On approximation of real numbers by algebraic numbers of bounded degree

BY

K. I. TSISHCHANKA

$$\left|\xi-\frac{p}{q}\right|<\frac{1}{q^2}$$

$$egin{aligned} \left| \xi - rac{p}{q}
ight| < rac{1}{q^2} \ & \downarrow \ & |q\xi - p| < q^{-1} \end{aligned}$$

$$\left| egin{aligned} \xi - rac{p}{q}
ight| < rac{1}{q^2} \ & \downarrow \downarrow \ | \underbrace{q \xi - p}_{P(\xi)}| < q^{-1} \ & \downarrow \downarrow P(x) = qx - p \end{aligned}$$

$$egin{aligned} \left| \xi - rac{p}{q}
ight| < rac{1}{q^2} \ & igg| \ \left| \underbrace{q \xi - p}_{P(\xi)}
ight| < q^{-1} \le \left\{ egin{aligned} p^{-1} & ext{if} & \left| \xi
ight| \le 1 \ 2 |\xi| p^{-1} & ext{if} & \left| \xi
ight| > 1 \end{aligned} \end{aligned}$$

$$egin{aligned} \left| \xi - rac{p}{q}
ight| < rac{1}{q^2} \ & \downarrow \downarrow \ \left| \underbrace{q \xi - p}_{P(\xi)}
ight| < q^{-1} \leq \left\{ egin{array}{ll} p^{-1} & ext{if} & \left| \xi
ight| \leq 1 \ 2 \left| \xi
ight| p^{-1} & ext{if} & \left| \xi
ight| > 1 \ \end{array}
ight. \end{aligned}$$

$$|P(\xi)| < c(\xi) \max\{p,q\}^{-1}$$

$$egin{aligned} \left| egin{aligned} \xi - rac{p}{q}
ight| < rac{1}{q^2} \ & igcup_{P(\xi)} & \left| rac{q \xi - p}{q}
ight| < q^{-1} \leq \left\{ egin{aligned} p^{-1} & ext{if} & \left| \xi
ight| \leq 1 \ 2 | \xi | p^{-1} & ext{if} & \left| \xi
ight| > 1 \end{aligned} \ & igcup_{P(x) = qx - p} & igcup_{P(x) = qx - p} \ & igcup_{P(x) = qx - p} & igcup_{P(x) = qx - p} \ & igcup_{P(x) = qx - p} & igcup$$

THEOREM 1': For any real irrational number ξ there exist infinitely many polynomials P(x) = ax + b with integer coefficients such that

$$|P(\xi)| < c(\xi)|P|^{-1}, \quad |P| = \max\{|a|, \ |b|\}.$$

$$|P(\xi)| < c(\xi) |\overline{P}|^{-2}, \quad |\overline{P}| = \max\{|a|, \; |b|, \; |c|\}.$$

$$|P(\xi)| < c(\xi) |P|^{-2}, \quad |P| = \max\{|a|, \ |b|, \ |c|\}.$$

<u>Definition</u>: If α is a root of the polynomial equation

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0,$$

where a_i 's are integers and α satisfies no similar equation of degree < n, then α is an algebraic number of degree n.

$$|P(\xi)| < c(\xi) |\overline{P}|^{-2}, \quad |\overline{P}| = \max\{|a|, \; |b|, \; |c|\}.$$

<u>Definition</u>: If α is a root of the polynomial equation

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0,$$

where a_i 's are integers and α satisfies no similar equation of degree < n, then α is an algebraic number of degree n.

EXAMPLE:

number	polynomial	degree
$rac{p}{q}$	qx-p	1
$\frac{1+\sqrt{3}}{2}$	$2x^2-2x-1$	2
$\sqrt{2} + \sqrt{3}$	$x^4 - 10x + 1$	4

$$|P(\xi)| < c(\xi)|P|^{-2}, \quad |P| = \max\{|a|, |b|, |c|\}.$$

<u>Definition</u>: If α is a root of the polynomial equation

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0,$$

where a_i 's are integers and α satisfies no similar equation of degree < n, then α is an algebraic number of degree n.

NOTATION: Denote by A_n be the set of algebraic numbers of degree $\leq n$.

$$|P(\xi)| < c(\xi) |P|^{-2}, \quad |P| = \max\{|a|, \ |b|, \ |c|\}.$$

<u>Definition</u>: If α is a root of the polynomial equation

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0,$$

where a_i 's are integers and α satisfies no similar equation of degree < n, then α is an algebraic number of degree n.

NOTATION: Denote by A_n be the set of algebraic numbers of degree $\leq n$.

EXAMPLE: A_1 is the set of all rational numbers.

$$|P(\xi)| < c(\xi) |P|^{-2}, \quad |P| = \max\{|a|, \ |b|, \ |c|\}.$$

<u>Definition</u>: If α is a root of the polynomial equation

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0,$$

where a_i 's are integers and α satisfies no similar equation of degree < n, then α is an algebraic number of degree n.

NOTATION: Denote by A_n be the set of algebraic numbers of degree $\leq n$.

EXAMPLE: A_1 is the set of all rational numbers. A_2 is the set of all rational numbers and quadratic irrationals, etc.

