degree d
with 1 < d < n. Suppose that P and Q have no common
root. Then at least one of the following estimates is true:

1 < max {|P(¢)|,1Q(&)[}* max {[PI, @|}*"

1 < max {|P(&)||P'(&)[1Q' (&), Q&I P'(&)1*} Pr=Q"~*

1 < max {|Q(&)||P'(&)IIQ'(&)], IP(O)I1Q' (&)1} [P~ Q~2
P <P Q)| < P™ Q<[P

[P <[P Q9] < P
1 L |PE)|IP(ONQ&)IPmQ"!



LEMMA 3: Let P,Q € Z[x| be polynomials of degree d
with 1 < d < n. Suppose that P and Q have no common
root. Then at least one of the following estimates is true:

1 < max {|P(¢)|,1Q(&)[}* max {[PI, @|}*"

1 < max {|P(&)||P'(&)[1Q' (&), Q&I P'(&)1*} Pr=Q"~*

1 < max {|Q(&)||P'(&)IIQ'(&)], IP(O)I1Q' (&)1} [P~ Q~2
P <P Q)| < P™ Q<[P

[P <[P Q9] < P
1 L |PE)|IP(ONQ&)IPmQ"!

< [P~ P« Pl pnr2pn—1



LEMMA 3: Let P,Q € Z[x| be polynomials of degree d
with 1 < d < n. Suppose that P and Q have no common
root. Then at least one of the following estimates is true:

1 < max {|P(¢)|,1Q(&)[}* max {[PI, @|}*"

1 < max {|P(&)||P'(&)[1Q' (&), Q&I P'(&)1*} Pr=Q"~*

1 < max {|Q(&)||P'(&)IIQ'(&)], IP(O)I1Q' (&)1} [P~ Q~2
P <P Q)| < P™ Q<[P

P'(&)| < [P |Q(¢)| < [P
1L L [P@IP(EIQ©)IPM2Q
< [P~ P« Pl pnr2pn—1

<< W2w—n—3



LEMMA 3: Let P,Q € Z[x| be polynomials of degree d
with 1 < d < n. Suppose that P and Q have no common
root. Then at least one of the following estimates is true:

1 < max {|P(¢)|,1Q(&)[}* max {[PI, @|}*"

1 < max {|P(&)||P'(&)[1Q' (&), Q&I P'(&)1*} Pr=Q"~*

1 < max {|Q(&)||P'(&)IIQ'(&)], IP(O)I1Q' (&)1} [P~ Q~2
P <P Q)| < P™ Q<[P

P'(&)| < [P |Q(¢)| < [P
1L L [P@IP(EIQ©)IPM2Q
< [P~ P« Pl pnr2pn—1

L P73 = 20—n—3>0



LEMMA 3: Let P,Q € Z[x| be polynomials of degree d
with 1 < d < n. Suppose that P and Q have no common
root. Then at least one of the following estimates is true:

1 < max {|P(¢)|,1Q(&)[}* max {[PI, @|}*"

1 < max {|P(&)||P'(&)[1Q' (&), Q&I P'(&)1*} Pr=Q"~*

1 < max {|Q(&)||P'(&)IIQ'(&)], IP(O)I1Q' (&)1} [P~ Q~2
P <P Q)| < P™ Q<[P

|P'(&)| < [P Q9| K [P
1 < |[PEIIP(OIQ P2
< [P~ P Pl pr2pn—1

KPP = 20-n—-3>0 = w>"P2



LEMMA 3: Let P,Q € Z[x| be polynomials of degree d
with 1 < d < n. Suppose that P and Q have no common
root. Then at least one of the following estimates is true:

1 < max {|P(¢)],]Q(&)[}* max {[P, @}
1 < max {|P(&)|[P'(€)IQ' ()], 1QIIP (&)1} P*Q" "
1 < max {|Q(&)||P'()I1Q'(O)], IP)IIQ' (&)1} [PQ




PRroOOF: Let

P(x)=ax*+ ...+ a1z +ap = ae(x — 1) ...(x — a)
Q(x) =bpx™+... + bz + by =by(x—31)...(x — Bn)

Consider

¢
1<i<ée
1<j<m



PRroOOF: Let

P(x)=ax*+ ...+ a1z +ap = ae(x — 1) ...(x — a)
Q(x) =bpx™+... + bz + by =by(x—31)...(x — Bn)

Consider

R(P,Q) =a}b, || (ci—38))
1<i<e
1<j<m



PRroOOF: Let

P(x)=ax*+ ...+ a1z +ap = ae(x — 1) ...(x — a)
Q(x) =bpx™+... + bz + by =by(x—31)...(x — Bn)

Consider

R(P,Q) =a}b, || (ci—38))
1<i<e
1<j<m

LEMMA 3: Let P,Q € Z[x| be polynomials of degree d
with 1 < d < n. Suppose that P and Q have no common
root...




PRrROOF: Let

P(x) =ax*+ ...+ a1z +ag = ae(x — 1) ... (T — a)
Q(x) =bpx™+...4+bix+by=by(x—0F1)...(x— Bn)

Consider

R(P,Q) =a}b!, || (ci—38))
1<i<e
1<j<m



PRroOOF: Let

P(x)=ax*+ ...+ a1z +ap = ae(x — 1) ...(x — a)
Q(x) =bpx™+... + bz + by =by(x—31)...(x — Bn)

We have
R(P,Q) =apb;, [ (ei—5j)#0

1<i<e
1<j<m



PRroOOF: Let

P(x)=ax*+ ...+ a1z +ap = ae(x — 1) ...(x — a)
Q(x) =bpx™+... + bz + by =by(x—31)...(x — Bn)

We have
IR(P,Q)| = lagb;,, ]| (ei—85)1>0

1<i<e
1<j<m



PROOF: Let
P(x)=ax*+ ...+ a1z +ap = ae(x — 1) ...(x — a)
Q(x) =bpx™+... + bz + by =by(x—31)...(x — Bn)

We have
IR(P,Q)| = lagb;,, ]| (ei—85)1>0

1<i<e
1<j<m

apy ... Ay Qg

N

R(P,Q) = b, ... .b.1. b, )




PRroOOF: Let

P(x)=ax*+ ...+ a1z +ap = ae(x — 1) ...(x — a)
Q(x) =bpx™+... + bz + by =by(x—31)...(x — Bn)

We have
IR(P,Q)| = lagb;,, ] (i —8)1>1

1<i<e
1<j<m



PRroOOF: Let

P(x)=ax*+ ...+ a1z +ap = ae(x — 1) ...(x — a)
Q(x) =bpx™+... + bz + by =by(x—31)...(x — Bn)

We have
IR(P,Q)| = lagb;,, ] (i —8)1>1

1<i<e
1<j<m

1 < max {|P(¢£)],|Q(€)[}* max {[P],[Q]} "
1 < max {|P(&)||P'(&)]1Q' (&), 1Q(&)IIP'(&)*} [PIn—2Q"~*
1 < max {|Q(&)||P'(£)I1Q'(&)I, IP(&)IIQ' (&)} [P~ Q2




PRroOOF: Let

P(x)=ax*+ ...+ a1z +ap = ae(x — 1) ...(x — a)
Q(x) =bpx™+... + bz + by =by(x—31)...(x — Bn)

We have
IR(P,Q)| = lajb;, [ (i—8)I>1

1<i<é
1<j<m

ay ... A1 Qo
ay ... a1 Qo

b, b1 by
b, . by by




PRroOOF: Let

P(x)=ax*+ ...+ a1z +ap = ae(x — 1) ...(x — a)
Q(x) =bpx™+... + bz + by =by(x—31)...(x — Bn)

We have

|R(P,Q)| = |a}bt,

apg ... A1 Qo
Qay ai
bm e o o bl bO
by ... by

T (a—p) =1
PO P/(0) P(0)
PY(0) P/(0) P(0)
Q™) Q' (0) Q(0)
Q™ (0) Q'(0) Q(0)




PRroOOF: Let

P(x)=ax*+ ...+ a1z +ap = ae(x — 1) ...(x — a)
Q(x) =bpx™+... + bz + by =by(x—31)...(x — Bn)

We have

|R(P9 Q)| — |a’

aIE e o o all

b£

[ (e—8)1>1

PUE P P
PEO .. P P

Q™ (&)

m!

Q'(§) Q&)

Q™€) Q) Q&)




PROOF: Let
P(x)=ax*+ ...+ a1z +ap = ae(x — 1) ...(x — a)
Q(x) =bpx™+... + bz + by =by(x—31)...(x — Bn)

We have
IR(P,Q)| = lagb;,, ] (i —8)1>1

1<i<e
1<j<m

(£)
PUE .. P P

a ... ai Qo £ .
.. e ©
a ... a1 Qg — - P e!(é) ce P’(E) P(ﬁ)
bm e B bo Qe L Q© Q@

" Am)
QUE) e Qe
< max {[P(&)], |Q(&)[}* max {IP], Q}*"




PRrROOF: Let

P(x)=ax*+ ...+ a1+ a9 =a(z — ay)...(x— o)
Q(x) =bpx™+...+byx+by=byp(x—0F1)...(x— Bn)

We have
IR(P,Q)| = |ap*b),, ]| (i—8)l>1

1<i<¢e
(£)
PT(@ ... P& P(&)
ay ... a1 Qo . T
(€
U - PE!(€) ... P& P&
{)T’f b1 bo QT!(@ e QO Q)
b ... by by R
QT!GS) Lo Q8 Q8

< max {|P(§)|P"(O)IQ ()1, 1Q(OIIP'(§)I*} [P"*Q["




PRrROOF: Let

P(x)=ax*+ ...+ a1+ a9 =a(z — ay)...(x— o)
Q(x) =bpx™+...+byx+by=byp(x—0F1)...(x— Bn)

We have
IR(P,Q)| = |ap*b),, ]| (i—8)l>1

1<i<¢e
(£)
PT(@ ... P& P(&)
ay ... a1 Qo . T
(€
U - PE!(€) ... P& P&
{)T’f b1 bo QT!(@ e QO Q)
b ... by by R
QT!GS) Lo Q8 Q8

< max {|Q(§)|IP'(OIQ ()], IP@ONQ (&)1} P Q"™




PO@ PO PO@ PO prg) P() 0 0 0 0
0 O 0 O FO P PE) 0 0 0
0o O O R B9 PE PE 0 0
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0 0 0 0 O R0 O FO pre) P

QU©) QU©) Ve QWO o) Q) 0 0 o0
0 Q(‘;)!(S) Q(‘:!(E) Q(;)!(ﬁ) L QE) Q) 0 0 0
) 0 2U® QUE© VO @O g QE) 0 0o
0 0 0 2U® QYO VO Q1O g Q) 0
0 0 0 0 O QYO @¥© QO gig) Q)




POE PO POO PUO prey P(E) 0 10 0 0
0 PO@ PYO POQ PUO prg) P(é)i 0 0 0
00 PO FRE FRO FO P@EIPE 0 0
0 0 0 PUO PY9 PY9Y PO iP’(&) P) 0
) 0 0 0 POO PUO POQL PO prg) pg)

.

QU© QU© QU O g QE) 0 1 0 0 0
0 O QYO @O @© g Q(«S)i 0 o 0
oo e e e 28 0ol 0 o
0 0 0 20O Ve Ve Q' iQ’(i) Q) 0
. . 0 0 99O Ve Q(Z’!(E)i PO Qe) Qe
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0
0
0
0
0
0
0
0

0
0
0
P’(§) P(§)

0
0
P(¢)
P'(§) P(§)
Q Q') Q&)

Pl
0
0

Q&)

Q(§) Q(¢)

Pl [Pl [P |P|
Pl [Pl [Pl

Q|

Q|

Q|
Ql Rl @
Ql Rl @

Pl Pl [Pl |P| [P
0
Q|
Q|
Q|
Q|
0

Pl [P [Pl [P| [P| |P]
0
0
Q|
Q|
Q|
0
0

Pl [P [P [P| [P| [P
0
0
0
Q|
Q|
0
0
0

0
0
0
0
Q|
0
0
0
0
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RERR - -BRREQ o
RER o °oR@RE e o
ERRcoco@F e oo
R occoo@c o oo




PP P PP 0olo 0 0
PP PP P Po o o
o [Pl [P [Pl [Pl [Pt [Pl o0 o
o o [P [Pl [Pl [PliP'(¢) PE) o
0 0 o [P P PP P PE
Q @ [@ @ @ o1 o o 0
Q@ Q@@ @:o o o
0 @ @ Q@[ o o
0 0 [Q [Q [Q Q) Q) o
0 0 0 [Q @ Q! [@ Q© Q¢

< max {|P(¢)],|Q(&)|}* max {[P],[Q]}"




PP PP PP oo o0 o0
o PP PP E P 0 o o
o o [PIPIPI[P PP 0 0
0o o o [Pl [Pl [Pl PP PE o
0 0 0 o PP PP P PE
Q@ @ @ @ [ o1 o o 0
0 [@ Q@ @ [@ @ o o o
0 0 QR Q Q@R o o
0 0 0o [Q Q@ [@iQE QE o
0 0 0 0 [Q [Q Q! QA Q© Qe

< max {|P(&)[|P'(€)I1Q" (&), 1Q&)IIP'(&)I*} IPPlQ*



PP PP PP oo o0 o0
o PP PP E P 0 o o
o o [PIPIPI[P PP 0 0
0o o o [Pl [Pl [Pl PP PE o
0 0 0 o PP PP P PE
Q@ @ @ @ [ o1 o o 0
0 [@ Q@ @ [@ @ o o o
0 0 QR Q Q@R o o
0 0 0o [Q Q@ [@iQE QE o
0 0 0 0 [Q [Q Q! QA Q© Qe

< max {|Q(&)||P'(€)1Q'(€)|, | P(€)|Q'(€)|*} [PI*[Q]



PRrROOF: Let

P(x)=ax*+ ...+ a1z +ap = ae(x — 1) ... (x — ap)
Q(x) =bpx™+...+bix+by=by(x—F1)...(x— Bn)

We have
IR(P,Q)| = lagb;,, ] (i —8))1>1

1<i<e
1<j<m



PRroOOF: Let

P(x)=ax*+ ...+ a1z +ap = ae(x — 1) ...(x — a)
Q(x) =bpx™+... + bz + by =by(x—31)...(x — Bn)

We have
|R(P,Q)| = |ay',, [] (x—-8)l>1
1<i<¢®
1<j<m

[ max {|P(€)|,1Q(&)}* max {[Pl,[Q]} "
R(P,Q)| < | max {|[P(&)||P'(&)IIQ©)],1Q)IIP'(&))} P2~
| max {|Q(&)IP'()IIQ ), IP©)IQ(&) 12} P[Q"2




LEMMA 3: Let P,Q € Z[x| be polynomials of degree d
with 1 < d < n. Suppose that P and Q have no common
root. Then at least one of the following estimates is true:

1 < max {|P(¢)],]Q(&)[}* max {[P, @}
1 < max {|P(&)|[P'(€)IQ' ()], 1QIIP (&)1} P*Q" "
1 < max {|Q(&)||P'()I1Q'(O)], IP)IIQ' (&)1} [PQ




THEOREM 5 (Wirsing, 1961): For any real number £ € A,
there exist infinitely many algebraic numbers o € A,, with

€ —a| < H(a) 372



THEOREM 5 (Wirsing, 1961): For any real number & € A,
there exist infinitely many algebraic numbers a € A,, with

€ — ol < H(a) 52

THEOREM 6 (Wirsing, 1961): For any real number & € A,
there exist infinitely many algebraic numbers a € A,, with

€ —a| < H(a)"27,  lim A\, = 2

n—oo



THEOREM 5 (Wirsing, 1961): For any real number £ € A,
there exist infinitely many algebraic numbers o € A,, with

€ —a| < H(a) 372

THEOREM 6 (Wirsing, 1961): For any real number £ € A,
there exist infinitely many algebraic numbers o € A,, with

€ —a| < H(a)"27™,  lim A, = 2

n—0oo

THEOREM 7: For any real number & € A,, there exist infi-
nitely many algebraic numbers o« € A,, with

€ —a| < H(a)"27™, lim A\, =3

n—oo



n | Th. 5, 1961 | Th. 6, 1961 | Th. 7, 1993 | Conjecture
3 3 3.28 3.5 4
4 3.5 3.82 4.12 5
5 4 4.35 4.71 6
6 4.5 4.87 5.28 7
7 5 5.39 5.84 8
8 5.5 5.9 6.39 9
9 6 6.41 6.93 10
10 6.5 6.92 7.47 11
15 9 9.44 10.09 16
20 11.5 11.95 12.67 21
50 26.5 26.98 27.84 51
100 51.5 51.99 52.92 101




n | Th. 5, 1961 | Th. 6, 1961 | Th. 7, 1993 | Conjecture
3 3 3.28 3.5 4
4 3.5 3.82 4.12 5
5 4 4.35 4.71 6
6 4.5 4.87 5.28 7
7 5 5.39 5.84 8
8 5.5 5.9 6.39 9
9 6 6.41 6.93 10
10 6.5 6.92 7.47 11
15 9 9.44 10.09 16
20 11.5 11.95 12.67 21
50 26.5 26.98 27.84 51
100 51.5 51.99 52.92 101

THEOREM 5 (Wirsing, 1961): For any real number £ € A,

there exist infinitely many algebraic numbers a € A,, with

€ — a| < H(a) 573



n | Th. 5, 1961 | Th. 6, 1961 | Th. 7, 1993 | Conjecture
3 3 3.28 3.5 4
4 3.5 3.82 4.12 5
5 4 4.35 4.71 6
6 4.5 4.87 5.28 7
7 5 5.39 5.84 8
8 5.5 5.9 6.39 9
9 6 6.41 6.93 10
10 6.5 6.92 7.47 11
15 9 9.44 10.09 16
20 11.5 11.95 12.67 21
50 26.5 26.98 27.84 51
100 51.5 51.99 52.92 101