Theorem 1': For any real irrational number ξ there exist infinitely many polynomials P(x)=ax+b with integer coefficients such that

$$|P(\xi)| < c(\xi) |P|^{-1}, \quad |P| = \max\{|a|, \ |b|\}.$$

Theorem 1': For any real irrational number ξ there exist infinitely many polynomials P(x) = ax + b with integer coefficients such that

$$|P(\xi)| < c(\xi)|P|^{-1}, \quad |P| = \max\{|a|, \ |b|\}.$$

THEOREM 1": For any real number $\xi \not\in A_1$ there exist infinitely many polynomials P(x) = ax + b with integer coefficients such that

$$|P(\xi)| < c(\xi)|P|^{-1}, \quad |P| = \max\{|a|, \ |b|\}.$$

Theorem 1': For any real irrational number ξ there exist infinitely many polynomials P(x) = ax + b with integer coefficients such that

$$|P(\xi)| < c(\xi)|P|^{-1}, \quad |P| = \max\{|a|, \ |b|\}.$$

Theorem 1": For any real number $\xi \not\in A_1$ there exist infinitely many polynomials P(x) = ax + b with integer coefficients such that

$$|P(\xi)| < c(\xi)|P|^{-1}, \quad |P| = \max\{|a|, \ |b|\}.$$

THEOREM 2: For any real number $\xi \not\in A_2$ there exist infinitely many polynomials $P(x) = ax^2 + bx + c$ with integer coefficients such that

$$|P(\xi)| < c(\xi, n) |P|^{-2}, \quad |P| = \max\{|a|, \ |b|, |c|\}.$$

Theorem 1': For any real irrational number ξ there exist infinitely many polynomials P(x) = ax + b with integer coefficients such that

$$|P(\xi)| < c(\xi)|P|^{-1}, \quad |P| = \max\{|a|, \ |b|\}.$$

THEOREM 1": For any real number $\xi \not\in A_1$ there exist infinitely many polynomials P(x) = ax + b with integer coefficients such that

$$|P(\xi)| < c(\xi)|P|^{-1}, \quad |P| = \max\{|a|, \ |b|\}.$$

THEOREM 3: For any real number $\xi \notin A_n$ there exist infinitely many polynomials $P(x) \in Z[x]$ of degree $\leq n$ such that

$$|P(\xi)| < c(\xi,n) |P|^{-n}, \quad |P| = \max\{|a_n|,\ldots,|a_1|,|a_0|\}.$$

PROOF:

PROOF: Let H > 1 be some integer.

$$|P| = \max\{|a_n|, \dots, |a_1|, |a_0|\} \le H.$$
 (*)

$$|P| = \max\{|a_n|, \dots, |a_1|, |a_0|\} \le H.$$
 (*)

 $Number\ of\ polynomials = (2H+1)^{n+1}$

$$|P| = \max\{|a_n|, \dots, |a_1|, |a_0|\} \le H.$$
 (*)

 $Number\ of\ polynomials = (2H+1)^{n+1}$

$$|P| = \max\{|a_n|, \dots, |a_1|, |a_0|\} \le H.$$
 (*)

 $Number\ of\ polynomials = (2H+1)^{n+1}$

$$-c_1(\xi)H$$
 $c_1(\xi)H$

$$|P| = \max\{|a_n|, \dots, |a_1|, |a_0|\} \le H.$$
 (*)

 $Number\ of\ polynomials = (2H+1)^{n+1}$

$$|P| = \max\{|a_n|, \dots, |a_1|, |a_0|\} \le H.$$
 (*)

 $Number\ of\ polynomials = (2H+1)^{n+1}$

$$|P| = \max\{|a_n|, \dots, |a_1|, |a_0|\} \le H.$$
 (*)

 $Number\ of\ polynomials = (2H+1)^{n+1}$

We have $|P(\xi)| \leq c_1(\xi)H$ for any P satisfying (*).

$$c_1(\xi)H$$

 $Number\ of\ subintervals = (2H+1)^{n+1}-1$

$$|P| = \max\{|a_n|, \dots, |a_1|, |a_0|\} \le H.$$
 (*)

 $Number\ of\ polynomials = (2H+1)^{n+1}$

We have $|P(\xi)| \leq c_1(\xi)H$ for any P satisfying (*).

 $Number\ of\ subintervals = (2H+1)^{n+1}-1$

$$Length = rac{2c_1(\xi)H}{(2H+1)^{n+1}-1} < rac{2c_1(\xi)H}{H^{n+1}} = c_2(\xi)H^{-n}$$

$$|P| = \max\{|a_n|, \dots, |a_1|, |a_0|\} \le H.$$
 (*)

 $Number\ of\ polynomials = (2H+1)^{n+1}$

We have $|P(\xi)| \leq c_1(\xi)H$ for any P satisfying (*).

$$c_1(\xi)H$$

 $Number\ of\ subintervals = (2H+1)^{n+1}-1$

$$Length = rac{2c_1(\xi)H}{(2H+1)^{n+1}-1} < rac{2c_1(\xi)H}{H^{n+1}} = c_2(\xi)H^{-n}$$

By the Pigeonhole Principle there exist P_1 and P_2 with

$$|\underbrace{P_{1}(\xi)-P_{2}(\xi)}_{P(\xi)}| \leq c_{2}(\xi)H^{-n} \leq c_{2}(\xi)\overline{P}^{-n} \blacksquare$$

Theorem 3: For any real number $\xi \not\in A_n$ there exist infinitely many polynomials $P(x) \in Z[x]$ of degree $\leq n$ such that

 $|P(\xi)| < c(\xi,n) \overline{P}^{-n}.$

THEOREM 3: For any real number $\xi \notin A_n$ there exist infinitely many polynomials $P(x) \in Z[x]$ of degree $\leq n$ such that

 $|P(\xi)| < c(\xi,n) |\overline{P}|^{-n}.$

THEOREM 4 (SPRINDŽUK, 1964): Let ω be some number with $\omega > n$. Then for almost all real numbers ξ there are only finitely many polynomials $P(x) \in Z[x]$ of degree $\leq n$ such that

$$|P(\xi)|<\overline{P}|^{-\omega}.$$

THEOREM 3: For any real number $\xi \notin A_n$ there exist infinitely many polynomials $P(x) \in Z[x]$ of degree $\leq n$ such that

$$|P(\xi)| \ll |\overline{P}|^{-n}.$$

THEOREM 4 (SPRINDŽUK, 1964): Let ω be some number with $\omega > n$. Then for almost all real numbers ξ there are only finitely many polynomials $P(x) \in Z[x]$ of degree $\leq n$ such that

$$|P(\xi)|<|P|^{-\omega}.$$

THEOREM 3: For any real number $\xi \notin A_n$ there exist infinitely many polynomials $P(x) \in Z[x]$ of degree $\leq n$ such that

$$|P(\xi)| \ll |\overline{P}|^{-n}$$
.

The implicit constant in \ll depends on ξ and n only.

THEOREM 4 (SPRINDŽUK, 1964): Let ω be some number with $\omega > n$. Then for almost all real numbers ξ there are only finitely many polynomials $P(x) \in Z[x]$ of degree $\leq n$ such that

$$|P(\xi)|<\overline{P}|^{-\omega}.$$

$$\left|\xi-rac{p}{q}
ight| < q^{-2}$$

$$\left|\xi-rac{p}{q}
ight| < q^{-2} \quad ---- \quad |q\xi-p| < q^{-1}$$

$$\left| \xi - rac{p}{q}
ight| < q^{-2} \hspace{1cm} \left| q\xi - p
ight| < q^{-1} \ \left| \xi - lpha
ight| \hspace{1cm} \left| F
ight|^{-n}$$

$$\left| \xi - rac{p}{q}
ight| < q^{-2} \longrightarrow |q\xi - p| < q^{-1} \ dots \ |\xi - lpha| \ll ? \longleftarrow |P(\xi)| \ll |P|^{-n}$$

$$\left| \xi - rac{p}{q}
ight| < q^{-2} \hspace{1cm} \left| q\xi - p
ight| < q^{-1} \ \left| \xi - lpha
ight| \ll ? \hspace{1cm} \left| P(\xi)
ight| \ll |P|^{-n}$$

$$|P(\xi)| \ll |\overline{P}|^{-n}$$

$$\left| \xi - \frac{p}{q}
ight| < q^{-2} \hspace{1cm} \left| q\xi - p
ight| < q^{-1} \ \left| \xi - lpha
ight| \ll ? \hspace{1cm} \left| P(\xi)
ight| \ll P^{-n}$$

$$|P(\xi)| \ll |\overline{P}|^{-n}$$
 $|a_n(\xi-lpha_1)\dots(\xi-lpha_n)| \ll |\overline{P}|^{-n}$

$$\left|\xi-rac{p}{q}
ight| < q^{-2} \longrightarrow \left|q\xi-p
ight| < q^{-1} \ \left|\xi-lpha
ight| \ll \left|P
ight|^{-n}$$

$$|P(\xi)| \ll |\overline{P}|^{-n}$$
 $|a_n(\xi-lpha_1)\dots(\xi-lpha_n)| \ll |\overline{P}|^{-n}$ $|(\xi-lpha_1)\dots(\xi-lpha_n)| \ll |\overline{P}|^{-n}a_n^{-1}$

$$\left|\xi-rac{p}{q}
ight| < q^{-2} \longrightarrow \left|q\xi-p
ight| < q^{-1} \ \left|\xi-lpha
ight| \ll ? \leftarrow \left|P(\xi)
ight| \ll |P|^{-n}$$

$$|P(\xi)| \ll |\overline{P}|^{-n}$$
 $|a_n(\xi - \alpha_1) \dots (\xi - \alpha_n)| \ll |\overline{P}|^{-n}$ $|(\xi - \alpha_1) \dots (\xi - \alpha_n)| \ll |\overline{P}|^{-n}a_n^{-1}$ $|x^2 - 1000x + 1000| \ll 1000^{-2}$ at $\xi = 1.001002003...$

$$\left| \xi - \frac{p}{q} \right| < q^{-2} \longrightarrow |q\xi - p| < q^{-1}$$
 $\left| \xi - \alpha \right| \ll ? \longleftarrow |P(\xi)| \ll |P|^{-n}$

$$|P(\xi)| \ll |\overline{P}|^{-n}$$
 $|a_n(\xi-lpha_1)\dots(\xi-lpha_n)| \ll |\overline{P}|^{-n}$ $|(\xi-lpha_1)\dots(\xi-lpha_n)| \ll |\overline{P}|^{-n}a_n^{-1} \ll |\overline{P}|^{-n}$

$$\left| \xi - rac{p}{q}
ight| < q^{-2} \longrightarrow |q\xi - p| < q^{-1}$$
 $\left| \xi - lpha
ight| \ll ? \longleftarrow |P(\xi)| \ll |P|^{-n}$

$$|P(\xi)| \ll |\overline{P}|^{-n}$$
 $|a_n(\xi - lpha_1) \ldots (\xi - lpha_n)| \ll |\overline{P}|^{-n}$ $|(\xi - lpha) \ldots (\xi - lpha)| \ll |\overline{P}|^{-n} a_n^{-1} \ll |\overline{P}|^{-n}$

$$\left|\xi-rac{p}{q}
ight| < q^{-2} \longrightarrow \left|q\xi-p
ight| < q^{-1} \ \left|\xi-lpha
ight| \ll ? \longrightarrow \left|P(\xi)
ight| \ll |P|^{-n}$$