THEOREM 6 (Wirsing, 1961): For any real number £ € A,
there exist infinitely many algebraic numbers a € A,, with

€ —a| < H(a)"27, lim A\, = 2

n—oo



n | Th. 5, 1961 | Th. 6, 1961 | Th. 7, 1993 | Conjecture
3 3 3.28 3.5 4
4 3.5 3.82 4.12 5
5 4 4.35 4.71 6
6 4.5 4.87 5.28 7
7 5 5.39 5.84 8
8 5.5 5.9 6.39 9
9 6 6.41 6.93 10
10 6.5 6.92 7.47 11
15 9 9.44 10.09 16
20 11.5 11.95 12.67 21
50 26.5 26.98 27.84 51
100 51.5 51.99 52.92 101

THEOREM 7: For any real number £ € A,, there exist infi-
nitely many algebraic numbers o« € A,, with

€ —a| < H(a)"2™, lim A\, =3

n—oo



n | Th. 5, 1961 | Th. 6, 1961 | Th. 7, 1993 | Conjecture
3 3 3.28 3.5 4
4 3.5 3.82 4.12 5
5 4 4.35 4.71 6
6 4.5 4.87 5.28 7
7 5 5.39 5.84 8
8 5.5 5.9 6.39 9
9 6 6.41 6.93 10
10 6.5 6.92 7.47 11
15 9 9.44 10.09 16
20 11.5 11.95 12.67 21
50 26.5 26.98 27.84 51
100 51.5 51.99 52.92 101




n | Th. 5, 1961 | Th. 6, 1961 | Th. 7, 1993 | Th. 9, 2005 | Conjecture
3 3 3.28 3.5 3.73 1
4 3.5 3.82 4.12 4.45 5
5 4 4.35 4.71 5.14 6
6 4.5 4.87 5.28 5.76 7
7 5 5.39 5.84 6.36 8
8 5.5 5.9 6.39 6.93 9
9 6 6.41 6.93 7.50 10
10 6.5 6.92 7.47 8.06 11
15 9 9.44 10.09 10.77 16
20 11.5 11.95 12.67 13.40 21
50 26.5 26.98 27.84 28.70 51
100 51.5 51.99 52.92 53.84 101




Consider a sequence of polynomials P; € Z[x] of degree
< n such that

(i) 3> P& > |PA8)] > ... > |Pi(&)] > ...

(i) Pl <P<...<|P|]<...
(iii) for any P € Z[x], deg P < n, P # 0,




Consider a sequence of polynomials P; € Z[x] of degree
< n such that

(i) 3> 1P| > [P(&)] > ... > |Pi(&)] > ...

(i) [P < [P <...<|P|<...

(iii) for any P € Z[z]|, deg P < mn, P #Z 0,
with [P (§)| < [Pi(§)| we have [Pl > [P 4.

1+ 5

EXAMPLE: Let n =1 and £ = 5




Consider a sequence of polynomials P; € Z[x] of degree
< n such that

(i) 3> P& > |PA8)] > ... > |Pi(&)] > ...

(i) Pl <P<...<|P|]<...
(iii) for any P € Z[x], deg P < n, P # 0,

ExXAMPLE: Let n = 1 and & = 1+ \/5. Then
P(x) =x — 2 |P1(&)] =~ 0.3819 Py =2
Py(x) =2x — 3 | P2(€)| =~ 0.2361 P =3
P;(x) =3z — 5 |P5(&)| = 0.1459 P; =5
Py(x) = 5x — 8 |P4(€)| =~ 0.0902 P, =8
P;(x) = 8x — 13 |P5(£)| =~ 0.0557 P =13
Ps(x) = 13x — 21 |Ps(&)| =~ 0.0344 P = 21
P;(x) =21x — 34 |P;(&)| = 0.0213 P; = 34




Consider a sequence of polynomials P; € Z[x] of degree
< n such that

(i) 3> P& > |PA8)] > ... > |Pi(&)] > ...

(i) Pl <P<...<|P|]<...
(iii) for any P € Z[x], deg P < n, P # 0,




Consider a sequence of polynomials P; € Z[x] of degree
< n such that

i) 3> P& > |P(&)] > ... > [P(&)] > ...
(i) [P < [P <...<|P|<...
(iii) for any P € Z[z]|, deg P < mn, P #Z 0,

with |P(€)] < |P;(€)| we have [P] > [Pryi].
LEMMA 1: For any 7z > 1 we have

|P(§)| < [P[™




LEMMA: There are infinitely many polynomials P, Q) €
Z|x] of degree < n, such that

|P(¢)| < Pl
Q)| K P~ and
Q <« P

P,(Q have no

common root




Consider a sequence of polynomials P; € Z[x] of degree
< n such that

(i) 3> P& >R8] > ... > |P(&)] > ...
(i) [P <[P <...<|P|<...
(iii) for any P € Z[z]|, deg P < mn, P #Z 0,

with |P(€)| < |P;(€)| we have [P] > [Pyi].
LEMMA 1: For any 7z > 1 we have

|P(§)| < [P[™




Consider a sequence of polynomials P; € Z[x] of degree
< n such that

i) 3> |Pu&)| > P& > ... > |P(&)] > ...
i) Pl <[P <...< [P <...
(iii) for any P € Z[x], deg P < n, P # 0,

with |P(€)] < |P;(€)| we have [P] > [Py yi].
LEMMA 1: For any 7z > 1 we have

|P(§)| < [P[™

Assume to the contrary that there exists a real number
£ € A, such that |£ — a| > H(a)™“ for any algebraic
number o € A,,.




Consider a sequence of polynomials P; € Z[x] of degree
< n such that

(i) 3> 1P| > [P(&)] > ... > |Pi(&)] > ...

(i) Pl <P <...<|P|<...
(iii) for any P € Z[x|, deg P < n, P #% 0,

with |P(&)] < |P;(€)| we have [P] > [Py i].
LEMMA 1: For any 7z > 1 we have

|P(§)| < [P~

Assume to the contrary that there exists a real number
£ € A, such that |£ — a| > H(a)™® for any algebraic
number o € A,,.

LEMMA 2: If 2 is sufficiently large and P, is irreducible,
then

L < |P(&) P[P T2



LEMMA: Let P,Q € Z[x] be polynomials of degree d with
1 < d < n. Suppose that P and () have no common root.
Then at least one of the following estimates is true:

1 < max {|P(¢)],|Q(&)|} max {[P], [Q]}
1 < max {|P(&)||P'(&)]1Q' (&), 1Q&)IIP'(&)*} [PI"~2Q"~*
1 < max {|Q(&)||P'(£)IIQ' (&), IP(&)IIQ'(&)*} [P~ Q2

2n—2




Consider a sequence of polynomials P; € Z[x] of degree
< n such that

(i) 3> P& > |PA8)] > ... > |Pi(&)] > ...

(i) Pl <P<...<|P|]<...
(iii) for any P € Z[x], deg P < n, P # 0,

LEMMA 1: For any ¢z > 1 we have

[P:(§)] < [P{™"

Assume to the contrary that there exists a real number
£ € A, such that |£ — a| > H(a)™“ for any algebraic
number o € A,,.

LEMMA 2: If 2 is sufficiently large and P; is irreducible,
then

L < |P(&) PP



Consider a sequence of polynomials P; € Z[x] of degree
< n such that

i) 3> P& > P8 > ... > |Pi(&)] > ...

(i) Pl <P <...<|P|<...
(iii) for any P € Z[x], deg P < n, P # 0,

with |P(€)| < |Pi(&)| we have [Pl > [P,1.
LEMMA 1: For any ¢ > 1 we have

[P:(§)] < [P

Assume to the contrary that there exists a real number
£ € A, such that |£ — a| > H(a)™“ for any algebraic
number o € A,,.

LEMMA 2: If 2 is sufficiently large and P,; is irreducible,
then

1< |P(e)PPRerns



Consider a sequence of polynomials P; € Z[x] of degree
< n such that

i) 3> P& > [P(&)] > ... > |Pi(&)] > ...
(i) Pl <P <...<|P|<...
(iii) for any P € Z[z]|, deg P < mn, P #Z 0,

with |P(€)| < |Pi(&)| we have [Pl > [P,1.
LEMMA 1: For any ¢ > 1 we have

[P:(§)] < [P

Assume to the contrary that there exists a real number
£ € A, such that |£ — a| > H(a)™“ for any algebraic
number o € A,,.

LEMMA 2: If 2 is sufficiently large and P,; is irreducible,
then

1 < |P(&)P[PPeot2n—s
PROOF OF THEOREM b:



Consider a sequence of polynomials P; € Z[x] of degree
< n such that

(i) 3> P> [P(&)] > ... > |Pi(&)] > ...