$$|P(\xi)| \ll |\overline{P}|^{-n}$$
 $|a_n(\xi - lpha_1) \dots (\xi - lpha_n)| \ll |\overline{P}|^{-n}$
 $|(\xi - lpha) \dots (\xi - lpha)| \ll |\overline{P}|^{-n}a_n^{-1} \ll |\overline{P}|^{-n}$
 $|\xi - lpha|^n \ll |\overline{P}|^{-n}$

$$\left| \xi - \frac{p}{q} \right| < q^{-2} \longrightarrow |q\xi - p| < q^{-1}$$
 $\left| \xi - \alpha \right| \ll ? \longleftarrow |P(\xi)| \ll |P|^{-n}$

$$|P(\xi)| \ll |\overline{P}|^{-n}$$
 $|a_n(\xi - lpha_1) \dots (\xi - lpha_n)| \ll |\overline{P}|^{-n}$
 $|(\xi - lpha) \dots (\xi - lpha)| \ll |\overline{P}|^{-n}a_n^{-1} \ll |\overline{P}|^{-n}$
 $|\xi - lpha| \ll |\overline{P}|^{-1}$

$$|P(\xi)| \ll |\overline{P}|^{-n}$$
 $|a_n(\xi - lpha_1) \dots (\xi - lpha_n)| \ll |\overline{P}|^{-n}$
 $|(\xi - lpha) \dots (\xi - lpha)| \ll |\overline{P}|^{-n}a_n^{-1} \ll |\overline{P}|^{-n}$
 $|\xi - lpha| \ll |\overline{P}|^{-1}$

$$|P(\xi)| \ll |\overline{P}|^{-n}$$
 $|a_n(\xi - \alpha_1) \dots (\xi - \alpha_n)| \ll |\overline{P}|^{-n}$
 $|(\xi - \alpha) \dots (\xi - \alpha)| \ll |\overline{P}|^{-n} a_n^{-1} \ll |\overline{P}|^{-n}$
 $|\xi - \alpha| \ll |\overline{P}|^{-1}$

$$\left| \xi - rac{p}{q}
ight| < q^{-2} \longrightarrow |q\xi - p| < q^{-1} \ dots \ |\xi - lpha| \ll H(lpha)^{-n-1} \longleftarrow |P(\xi)| \ll \overline{P}|^{-n}$$

$$n=1 \ \Rightarrow \ |\xi-\alpha| \ll H(\alpha)^{-2}$$
 (Dirichlet,1842)

$$n=1 \;\Rightarrow\; |\xi-\alpha| \ll H(\alpha)^{-2} \; ext{(Dirichlet,1842)}$$

$$n=2 \;\Rightarrow\; |\xi-\alpha| \ll H(\alpha)^{-3} \; ext{(Davenport-Schmidt, 1967)}$$

$$n=1 \Rightarrow |\xi - \alpha| \ll H(\alpha)^{-2}$$
 (Dirichlet,1842)
 $n=2 \Rightarrow |\xi - \alpha| \ll H(\alpha)^{-3}$ (Davenport – Schmidt, 1967)
 $n>2 \Rightarrow |\xi - \alpha| \ll H(\alpha)^{-\frac{n}{2}-\frac{3}{2}}$ (Wirsing, 1961)

$$|\xi-lpha| \ll H(lpha)^{-rac{n}{2}-rac{3}{2}}$$

$$|\xi - lpha| \ll H(lpha)^{-rac{n}{2}-rac{3}{2}}$$

LEMMA 1: We have

$$|\xi - \alpha| \ll \frac{|P(\xi)|}{|P'(\xi)|} \tag{1}$$

where α is the root of P closest to ξ .

$$|\xi - lpha| \ll H(lpha)^{-rac{n}{2}-rac{3}{2}}$$

Lemma 1: We have

$$|\xi - \alpha| \ll \frac{|P(\xi)|}{|P'(\xi)|} \tag{1}$$

where α is the root of P closest to ξ .

PROOF:

$$|\xi - lpha| \ll H(lpha)^{-rac{n}{2} - rac{3}{2}}$$

LEMMA 1: We have

$$|\xi - \alpha| \ll \frac{|P(\xi)|}{|P'(\xi)|} \tag{1}$$

where α is the root of P closest to ξ .

$$rac{|P'(\xi)|}{|P(\xi)|} = \left|\sum_{i=1}^n rac{1}{\xi - lpha_i}
ight|$$

$$|\xi-lpha| \ll H(lpha)^{-rac{n}{2}-rac{3}{2}}$$

LEMMA 1: We have

$$|\xi - \alpha| \ll \frac{|P(\xi)|}{|P'(\xi)|} \tag{1}$$

where α is the root of P closest to ξ .

 \underline{PROOF} : We get

$$rac{|P'(\xi)|}{|P(\xi)|} = \left|\sum_{i=1}^n rac{1}{\xi - lpha_i}
ight|$$

Let n=2, then

$$rac{|P'(x)|}{|P(x)|} = rac{|[a_2(x-lpha_1)(x-lpha_2)]'|}{|a_2(x-lpha_1)(x-lpha_2)|} = rac{|(x-lpha_1)+(x-lpha_2)|}{|(x-lpha_1)(x-lpha_2)|}$$

$$|\xi - lpha| \ll H(lpha)^{-rac{n}{2}-rac{3}{2}}$$

LEMMA 1: We have

$$|\xi - \alpha| \ll \frac{|P(\xi)|}{|P'(\xi)|} \tag{1}$$

where α is the root of P closest to ξ .

$$rac{|P'(\xi)|}{|P(\xi)|} = \left|\sum_{i=1}^n rac{1}{\xi - lpha_i}
ight|$$

$$|\xi - lpha| \ll H(lpha)^{-rac{n}{2}-rac{3}{2}}$$

LEMMA 1: We have

$$|\xi - \alpha| \ll \frac{|P(\xi)|}{|P'(\xi)|} \tag{1}$$

where α is the root of P closest to ξ .

$$\frac{|P'(\xi)|}{|P(\xi)|} = \left|\sum_{i=1}^n \frac{1}{\xi - \alpha_i}\right| \le \sum_{i=1}^n \frac{1}{|\xi - \alpha_i|}$$

$$|\xi - lpha| \ll H(lpha)^{-rac{n}{2}-rac{3}{2}}$$

LEMMA 1: We have

$$|\xi - \alpha| \ll \frac{|P(\xi)|}{|P'(\xi)|} \tag{1}$$

where α is the root of P closest to ξ .

$$\frac{|P'(\xi)|}{|P(\xi)|} = \left|\sum_{i=1}^n \frac{1}{\xi - \alpha_i}\right| \le \sum_{i=1}^n \frac{1}{|\xi - \alpha_i|} \le \frac{n}{|\xi - \alpha|} \blacksquare$$

$$|\xi-lpha| \ll H(lpha)^{-rac{n}{2}-rac{3}{2}}$$

LEMMA 1: We have

$$|\xi - \alpha| \ll \frac{|P(\xi)|}{|P'(\xi)|} \tag{1}$$

where α is the root of P closest to ξ .

$$|\xi-lpha| \ll H(lpha)^{-rac{n}{2}-rac{3}{2}}$$

LEMMA 1: We have

$$|\xi - \alpha| \ll \frac{|P(\xi)|}{|P'(\xi)|} \tag{1}$$

where α is the root of P closest to ξ .

PROOF OF THE THEOREM: Assume to the contrary that there exists a real number $\xi \not\in A_n$ such that

$$|\xi - \alpha| \gg H(\alpha)^{-\frac{n}{2} - \frac{3}{2}} \tag{2}$$

for any algebraic number $\alpha \in A_n$.

$$|\xi-lpha|\ll H(lpha)^{-rac{n}{2}-rac{3}{2}}$$

LEMMA 1: We have

$$|\xi - \alpha| \ll \frac{|P(\xi)|}{|P'(\xi)|} \tag{1}$$

where α is the root of P closest to ξ .

PROOF OF THE THEOREM: Assume to the contrary that there exists a real number $\xi \not\in A_n$ such that

$$|\xi - \alpha| \gg H(\alpha)^{-\omega}, \quad \omega = \frac{n}{2} + \frac{3}{2}$$
 (2)

for any algebraic number $\alpha \in A_n$.

$$|\xi-lpha| \ll H(lpha)^{-rac{n}{2}-rac{3}{2}}$$

LEMMA 1: We have

$$|\xi - \alpha| \ll \frac{|P(\xi)|}{|P'(\xi)|} \tag{1}$$

where α is the root of P closest to ξ .

PROOF OF THE THEOREM: Assume to the contrary that there exists a real number $\xi \not\in A_n$ such that

$$|\xi - \alpha| \gg H(\alpha)^{-\omega}, \quad \omega = \frac{n}{2} + \frac{3}{2}$$
 (2)

for any algebraic number $\alpha \in A_n$. From (1) and (2) it follows that

$$H(\alpha)^{-\omega} \ll \frac{|P(\xi)|}{|P'(\xi)|} \tag{3}$$

$$|\xi-lpha| \ll H(lpha)^{-rac{n}{2}-rac{3}{2}}$$

LEMMA 1: We have

$$|\xi - \alpha| \ll \frac{|P(\xi)|}{|P'(\xi)|} \tag{1}$$

where α is the root of P closest to ξ .

PROOF OF THE THEOREM: Assume to the contrary that there exists a real number $\xi \not\in A_n$ such that

$$|\xi - \alpha| \gg H(\alpha)^{-\omega}, \quad \omega = \frac{n}{2} + \frac{3}{2}$$
 (2)

for any algebraic number $\alpha \in A_n$. From (1) and (2) it follows that

$$|P|^{-\omega} \ll \frac{|P(\xi)|}{|P'(\xi)|} \tag{3}$$

$$|\xi-lpha| \ll H(lpha)^{-rac{n}{2}-rac{3}{2}}$$

LEMMA 1: We have

$$|\xi - \alpha| \ll \frac{|P(\xi)|}{|P'(\xi)|} \tag{1}$$

where α is the root of P closest to ξ .

PROOF OF THE THEOREM: Assume to the contrary that there exists a real number $\xi \not\in A_n$ such that

$$|\xi - \alpha| \gg H(\alpha)^{-\omega}, \quad \omega = \frac{n}{2} + \frac{3}{2}$$
 (2)

for any algebraic number $\alpha \in A_n$. From (1) and (2) it follows that

$$|P'(\xi)| \ll |P(\xi)| \overline{P}^{\omega} \tag{3}$$

Lemma 2: There are infinitely many polynomials $P,\ Q\in Z[x]$ of degree $\leq n,$ such that

 $|P(\xi)| \ll |\overline{P}|^{-n}$ $|Q(\xi)| \ll |\overline{P}|^{-n}$ $|\overline{Q}| \ll |\overline{P}|$