(i) Pl<|P<...<[P]<...
(iii) for any P € Z[x|, deg P < n, P # 0,

with |P(€)| < |P;(€)| we have [P] > [Py yi].
LEMMA 1: For any 7z > 1 we have

|P(§)| < [P[™

Assume to the contrary that there exists a real number
£ € A, such that |£ — a| > H(a)™“ for any algebraic
number o € A,,.

LEMMA 2: If 2 is sufficiently large and P; is irreducible,
then

1 < |Pi(&)P[Pfrr2n—s
PROOF OF THEOREM b:

1 < |Pi(€)|3pi2w+2n_3




Consider a sequence of polynomials P; € Z[x] of degree
< n such that

i) 3> P& > [P(&)] > ... > |Pi(&)] > ...
(i) Pl <P <...<|P|<...
(iii) for any P € Z[z]|, deg P < mn, P #Z 0,

with |P(€)| < |Pi(&)| we have [Pl > [P,1.
LEMMA 1: For any ¢ > 1 we have

[P:(§)] < [P

Assume to the contrary that there exists a real number
£ € A, such that |£ — a| > H(a)™“ for any algebraic
number o € A,,.

LEMMA 2: If 2 is sufficiently large and P,; is irreducible,
then

1 < |P(&)P[PPeot2n—s
PROOF OF THEOREM b:

1 < |Pi(€)|3®2w—|—2n—3 < 'ﬁi’—n—l—2w—3



Consider a sequence of polynomials P; € Z[x] of degree
< n such that

i) 3> P& > [P(&)] > ... > |Pi(&)] > ...
(i) Pl <P <...<|P|<...
(iii) for any P € Z[z]|, deg P < mn, P #Z 0,

with |P(€)| < |Pi(&)| we have [Pl > [P,1.
LEMMA 1: For any ¢ > 1 we have

[P:(§)] < [P

Assume to the contrary that there exists a real number
£ € A, such that |£ — a| > H(a)™“ for any algebraic
number o € A,,.

LEMMA 2: If 2 is sufficiently large and P,; is irreducible,
then

1 < |P(&)P[PPeot2n—s
PROOF OF THEOREM b:

1 < |P(€) P2+t < [p-mt2"f* s



Consider a sequence of polynomials P; € Z[x] of degree
< n such that

i) 3> P& > [P(&)] > ... > |Pi(&)] > ...
(i) Pl <P <...<|P|<...
(iii) for any P € Z[z]|, deg P < mn, P #Z 0,

with |P(€)| < |Pi(&)| we have [Pl > [P,1.
LEMMA 1: For any ¢ > 1 we have

[P:(§)] < [P

Assume to the contrary that there exists a real number
£ € A, such that |£ — a| > H(a)™“ for any algebraic
number o € A,,.

LEMMA 2: If 2 is sufficiently large and P,; is irreducible,
then

1 < |P(&)P[PPeot2n—s
PROOF OF THEOREM b:

1 < |Pi(€)|3'ﬁi’2w—|—2n—3 < 'E’O



Consider a sequence of polynomials P; € Z[x] of degree
< n such that

i) 3> P& > [P(&)] > ... > |Pi(&)] > ...
(i) Pl <P <...<|P|<...
(iii) for any P € Z[z]|, deg P < mn, P #Z 0,

with |P(€)| < |Pi(&)| we have [Pl > [P,1.
LEMMA 1: For any ¢ > 1 we have

[P:(§)] < [P

Assume to the contrary that there exists a real number
£ € A, such that |£ — a| > H(a)™“ for any algebraic
number o € A,,.

LEMMA 2: If 2 is sufficiently large and P,; is irreducible,
then

1 < |P(&)P[PPeot2n—s
PROOF OF THEOREM b:

1 < |Pi(€)|3'ﬁi’2w—|—2n—3 < 1



LEMMA 1: For any ¢z > 1 we have

|P:(8)] < B[



LEMMA 1: For any ¢z > 1 we have

|P:(8)] < B[

LEMMA 2: If 2 is sufficiently large and P; is irreducible,
then

1< |P(e)P PR



LEMMA 1: For any ¢z > 1 we have

|P:(8)] < B[

LEMMA 2: If 2 is sufficiently large and P; is irreducible,
then

1< |P(e)P PR

LEMMA 3: We have

| Pi(§)]
[P/ (§)]

where o« is the root of P; closest to &.

£ —aof K




LEMMA 1: For any ¢z > 1 we have

[P:(§)] < [P{™"

LEMMA 2: If 2 is sufficiently large and P; is irreducible,
then

1 < |Pi(€)|3'm2w+2n—3

LEMMA 3: We have

| P;(§)]
[P (§)]

where « is the root of P; closest to &.

£ —aof K

REMARK:



LEMMA 1: For any ¢z > 1 we have

[P:(§)] < [P

LEMMA 2: If 2 is sufficiently large and P; is irreducible,
then

1< |P(e)PPesans

LEMMA 3: We have

|Pi(€)]
[P (§)]
where « is the root of P; closest to &.

REMARK: If |P/(¢)| = |P;

€ —al K



LEMMA 1: For any 2 > 1 we have

|P;(§)| < [P~

LEMMA 2: If 2 is sufficiently large and P; is irreducible,
then

L < |P(&) PP

LEMMA 3: We have

| Pi(€)]
[P (§)]
where « is the root of P; closest to &.

REMARK: If |P/(§)| =~ |Pj, then

£ —aof K

| P;(€)]

£ —al L 2




LEMMA 1: For any 2 > 1 we have

|P;(§)| < [P~

LEMMA 2: If 2 is sufficiently large and P; is irreducible,
then

L < |P(&) P[P

LEMMA 3: We have

| Pi(€)]
[P (§)]
where « is the root of P; closest to &.

REMARK: If |P/(§)| =~ |Pj, then

| P;(§)|
P;

£ —aof K

€ — o] K < [P



LEMMA 1: For any 2 > 1 we have

|P;(§)| < [P~

LEMMA 2: If 2 is sufficiently large and P; is irreducible,
then

L < |P(&) P[P

LEMMA 3: We have

| Pi(€)]
[P (§)]
where « is the root of P; closest to &.

REMARK: If |P/(§)| =~ |Pj, then

£ —aof K

| P;(&)|
P;

£ —a| K L P < H(a)™



LEMMA 1: For any 2 > 1 we have

|P;(§)| < [P~

LEMMA 2: If 2 is sufficiently large and P; is irreducible,
then

1 < |Pi(€)|3®2w—|—2n—3

LEMMA 3: We have

| P;(€)]
[P/ (€)]

where « is the root of P; closest to &.

£ —aof K



LEMMA 1: For any ¢z > 1 we have

[P:(§)] < [P{™"

LEMMA 2: If 2 is sufficiently large and P; is irreducible,
then

1 < |Pi(€)|3'm2w—l—2n—3

LEMMA 3: We have

| P;(§)]
[P (§)]

where « is the root of P; closest to &.

£ —aof K

EXAMPLE:




LEMMA 1: For any 2 > 1 we have

|P(§)| < [P~

LEMMA 2: If 2 is sufficiently large and P, is irreducible,
then

L < |P(&) PP

LEMMA 3: We have

| Pi(€)]
[P (§)]
where « is the root of P; closest to &.

ExAMPLE: Consider P(x) = x?> — 1000z + 1000.

£ —aof K




LEMMA 1: For any ¢z > 1 we have

|P:(8)] < B[

LEMMA 2: If 2 is sufficiently large and P; is irreducible,
then

1< |P(e)P PR

LEMMA 3: We have

[P;(€)]
[P (8)|
where o« is the root of P; closest to &.

ExAMPLE: Consider P(x) = x? — 1000z + 1000. Then

£ —aof K

|x? — 1000z + 1000| < 10002 at & = 1.001002003...



LEMMA 1: For any ¢z > 1 we have

|P:(8)] < B[

LEMMA 2: If 2 is sufficiently large and P; is irreducible,
then

1< |P(e)P PR

LEMMA 3: We have

[P;(€)]
[P (8)|
where o« is the root of P; closest to &.