 $\begin{array}{c|c} P,Q & \text{have no} \\ \\ \text{common root} \end{array}$

$$1 \ll \max \left\{ |P(\xi)|, |Q(\xi)| \right\}^2 \max \left\{ |\overline{P}|, |\overline{Q}| \right\}^{2n-2}$$

$$1 \ll \max \left\{ |P(\xi)||P'(\xi)||Q'(\xi)|, |Q(\xi)||P'(\xi)|^2 \right\} |\overline{P}|^{n-2}|\overline{Q}|^{n-1}$$

$$1 \ll \max \left\{ |Q(\xi)||P'(\xi)||Q'(\xi)|, |P(\xi)||Q'(\xi)|^2 \right\} \overline{P}^{n-1} \overline{Q}^{n-2}$$

$$1 \ll \max \left\{ |P(\xi)|, |Q(\xi)|
ight\}^2 \max \left\{ |\overline{P}|, |\overline{Q}|
ight\}^{2n-2}$$

$$1 \ll \max \left\{ |P(\xi)||P'(\xi)||Q'(\xi)|, |Q(\xi)||P'(\xi)|^2 \right\} \overline{P}^{n-2} \overline{Q}^{n-1}$$

$$1 \ll \max \left\{ |Q(\xi)||P'(\xi)||Q'(\xi)|, |P(\xi)||Q'(\xi)|^2
ight\} |\overline{P}|^{n-1}|\overline{Q}|^{n-2}$$

$$|P(\xi)| \ll |\overline{P}|^{-n} \quad |Q(\xi)| \ll |\overline{P}|^{-n} \quad |\overline{Q}| \ll |\overline{P}|$$

$$1 \ll \max\left\{|P(\xi)|,|Q(\xi)|
ight\}^2 \max\left\{|\overline{P}|,|\overline{Q}|
ight\}^{2n-2}$$

$$1 \ll \max \left\{ |P(\xi)||P'(\xi)||Q'(\xi)|, |Q(\xi)||P'(\xi)|^2 \right\} \overline{P}^{n-2} \overline{Q}^{n-1}$$

$$1 \ll \max \left\{ |Q(\xi)||P'(\xi)||Q'(\xi)|, |P(\xi)||Q'(\xi)|^2 \right\} |\overline{P}|^{n-1}|\overline{Q}|^{n-2}$$

$$|P(\xi)| \ll |P|^{-n} \quad |Q(\xi)| \ll |P|^{-n} \quad |Q| \ll |P|$$

$$|P'(\xi)| \ll |P(\xi)| \overline{P}|^\omega \quad |Q'(\xi)| \ll |Q(\xi)| \overline{Q}|^\omega$$

$$1 \ll \max\left\{|P(\xi)|,|Q(\xi)|
ight\}^2 \max\left\{|\overline{P}|,|\overline{Q}|
ight\}^{2n-2}$$

$$1 \ll \max \left\{ |P(\xi)||P'(\xi)||Q'(\xi)|, |Q(\xi)||P'(\xi)|^2 \right\} \overline{P}^{n-2} \overline{Q}^{n-1}$$

$$1 \ll \max \left\{ |Q(\xi)||P'(\xi)||Q'(\xi)|, |P(\xi)||Q'(\xi)|^2 \right\} |\overline{P}|^{n-1}|\overline{Q}|^{n-2}$$

$$|P(\xi)| \ll |\overline{P}|^{-n} \quad |Q(\xi)| \ll |\overline{P}|^{-n} \quad |\overline{Q}| \ll |\overline{P}|$$

$$|P'(\xi)| \ll |P(\xi)| \overline{P}|^\omega \quad |Q'(\xi)| \ll |Q(\xi)| \overline{P}|^\omega$$

$$1 \ll \max\left\{|P(\xi)|,|Q(\xi)|
ight\}^2 \max\left\{|\overline{P}|,|\overline{Q}|
ight\}^{2n-2}$$

$$1 \ll \max \left\{ |P(\xi)||P'(\xi)||Q'(\xi)|, |Q(\xi)||P'(\xi)|^2 \right\} \overline{P}^{n-2} \overline{Q}^{n-1}$$

$$1 \ll \max \left\{ |Q(\xi)||P'(\xi)||Q'(\xi)|, |P(\xi)||Q'(\xi)|^2 \right\} |\overline{P}|^{n-1}|\overline{Q}|^{n-2}$$

$$|P(\xi)| \ll |P|^{-n} \quad |Q(\xi)| \ll |P|^{-n} \quad |Q| \ll |P|$$

$$|P'(\xi)| \ll |\overline{P}|^{-n} |\overline{P}|^{\omega} \quad |Q'(\xi)| \ll |\overline{P}|^{-n} |\overline{P}|^{\omega}$$

$$1 \ll \max\left\{|P(\xi)|,|Q(\xi)|
ight\}^2 \max\left\{|\overline{P}|,|\overline{Q}|
ight\}^{2n-2}$$

$$1 \ll \max \left\{ |P(\xi)||P'(\xi)||Q'(\xi)|, |Q(\xi)||P'(\xi)|^2 \right\} \overline{P}^{n-2} \overline{Q}^{n-1}$$

$$1 \ll \max \left\{ |Q(\xi)||P'(\xi)||Q'(\xi)|, |P(\xi)||Q'(\xi)|^2 \right\} |\overline{P}|^{n-1}|\overline{Q}|^{n-2}$$

$$|P(\xi)| \ll |P|^{-n} \quad |Q(\xi)| \ll |P|^{-n} \quad |Q| \ll |P|$$

$$|P'(\xi)| \ll \overline{P}^{\omega-n} \quad |Q'(\xi)| \ll \overline{P}^{\omega-n}$$

$$1 \ll \max\left\{|P(\xi)|,|Q(\xi)|
ight\}^2 \max\left\{|\overline{P}|,|\overline{Q}|
ight\}^{2n-2}$$

$$1 \ll \max \left\{ |P(\xi)||P'(\xi)||Q'(\xi)|, |Q(\xi)||P'(\xi)|^2 \right\} \overline{P}^{n-2} \overline{Q}^{n-1}$$

$$1 \ll \max \left\{ |Q(\xi)||P'(\xi)||Q'(\xi)|, |P(\xi)||Q'(\xi)|^2 \right\} |\overline{P}|^{n-1}|\overline{Q}|^{n-2}$$

$$|P(\xi)| \ll |\overline{P}|^{-n} \quad |Q(\xi)| \ll |\overline{P}|^{-n} \quad |\overline{Q}| \ll |\overline{P}|$$

$$|P'(\xi)| \ll |P|^{\omega-n} \quad |Q'(\xi)| \ll |P|^{\omega-n}$$

$$1 \, \ll \max \left\{ |P(\xi)|, |Q(\xi)| \right\}^2 \max \left\{ |\overline{P}|, |\overline{Q}| \right\}^{2n-2}$$

$$1 \ll \max \left\{ |P(\xi)|, |Q(\xi)|
ight\}^2 \max \left\{ |\overline{P}|, |\overline{Q}|
ight\}^{2n-2}$$

$$1 \ll \max \left\{ |P(\xi)||P'(\xi)||Q'(\xi)|, |Q(\xi)||P'(\xi)|^2 \right\} |P|^{n-2} |Q|^{n-1}$$

$$1 \ll \max \left\{ |Q(\xi)||P'(\xi)||Q'(\xi)|, |P(\xi)||Q'(\xi)|^2
ight\} |\overline{P}|^{n-1}|\overline{Q}|^{n-2}$$

$$|P(\xi)| \ll |P|^{-n} \quad |Q(\xi)| \ll |P|^{-n} \quad |Q| \ll |P|$$

$$|P'(\xi)| \ll |P|^{\omega-n} \quad |Q'(\xi)| \ll |P|^{\omega-n}$$

$$1 \ll \max \left\{ |P(\xi)|, |Q(\xi)| \right\}^2 \max \left\{ |\overline{P}|, |\overline{Q}| \right\}^{2n-2}$$

$$\ll |\overline{P}|^{-2n}|\overline{P}|^{2n-2}$$

$$1 \ll \max \left\{ |P(\xi)|, |Q(\xi)|
ight\}^2 \max \left\{ |\overline{P}|, |\overline{Q}|
ight\}^{2n-2}$$

$$1 \ll \max \left\{ |P(\xi)||P'(\xi)||Q'(\xi)|, |Q(\xi)||P'(\xi)|^2 \right\} |\overline{P}|^{n-2}|\overline{Q}|^{n-1}$$

$$1 \ll \max \left\{ |Q(\xi)||P'(\xi)||Q'(\xi)|, |P(\xi)||Q'(\xi)|^2
ight\} |\overline{P}|^{n-1}|\overline{Q}|^{n-2}$$

$$|P(\xi)| \ll |P|^{-n} \quad |Q(\xi)| \ll |P|^{-n} \quad |Q| \ll |P|$$

$$|P'(\xi)| \ll |P|^{\omega-n} \quad |Q'(\xi)| \ll |P|^{\omega-n}$$

$$1 \ll \max \left\{ |P(\xi)|, |Q(\xi)| \right\}^2 \max \left\{ |\overline{P}|, |\overline{Q}| \right\}^{2n-2}$$

$$\ll |\overline{P}|^{-2n}|\overline{P}|^{2n-2}$$

$$\ll \overline{P}^{-2}$$

$$1 \ll \max \left\{ |P(\xi)|, |Q(\xi)|
ight\}^2 \max \left\{ |\overline{P}|, |\overline{Q}|
ight\}^{2n-2}$$

$$1 \ll \max \left\{ |P(\xi)||P'(\xi)||Q'(\xi)|, |Q(\xi)||P'(\xi)|^2 \right\} |\overline{P}|^{n-2}|\overline{Q}|^{n-1}$$

$$1 \ll \max \left\{ |Q(\xi)||P'(\xi)||Q'(\xi)|, |P(\xi)||Q'(\xi)|^2
ight\} |\overline{P}|^{n-1}|\overline{Q}|^{n-2}$$

$$|P(\xi)| \ll |P|^{-n} \quad |Q(\xi)| \ll |P|^{-n} \quad |Q| \ll |P|$$

$$|P'(\xi)| \ll |\overline{P}|^{\omega-n} \quad |Q'(\xi)| \ll |\overline{P}|^{\omega-n}$$

$$1 \ll |P(\xi)||P'(\xi)||Q'(\xi)||P|^{n-2}|Q|^{n-1}$$

$$1 \ll \max \left\{ |P(\xi)|, |Q(\xi)|
ight\}^2 \max \left\{ |\overline{P}|, |\overline{Q}|
ight\}^{2n-2}$$

$$1 \ll \max \left\{ |P(\xi)||P'(\xi)||Q'(\xi)|, |Q(\xi)||P'(\xi)|^2 \right\} |\overline{P}|^{n-2}|\overline{Q}|^{n-1}$$

$$1 \ll \max \left\{ |Q(\xi)||P'(\xi)||Q'(\xi)|, |P(\xi)||Q'(\xi)|^2
ight\} |\overline{P}|^{n-1}|\overline{Q}|^{n-2}$$