ExAMPLE: Consider P(x) = x? — 1000z + 1000. Then

£ —aof K

|x? — 1000z + 1000| < 10002 at & = 1.001002003...

and
|Pi’(€)| = |2¢6 — 1000| =~ 998



THEOREM 8 (Minkowski’s Linear Forms Theorem): Sup-
pose that 3;;, 1 < 2,7 < mn, are real numbers with de-
terminant +D. Suppose that \{,..., )\, are positive with
A1...A, = D. Then there exists an integer point x =
(x15...52y) # 0 such that

1Bi1x1 4+« oo + BinTn] <A1 (1<i<n-—1)

|Bn1w1 ‘|’ oo ‘|_ /Bnnwnl S )\n




THEOREM 8 (Minkowski’s Linear Forms Theorem): Sup-
pose that 3;;, 1 < 2,7 < mn, are real numbers with de-
terminant +D. Suppose that A{,..., )\, are positive with
A1...A, = D. Then there exists an integer point x =
(x1y...,2,) # 0 such that

1Bi11 + oo+ Binn| <A1 1<i<n—1)

|/6n1w1 + ...+ ﬁnnwnl S An

EXAMPLE:




THEOREM 8 (Minkowski’s Linear Forms Theorem): Sup-
pose that 3;;, 1 < 2,7 < m, are real numbers with de-
terminant +D. Suppose that \{,...,\, are positive with
A1...A, = D. Then there exists an integer point x =
(1y...,2,) # 0 such that

1Bi11+ ...+ Binn| <A1 1<i<n-—1)

|/8n1w1 ‘|’ oo ‘|_ IBnan| S )‘n

ExXAMPLE: For any £ € R and any H > 0, there exist
p,q € Z such that

g€ +p| < H!
lq| < H



THEOREM 8 (Minkowski’s Linear Forms Theorem): Sup-
pose that 3;;, 1 < 2,7 < mn, are real numbers with de-
terminant +D. Suppose that A{,..., )\, are positive with
A1...A, = D. Then there exists an integer point x =
(x1y...,2,) # 0 such that

1Bi11 + oo+ Binn| <A1 1<i<n—1)

|/6n1w1 + ...+ ﬁnnwnl S An

ExXAMPLE: For any £ € R and any H > 0, there exist
p,q € Z such that

g€ +p| < H!
gl < H

In fact,

_ |81 _



THEOREM 8 (Minkowski’s Linear Forms Theorem): Sup-
pose that 3;;, 1 < 2,7 < mn, are real numbers with de-
terminant +D. Suppose that A{,..., )\, are positive with
A1...A, = D. Then there exists an integer point x =
(x1y...,2,) # 0 such that

1Bi11 + oo+ Binn| <A1 1<i<n—1)

|/6n1w1 + ...+ ﬁnnwnl S An

ExXAMPLE: For any £ € R and any H > 0, there exist
a,b,c € Z such that

(|ag? + b€+ ¢| < H?

52
al < H D= |1
0

N\

£ 1
00| =1
10

| bl < H



THEOREM 8 (Minkowski’s Linear Forms Theorem): Sup-
pose that 3;;, 1 < 2,7 < mn, are real numbers with de-
terminant +D. Suppose that A{,..., )\, are positive with
A1...A, = D. Then there exists an integer point x =
(x1y...,2,) # 0 such that

1Bi11 + oo+ Binn| <A1 1<i<n—1)

|/6n1w1 ‘I’ LI _|_ ﬁnnwnl S )‘n

ExXAMPLE: For any £ € R and any H > 0, there exist
a,b,c,d € Z such that

(|ag® + b€? + ct +d| < H®

£ €2 ¢ 1
la| < H

1 0 00
< IDI=1¢o 1 00| =1
b| < H

00 10
| le| < H




THEOREM 8 (Minkowski’s Linear Forms Theorem): Sup-
pose that 3;;, 1 < 2,7 < mn, are real numbers with de-
terminant +D. Suppose that A{,..., )\, are positive with
A1...A, = D. Then there exists an integer point x =
(x1y...,2,) # 0 such that

1Bi11 + oo+ Binn| <A1 1<i<n—1)

|/6n1w1 + ...+ ﬁnnwnl S An

THEOREM: For any real number £ € A, there exist infi-
nitely many polynomials P(x) € Z[x] of degree < n such

that
|P(&)| < [PI™™



THEOREM 8 (Minkowski’s Linear Forms Theorem): Sup-
pose that 3;;, 1 < ¢,7 < n, are real numbers with de-
terminant +D. Suppose that A{,..., A\, are positive with
A1...A, = D. Then there exists an integer point x =

(1y...,2yn) # 0 such that

BT + ... + Bin®n| <A1 (1 <2< n—1)

|/6n1m1 + oo ‘|_ /Bnnmnl S )\n

EXAMPLE: For any £ € R and any H > 0, there exist
a,b,c,d € Z such that

( |a£2—|—b| < H-1/2

2

7\

§
@ +c| <H'?  |D|=|¢
1

O =
o = O
I
(Y

| la| < H



THEOREM 8 (Minkowski’s Linear Forms Theorem): Sup-
pose that 3;;, 1 < 2,7 < mn, are real numbers with de-
terminant +D. Suppose that A{,..., )\, are positive with
A1...A, = D. Then there exists an integer point x =
(x1y...,2,) # 0 such that

1Bi11 + oo+ Binn| <A1 1<i<n—1)

|/6n1w1 + ...+ ﬁnnwnl S An

ExXAMPLE: For any £ € R and any H > 0, there exist
a,b,c,d € Z such that

(|ag? + b€+ ¢| < H?

& €1
12a¢ + b| < H D|=|l2¢610=1
1 00

\

| le| < H



THEOREM 8 (Minkowski’s Linear Forms Theorem): Sup-
pose that 3;;, 1 < 2,7 < mn, are real numbers with de-
terminant +D. Suppose that A{,..., )\, are positive with
A1...A, = D. Then there exists an integer point x =
(x1y...,2,) # 0 such that

1Bi11 + oo+ Binn| <A1 1<i<n—1)

|/6n1w1 + ...+ ﬁnnwnl S An

ExXAMPLE: For any £ € R and any H > 0, there exist
a,b,c,d € Z such that

(|ag® + b€+ ¢ < H'/?

£ €1
12a¢ 4+ b| < H~1/2 ID|=||26 10| =1
1 00

7\

| la| £ H



LEMMA 1: For any 2 > 1 we have

|P;(§)| < [P~

LEMMA 2: If 2 is sufficiently large and P; is irreducible,
then

1 < |Pi(€)|3®2w—|—2n—3

LEMMA 3: We have

| Pi(€)]
[P (§)]
where « is the root of P; closest to &.

ExAMPLE: Consider P(x) = x? — 1000z + 1000. Then

£ —aof K

|x? — 1000z + 1000| < 10002 at & = 1.001002003...

and
|PZ.’(£)| = |2¢6 — 1000| =~ 998



LEMMA 1: For any i > 1 we have |P;(¢)| < [P]~".
LEMMA 2: If 4 is sufficiently large and P; is irreducible, then 1 < | P;(¢)|3|P;]?«+2n—3,

LEMMA 3: We have

RG]
€=l <]

where « is the root of P; closest to &.
ExXAMPLE: Consider P(z) = x? — 1000z + 1000. Then
|z? — 1000z + 1000| < 1000~2 at ¢ = 1.001002003...

and
|P¢'(€)| = |2¢ — 1000| =~ 998



LeEMMA 1: For any ¢ > 1 we have |P;(§)| < [P]~™.
LeEMMA 2: If i is sufficiently large and P; is irreducible, then 1 < |P;(§)|3|P;|?« 273,
LEMMA 3: We have

[Pi(§)]
1AQ]

1€ — o K

where « is the root of P; closest to &.

ExAMPLE: Consider P(z) = 2 — 1000z + 1000. Then
|z? — 1000z + 1000| < 1000~2 at & = 1.001002003...
and
|P/(£)] = |2¢€ — 1000| =~ 998
ExAMPLE: For any £ € R and any H > 0, there exist a,,...,a;,a9 € Z such that

(a4 ...+ ar€ +aol < H™
lan| < H

laz| < H

| |la1| < H



LEMMA 1: For any i > 1 we have |P;(¢)| < [P]~".
LEMMA 2: If 4 is sufficiently large and P; is irreducible, then 1 < | P;(¢)|3|P;]?«+2n—3,

LEMMA 3: We have

RG]
€=l <]

where « is the root of P; closest to &.
ExXAMPLE: Consider P(z) = x? — 1000z + 1000. Then
|z? — 1000z + 1000| < 1000~2 at ¢ = 1.001002003...
and
|P/(£)] = |2€ — 1000| =~ 998
ExaMPLE: For any € € R and any H > 0, there exist a,,...,a;,a9 € Z such that

( la ™+ ... +a1€ +aol < H ™€
lan] < H

laz] < H

| laa| < H'™e



Consider a sequence of polynomials P; € Z[x] of degree < n such that
(i) 3> PO > P > ... > [Pi(§)] > ...
i) [A]<[Pl<...<[P|l<...
(iii) for any P € Z[x], deg P < n, P #Z 0, with |P(§)| < |P;(&)| we have

[Pl > [P



Consider a sequence of polynomials P; € Z[x] of degree < n such that

(i) 3> P> [P > ... > |P(&)] > ...
i) [A]<[Pl<...<[P|l<...
(iii) for any P € Z[x], deg P < n, P # 0, with |P(¢)| < |P;(§)| we have

[P > [Piyq].

Fix any ¢ > 1. By Minkowski’s Linear Forms Theorem there is a polynomial G(x) =
anx™ + ...+ arx + a9 € Z[x] of degree < n having

IG(&)] < |P:i(&)]
lan| < |Piya
laz| < |Piya

las| < |Pi(€)] 7 |Pigq|



Consider a sequence of polynomials P; € Z[x] of degree < n such that
@) 3> P> P& > ... > [Pi(&)] > ...
i) [A]<[Pl<...<[P|l<...
(iii) for any P € Z[x], deg P < n, P # 0, with |P(¢)| < |P;(&)| we have
[P| > [Piy4].

Fix any ¢« > 1. By Minkowski’s Linear Forms Theorem there is a polynomial G(x) =
an™ + ...+ a1x + a9 € Z[x] of degree < n having

|IG(§)] < |P(§)]
lan| < 7P
las| < ct P,

lay| < ™ HP(&)| 7 Piga |



Consider a sequence of polynomials P; € Z[x] of degree < n such that
@) 3> P> P& > ... > [Pi(&)] > ...
i) [A]<[Pl<...<[P|l<...
(iii) for any P € Z[x], deg P < n, P # 0, with |P(¢)| < |P;(&)| we have
[P| > [Piy4].

Fix any ¢« > 1. By Minkowski’s Linear Forms Theorem there is a polynomial G(x) =
an™ + ...+ a1x + a9 € Z[x] of degree < n having

|G(&)] < [Pi(§)]
lan| < ¢ Py
las| < c ! Py
lay| < ™ HP(&)| 7 Piga |

We have
Gl =~ |G'(¢)|



THEOREM: For any real number & € A, there exist infi-
nitely many algebraic numbers o« € A,, with

§ — ol < H(a)™

LEMMA 1: We have

[P(£)]
|[P'(£)]

where « is the root of P closest to &.

£ —aof K (1)

PROOF OF THE THEOREM: Assume to the contrary that
there exists a real number £ &€ A,, such that

€ —a| > H(a)™™ (2)

for any algebraic number a € A,,. From (1) and (2) it
follows that
[P'(§)] < |P(&)IIPI* (3)



Consider a sequence of polynomials P; € Z[x] of degree < n such that
(i) 3> [P > P& > ... > [Pi(€)] > ...
i) [A]<[Pl<...<[P|l<...
(iii) for any P € Z[x], deg P < n, P # 0, with |P(¢)| < |P;(&)| we have

[P| > [Piy4].

Fix any ¢« > 1. By Minkowski’s Linear Forms Theorem there is a polynomial G(x) =
an™ + ...+ ar1x + a9 € Z[x] of degree < n having

|G(&)] < [Pi(§)]
lan| < ¢ Py
las| < ct Py
lay| < ™ HP(&)| 7 Piga |

We have
Gl = |G'(¢)| < IG¥)|IGI”



Consider a sequence of polynomials P; € Z[x] of degree < n such that
@) 3> P> P& > ... > [Pi(&)] > ...
i) [A]<[Pl<...<[P|l<...
(iii) for any P € Z[x], deg P < n, P # 0, with |P(¢)| < |P;(&)| we have

[P| > [Piy4].

Fix any ¢« > 1. By Minkowski’s Linear Forms Theorem there is a polynomial G(x) =
an™ + ...+ a1x + a9 € Z[x] of degree < n having

|G(&)] < [Pi(§)]
lan| < ¢ Py
laz| < c ! Py
lar| < 7 P(&)| 7 Piga| 7T

We have
Gl = |G'(¢)| < |G(¥)|IGI* < |Pi(&)IIGI*



Consider a sequence of polynomials P; € Z[x] of degree < n such that
@) 3> P> P& > ... > [Pi(&)] > ...
i) [A]<[Pl<...<[P|l<...
(iii) for any P € Z[x], deg P < n, P # 0, with |P(¢)| < |P;(&)| we have

[P| > [Piy4].

Fix any ¢« > 1. By Minkowski’s Linear Forms Theorem there is a polynomial G(x) =
an™ + ...+ a1x + a9 € Z[x] of degree < n having

|G(&)] < [Pi(§)]
lan| < ¢ Py
laz| < c ! Py
lar| < 7 P(&)| 7 Piga| 7T

We have
Gl = |G'(¢)| < |G(¥)|IGI* < |Pi(&)IIGI*

therefore

IGI'™ < |Pi(¢)]



Consider a sequence of polynomials P; € Z[x] of degree < n such that
@) 3> P> P& > ... > [Pi(&)] > ...
i) [A]<[Pl<...<[P|l<...
(iii) for any P € Z[x], deg P < n, P # 0, with |P(¢)| < |P;(&)| we have

[P| > [Piy4].

Fix any ¢« > 1. By Minkowski’s Linear Forms Theorem there is a polynomial G(x) =
an™ + ...+ a1x + a9 € Z[x] of degree < n having

|G(&)] < [Pi(§)]
lan| < ¢ Py
las| < c ! Py
lay| < ™ HP(&)| 7 Piga |

We have
Gl = |G'(¢)| < |G(¥)|IGI* < |Pi(&)IIGI*

therefore

(1P(&) |7 [P ™) ™ < |P(€)]



Consider a sequence of polynomials P; € Z[x] of degree < n such that
@) 3> P> P& > ... > [Pi(&)] > ...
i) [A]<[Pl<...<[P|l<...
(iii) for any P € Z[x], deg P < n, P # 0, with |P(¢)| < |P;(&)| we have

[P| > [Piy4].

Fix any ¢« > 1. By Minkowski’s Linear Forms Theorem there is a polynomial G(x) =
an™ + ...+ a1x + a9 € Z[x] of degree < n having

|G(&)] < [Pi(§)]
lan| < ¢ Py
laz| < c ! Py
lar| < 7 P(&)| 7 Piga| 7T

We have
Gl = |G'(¢)| < |G(¥)|IGI* < |Pi(&)IIGI*

therefore s
(1P Piga| ™) 7 < | Pu(8)]

which can be rewritten as

|P;(&)| < |Piy1 ~(n=155



LEMMA 1: For any ¢ > 1 we have

|P.(§)| < [P]™"
LEMMA 2: If ¢ is sufficiently large and P; is irreducible, then

1 < |[Py(&)P|pjreten?



Consider a sequence of polynomials P; € Z[x] of degree < n such that
(i) 5> P& > P& > ... > [Pi(§)] > ...
(i) [Pl<[Pl<...<[P]<...
(iii) for any P € Z[x], deg P < n, P # 0, with |P(§)| < |P;(§)| we have

[P| > [Piy4].

Fix any ¢« > 1. By Minkowski’s Linear Forms Theorem there is a polynomial G(x) =
anx™ + ...+ a1x + ag € Z[x] of degree < n having

|G(&)| < |Pi(§)]
lan| < ¢ Py
laz| < ¢ Pigy
lai| < Cn_1|Pz'(£)|_1 Py —ntl

We have
Gl = |G'(¢)| < |G(¥)|IGI* < |Pi(¢)IIGI

therefore L
(I1P(&) |7 [P ™) 7 < |Pi(9)]

which can be rewritten as

Pi(&)| < [Pra] D55



LEMMA 1: For any ¢ > 1 we have

|P.(§)| < [P]™"
LEMMA 2: If ¢ is sufficiently large and P; is irreducible, then

1 < |[Py(&)P|pjreten?



LEMMA 1: For any ¢ > 1 we have

IPi(§)] < [Pia| 77V
LEMMA 2: If ¢ is sufficiently large and P; is irreducible, then

1< |Py(8)o[Bft2ns



LEMMA 1: For any ¢ > 1 we have

IPi(§)] < [Pia| 77V
LEMMA 2: If ¢ is sufficiently large and P; is irreducible, then

1< |Py(8)o[Bft2ns

PROOF OF THEOREM 7:



LEMMA 1: For any ¢ > 1 we have

w—1

|P;(€&)| < [Py " Do

LEMMA 2: If ¢ is sufficiently large and P; is irreducible, then

1 < |Py(&)P|p|reten—?

PROOF OF THEOREM 7: We have



LEMMA 1: For any ¢ > 1 we have

w—1

|P;(€&)| < [Py " Do

LEMMA 2: If ¢ is sufficiently large and P; is irreducible, then

1 < |Py(&)P|p|reten—?

PROOF OF THEOREM 7: We have

1 < |Py(&)P[Pferen—?



LEMMA 1: For any ¢ > 1 we have

w—1
2

|P;(€)| < [P D=

LEMMA 2: If ¢ is sufficiently large and P; is irreducible, then

1 < |Py(&)P|p|reten?

PROOF OF THEOREM 7: We have

1 < |Pi(§) P[P+ ?

< m —3(n—1)2=1 '—i’2w+2n—3



LEMMA 1: For any ¢ > 1 we have

w—1
2

|P;(€)| < [P D=

LEMMA 2: If ¢ is sufficiently large and P; is irreducible, then
1 < |P(&)°[p2etan—?

PrOOF OF THEOREM 7: We have
1 < |Pi(§) P[P+ ?

< m —3(n—1)2=1 [Py 2+2n—3

< 'E‘ —3(n—1)2=1 '—i’2w+2n—3



LEMMA 1: For any ¢ > 1 we have

w—1
2

|P;(€)| < [P D=

LEMMA 2: If ¢ is sufficiently large and P; is irreducible, then
1 < |P(&)°[p2etan—?

PrOOF OF THEOREM 7: We have
1 < |Pi(§) P[P+ ?

< m —3(n—1)2=1 [Py 2+2n—3

< 'E‘ —3(n—1)2=142w+2n—3




LEMMA 1: For any ¢ > 1 we have

w—1
2

|P;(€)| < [P D=

LEMMA 2: If ¢ is sufficiently large and P; is irreducible, then
1 < |P(&)°[p2etan—?

PrOOF OF THEOREM 7: We have
1 < |Pi(§) P[P+ ?

< m —3(n—1)2=1 [Py 2+2n—3

< 'E‘ —3(n—1)2=142w+2n—3

SO

1
+2w4+2n—-3>0

w_
—3(n—1
( )w_2



LEMMA 1: For any ¢ > 1 we have

|P;(&)| < |Pit1 ~(nDi=

LEMMA 2: If ¢ is sufficiently large and P; is irreducible, then
1 < |Py(&)°[p2er2n—?

PrOOF OF THEOREM 7: We have
1 < |Py(&) P[PPetan—?

< m —3(n—1)2=1 '—i’2w+2n—3

< 'E‘ —3(n—1)2=14+2w+2n—3

SO

1
+2w+2n—-—3 >0

w_
—3(n—1
( )w—2

2w —wn+4)—n+3>0



LEMMA 1: For any ¢ > 1 we have

w—1

|P;(€&)| < [Py " Do

LEMMA 2: If ¢ is sufficiently large and P; is irreducible, then

1 < |Py(&)P|p|reten—?

PROOF OF THEOREM 7: We have

1 < |Py(&) P[P+ ?

w—1

< m —3(n—-1)2— ®2w+2n—3

< 'E‘ —3(n—1)2=142w+2n—3

SO

1
+2w+2n—-3>0

—3(n — 1)w 5

w_

2w —wn+4)—n+3>0

n+44++/n2+16n — 8
4

w




LEMMA 1: For any ¢ > 1 we have

w—1

|P;(€&)| < [Py " Do

LEMMA 2: If ¢ is sufficiently large and P; is irreducible, then

1 < |Py(&)P|p|reten—?

PROOF OF THEOREM 7: We have

1 < |Py(&) P[P+ ?

w—1

< m —3(n—-1)2— ®2w+2n—3

< 'E‘ —3(n—1)2=142w+2n—3

SO

1
+2w+2n—-3>0

—3(n — 1)w 5

w_

2w —wn+4)—n+3>0

n+4 n2 4+ 16n — 8 n
w > + +\/4+ :E‘f")’n—’?’




LEMMA 1: For any ¢ > 1 we have

w—1

|P;(€&)| < [Py " Do

LEMMA 2: If ¢ is sufficiently large and P; is irreducible, then

1 < |Py(&)P|p|reten—?

PROOF OF THEOREM 7: We have

1 < |Py(&) P[P+ ?

w—1

< m —3(n—-1)2— ®2w+2n—3

< 'E‘ —3(n—1)2=142w+2n—3

SO

1
+2w+2n—-3>0

—3(n — 1)w 5

w_

2w —wn+4)—n+3>0

n-+4 n2 4+ 16n — 8 n
o > + +\/4-|— :§+7n_)3.




LEMMA 1: For any ¢ > 1 we have |P;(¢)| < [P]~".
LeMMA 2: If i is sufficiently large and P; is irreducible, then 1 < |P;(§)|3|P;|?«+27—3.

LEMMA 3: We have

RG]
€=l <))

where « is the root of P; closest to &.
ExXAMPLE: Consider P(z) = x? — 1000z + 1000. Then
|z? — 1000z + 1000| < 1000~2 at ¢ = 1.001002003...
and
|P/(£)] = |2€ — 1000| ~ 998
ExAMPLE: For any £ € R and any H > 0, there exist a,,...,a;,a9 € Z such that

( lan€™ 4+ ...+ a1 +aol < H™
|a’n|§H

laz| < H

| la1| < H



LEMMA 1: For any i > 1 we have |P;(¢)| < [P]~".
LEMMA 2: If 4 is sufficiently large and P; is irreducible, then 1 < | P;(¢)|3|P;]?«+2n—3,

LEMMA 3: We have

RG]
€=l <]

where « is the root of P; closest to &.
ExXAMPLE: Consider P(z) = x? — 1000z + 1000. Then
|z? — 1000z + 1000| < 1000~2 at ¢ = 1.001002003...
and
|P/(£)] = |2€ — 1000| =~ 998
ExaMPLE: For any € € R and any H > 0, there exist a,,...,a;,a9 € Z such that

( la ™+ ... +a1€ +aol < H ™€
lan] < H

laz] < H

| laa| < H'™e



LEMMA 1: For any i > 1 we have |P;(¢)| < [P]~".
LEMMA 2: If 4 is sufficiently large and P; is irreducible, then 1 < | P;(¢)|3|P;]?«+2n—3,

LEMMA 3: We have

RG]
€=l <]

where « is the root of P; closest to &.
ExXAMPLE: Consider P(z) = x? — 1000z + 1000. Then
|z? — 1000z + 1000| < 1000~2 at ¢ = 1.001002003...
and
|P/(£)] = |2€ — 1000| =~ 998
ExaMPLE: For any € € R and any H > 0, there exist a,,...,a;,a9 € Z such that

[ an€™ + ...+ a1€ + ag| < H ™ 2%
lan| < H

las] < H'te

| lay| < H't



Consider a sequence of polynomials P; € Z[x] of degree < n such that
(i) 3> PO > P > ... > [Pi(§)] > ...
i) [A]<[Pl<...<[P|l<...
(iii) for any P € Z[x], deg P < n, P #Z 0, with |P(§)| < |P;(&)| we have

[Pl > [P

Fix any ¢« > 1. By Minkowski’s Linear Forms Theorem there is a polynomial G(x) =
an ™ + ...+ arx + a9 € Z[x] of degree < n having

|G(&)| < |Pi(&)|
lan| < ¢ Py
laz| < ¢ Pigy
lai| < Cn_1|Pi(€)|_1 P, —n+l

We have
Gl = |G'(¢)| < |G(¥)|IGI* < |Pi(¢)IIGI

therefore L
(1P:(&) |7 | Piga| ™) < |P;(8)]

which can be rewritten as

IPi(&)] < [Pia| V5



Consider a sequence of polynomials P; € Z[x] of degree < n such that
@) 3> P> P& > ... > [Pi(&)] > ...
i) [A]<[Pl<...<[P|l<...
(iii) for any P € Z[x], deg P < n, P # 0, with |P(¢)| < |P;(&)| we have

[P| > [Piy4].

Fix any ¢« > 1. By Minkowski’s Linear Forms Theorem there is a polynomial G(x) =
an™ + ...+ a1x + a9 € Z[x] of degree < n having

|IG(&)| < |Pi(§)]
lan| < 7P
lag < [P
|ag| < A2 P(8) |72 Py | T (/2
lar| < A2 P(8) |72 Py | T (/2
We have
Gl = 1G'(¢)| < |GG < |P(§)|IGI*

therefore L
(I1P(&) |7 [P ™) 7 < |Pi(9)]

which can be rewritten as

IP(&)] < [Pia| V5



Consider a sequence of polynomials P; € Z[x] of degree < n such that
@) 3> P> P& > ... > [Pi(&)] > ...
i) [A]<[Pl<...<[P|l<...
(iii) for any P € Z[x], deg P < n, P # 0, with |P(¢)| < |P;(&)| we have

[P| > [Piy4].

Fix any ¢« > 1. By Minkowski’s Linear Forms Theorem there is a polynomial G(x) =
an™ + ...+ a1x + a9 € Z[x] of degree < n having

|G < |P:(§)]
lan| < C_lm
|as| < ¢t P
las| < D2 Py(¢)| 712 [P,y (/2
jar] < ct=2/2|Py()| /2Py ]~/
We have
Gl > |G/ (&) < |GGl < |Pi(¢)]IG

therefore L
(I1P(&) |7 [P ™) 7 < |Pi(9)]

which can be rewritten as

IP(&)] < [Pia| V5



Consider a sequence of polynomials P; € Z[x] of degree < n such that

() L>|P(&)] > [Pa&)] > ... > [Pi(&)] > ...

i) [A]<[Pl<...<[P|l<...
(iii) for any P € Z[x], deg P < n, P # 0, with |P(¢)| < |P;(&)| we have

[P| > [Piy4].

Fix any ¢« > 1. By Minkowski’s Linear Forms Theorem there is a polynomial G(x) =
an™ + ...+ a1x + a9 € Z[x] of degree < n having

|G(&)| < |P:(8)]

lan| < 7P

las| < ¢ [Pis

|ag| < 2| Py(&) |72 Py |72

lar| < A2 Py(&) |72 Piga |~ (22



Consider a sequence of polynomials P; € Z[x] of degree < n such that

() L>|P(&)] > [Pa&)] > ... > [Pi(&)] > ...

i) [A]<[Pl<...<[P|l<...

(iii) for any P € Z[x], deg P < n, P # 0, with |P(¢)| < |P;(&)| we have
[P| > [Piy4].

Fix any ¢« > 1. By Minkowski’s Linear Forms Theorem there is a polynomial G(x) =
an™ + ...+ a1x + a9 € Z[x] of degree < n having

|G(&)| < |P:(8)]

lan| < 7P

las| < ¢ [Pis

|ag| < 2| Py(&) |72 Py |72

lar| < A2 Py(&) |72 Piga |~ (22

Polynomials
Pi(z), Pii(z), G(z)

are linearly independent.



P;(x) = 100z® 4+ 100z* + 100z* + 100x* + 100z + 100



P 1(x) = 200z° 4 200z* 4 200z* + 200x* + 200x + 200

P;(x) = 100z® + 100z* + 100x* + 1002 + 100z + 100



G1i(z) = 1902° + 300z* 4 300z> + 300x* + 300x + 300
P 1(x) = 2002° 4 200z* 4 200z* + 200x* + 200x + 200

P;(x) = 100x® + 100z* + 100x* + 100x* + 100x + 100



Ga(x) = 190x® + 290x* 4+ 400> + 400z* + 400x + 400
Gi(x) = 190z® + 300z* 4+ 300> + 3002 + 300x + 300
P 1(x) = 2002° + 200z* 4 200z* + 200x* + 200x + 200

P;(x) = 100z® + 100z* + 100z> 4 100x* + 100z + 100



Gs(x) = 190z° + 290x* + 390z + 500z 4 500x + 500
Ga(x) = 190x® + 290x* 4+ 400> + 400z? + 400x + 400
Gi(x) = 190z® + 300z* 4+ 300> + 300z* + 300x + 300
P 1(x) = 200x° + 200z* 4 200z* + 200x* + 200x + 200

P;(x) = 100z® + 100z* 4+ 100z> 4 100x* + 100z + 100



Using
Pi(z), Piu(z), Gi(x),...,Gn2(x)

we construct L;(x) € Z[x] of degree < n such that
L —nNn
|Li (&) < |Pi—a(§)|= TPy

—w—w—_z —(n— w— —n
Li| < [Py (8) P71 [p]~ (=2 1[p;_[7+2



Using
Pi(z), Piu(r), Gi(x),...,Gn2(x)

we construct L;(x) € Z[x] of degree < n such that
1 .
|Li(&)] < |Pi—a(§)|= TPy

< Py (&) PSP (D - [p -t

L

.

Li| = |L;(£)]

.



Using
Pi(z), Piu(r), Gi(x),...,Gn2(x)
we construct L;(x) € Z[x] of degree < n such that

Li| < |P;-1(§) |3_w_:_:%@_("_2)(w—1) P_y| 2

.

Li| = |L(&)|

.

1 < |P(&)|[Piy) 5 U-0[p)"s (1m0+@(me



Using
Pi(z), Piu(z), Gi(x),...,Gn2(x)
we construct L;(x) € Z[x] of degree < n such that

ILi(€)] < |P_1(&)|5 [Py "+

L < |Pi_y(&))> 55 [P~ (n—2) 1) P |+

.

L

~ |Li(§)]

~.

1 < |P(&)|[Piy) 5 U-0[p)"s (1m0 +®(ne

w—1

<I>(n):2w—|—2n—3_2(n_1)w_2



Using
Pi(z), Piu(r), Gi(x),...,Gn2(x)
we construct L;(x) € Z[x] of degree < n such that

L

.

< Py (&) PSP (D - [p -t

L

.

~ |Li(§)]

1 < |P(&)|[Piy) 5 U-0[p)"s (1m0+@(me

—1
<I>(n):2w—|—2n_3_2(n_1)w

w— 2

|L;(€)| < [Ly~“t!



Using
Pz(w)a Pi—i—l(w)’ Gl(w)a ) Gn—2(w)
we construct L;(x) € Z[x] of degree < n such that

|L;(§)] < |Pi_1(£)|ﬁm~n+1

w—2
L; < |Pi—1(€)|3_“’_mlﬂ—("—2)(w—l)M—n+2

~.

Li| = [Li(§)]

~.

1 < |Py(€)|[Pry| 00 [p)"5 (1-0)+2(m)e
w—1
®(n) =2w+2n—-3 —-2(n—1)

w— 2

|L; (&) > [L;|~«™!



THEOREM 9: For any real number & € A,, there exist infi-
nitely many algebraic numbers o« € A,, with

|€ T a' < H(Oz)_w,

where n
w:§—|—)\n, lim A\, =4

n—0o



THEOREM 9: For any real number & € A,, there exist infi-
nitely many algebraic numbers o € A,, with

|£ _ al < H(a)_wa

where n
w:§—|—)\n, lim A\, =4

n—oo

4z° — (4n + 18)x* + (n? + 11n + 30)x> — (2n® + 10n + 22)z?
—|—(2n2—|—7n—|—4)a:—|—n2—5n—|—2 if n=23,4,5



THEOREM 9: For any real number & € A,, there exist infi-
nitely many algebraic numbers o« € A,, with

|£ _ al < H(a)_wa

where n
w:§—|—)\n, lim A\, =4

n—o0

4z° — (4n + 18)x* + (n? + 11n + 30)x> — (2n® + 10n + 22)z?
—|—(2n2—|—7n—|—4)a:—|—n2—5n—|—2 if n=3,4,5

22° — (n +12)z* + (2n + 30)z® + (2n — 41)2? — (3n — 29)x
+2n—10 if n > 5.



n | Th. 5, 1961 | Th. 6, 1961 | Th. 7, 1993 | Th. 9, 2005 | Conjecture
3 3 3.28 3.5 3.73 4
4 3.5 3.82 4.12 4.45 5
5 4 4.35 4.71 5.14 6
6 4.5 4.87 5.28 5.76 7
7 5 5.39 5.84 6.36 8
8 5.5 5.9 6.39 6.93 9
9 6 6.41 6.93 7.50 10
10 6.5 6.92 7.47 8.06 11
15 9 9.44 10.09 10.77 16
20 11.5 11.95 12.67 13.40 21
50 26.5 26.98 27.84 28.70 51
100 51.5 51.99 52.92 53.84 101




THEOREM 10 (Davenport - Schmidt, 1968): Let n > 3.
Let &£ be real, but not algebraic of degree < 2. Then there
are infinitely many algebraic integers a of degree < 3
which satisfy

1
0< |t —a| << Ha)™, n= 5(3 + +/5) = 2.618...



THEOREM 10 (Davenport - Schmidt, 1968): Let n > 3.
Let £ be real, but not algebraic of degree < 2. Then there
are infinitely many algebraic integers a of degree < 3
which satisfy

1
0<|¢ —a| << Ha)™, n= 5(3 ++/5) = 2.618...

CONJECTURE: Let £ be real, but is not algebraic of degree
< n. Suppose € > 0. Then there are infinitely many real
algebraic integers a of degree < n with

£ —a| K H(a) "¢




THEOREM 10 (Davenport - Schmidt, 1968): Let n > 3.
Let £ be real, but not algebraic of degree < 2. Then there
are infinitely many algebraic integers a of degree < 3

which satisfy

1
0<|¢ —a| << Ha)™, n= 5(3 ++/5) = 2.618...

CONJECTURE: Let £ be real, but is not algebraic of degree
< n. Suppose € > 0. Then there are infinitely many real
algebraic integers a of degree < n with

£ —a| K H(a) "¢

THEOREM 11 (Roy, 2001): There exist real numbers &
such that for any algebraic integer a of degree < 3, we

have

€ —a| > H(a)™






24



24
242



24
242
24224



4

2

24

242
24224
24224242



4

2

24

242

24224
24224242
2422424224224



4

2

24

242

24224
24224242
2422424224224




THEOREM 10 (Davenport - Schmidt, 1968): Let n > 3.
Let &£ be real, but not algebraic of degree < 2. Then there
are infinitely many algebraic integers a of degree < 3
which satisfy

1
0< |t —a| << Ha)™, n= 5(3 + +/5) = 2.618...

CONJECTURE: Let &£ be real, but is not algebraic of degree
< n. Suppose € > 0. Then there are infinitely many real
algebraic integers a of degree < n with

£ — o] K H(a) ™"

THEOREM 11 (Roy, 2001): There exist real numbers &
such that for any algebraic integer a of degree < 3, we
have

€ —a| > H(a)™