$$|P(\xi)| \ll |\overline{P}|^{-n} \quad |Q(\xi)| \ll |\overline{P}|^{-n} \quad |\overline{Q}| \ll |\overline{P}|$$

$$|P'(\xi)| \ll \overline{P}^{\omega-n} \quad |Q'(\xi)| \ll \overline{P}^{\omega-n}$$

$$1 \ll |P(\xi)||P'(\xi)||Q'(\xi)||\overline{P}|^{n-2}|\overline{Q}|^{n-1}$$

$$\ll |P|^{-n}|P|^{\omega-n}|P|^{\omega-n}|P|^{n-2}|P|^{n-1}$$

$$1 \ll \max\left\{|P(\xi)|,|Q(\xi)|
ight\}^2 \max\left\{|\overline{P}|,|\overline{Q}|
ight\}^{2n-2}$$

$$1 \ll \max \left\{ |P(\xi)||P'(\xi)||Q'(\xi)|, |Q(\xi)||P'(\xi)|^2 \right\} |\overline{P}|^{n-2}|\overline{Q}|^{n-1}$$

$$1 \ll \max \left\{ |Q(\xi)||P'(\xi)||Q'(\xi)|, |P(\xi)||Q'(\xi)|^2 \right\} \overline{P}^{n-1} \overline{Q}^{n-2}$$

$$|P(\xi)| \ll |\overline{P}|^{-n} \quad |Q(\xi)| \ll |\overline{P}|^{-n} \quad |\overline{Q}| \ll |\overline{P}|$$

$$|P'(\xi)| \ll \overline{P}^{\omega-n} \quad |Q'(\xi)| \ll \overline{P}^{\omega-n}$$

$$1 \ll |P(\xi)||P'(\xi)||Q'(\xi)||P|^{n-2}|Q|^{n-1}$$

$$\ll |P|^{-n}|P|^{\omega-n}|P|^{\omega-n}|P|^{n-2}|P|^{n-1}$$

$$\ll |P|^{2\omega-n-3}$$

$$1 \ll \max\left\{|P(\xi)|,|Q(\xi)|
ight\}^2 \max\left\{|\overline{P}|,|\overline{Q}|
ight\}^{2n-2}$$

$$1 \ll \max \left\{ |P(\xi)||P'(\xi)||Q'(\xi)|, |Q(\xi)||P'(\xi)|^2 \right\} |\overline{P}|^{n-2}|\overline{Q}|^{n-1}$$

$$1 \ll \max \left\{ |Q(\xi)||P'(\xi)||Q'(\xi)|, |P(\xi)||Q'(\xi)|^2
ight\} |\overline{P}|^{n-1}|\overline{Q}|^{n-2}$$

$$|P(\xi)| \ll |P|^{-n} \quad |Q(\xi)| \ll |P|^{-n} \quad |Q| \ll |P|$$

$$|P'(\xi)| \ll \overline{P}^{\omega-n} \quad |Q'(\xi)| \ll \overline{P}^{\omega-n}$$

$$1 \ll |P(\xi)||P'(\xi)||Q'(\xi)||\overline{P}|^{n-2}|\overline{Q}|^{n-1}$$

$$\ll |\overline{P}|^{-n}|\overline{P}|^{\omega-n}|\overline{P}|^{\omega-n}|\overline{P}|^{n-2}|\overline{P}|^{n-1}$$

$$\ll |P|^{2\omega-n-3} \ \Rightarrow \ 2\omega-n-3>0$$

$$1 \ll \max\left\{|P(\xi)|,|Q(\xi)|
ight\}^2 \max\left\{|\overline{P}|,|\overline{Q}|
ight\}^{2n-2}$$

$$1 \ll \max \left\{ |P(\xi)||P'(\xi)||Q'(\xi)|, |Q(\xi)||P'(\xi)|^2 \right\} |\overline{P}|^{n-2}|\overline{Q}|^{n-1}$$

$$1 \ll \max \left\{ |Q(\xi)||P'(\xi)||Q'(\xi)|, |P(\xi)||Q'(\xi)|^2
ight\} |\overline{P}|^{n-1}|\overline{Q}|^{n-2}$$

$$|P(\xi)| \ll |P|^{-n} \quad |Q(\xi)| \ll |P|^{-n} \quad |Q| \ll |P|$$

$$|P'(\xi)| \ll |\overline{P}|^{\omega-n} \quad |Q'(\xi)| \ll |\overline{P}|^{\omega-n}$$

$$1 \ll |P(\xi)||P'(\xi)||Q'(\xi)||\overline{P}|^{n-2}|\overline{Q}|^{n-1}$$

$$\ll |\overline{P}|^{-n}|\overline{P}|^{\omega-n}|\overline{P}|^{\omega-n}|\overline{P}|^{n-2}|\overline{P}|^{n-1}$$

$$\ll |\overline{P}|^{2\omega-n-3} \; \Rightarrow \; 2\omega-n-3>0 \; \Rightarrow \; \omega>rac{n+3}{2}$$

$$1 \ll \max\left\{|P(\xi)|,|Q(\xi)|
ight\}^2 \max\left\{|\overline{P}|,|\overline{Q}|
ight\}^{2n-2}$$

$$1 \ll \max \left\{ |P(\xi)||P'(\xi)||Q'(\xi)|, |Q(\xi)||P'(\xi)|^2 \right\} \overline{P}^{n-2} \overline{Q}^{n-1}$$

$$1 \ll \max \left\{ |Q(\xi)||P'(\xi)||Q'(\xi)|, |P(\xi)||Q'(\xi)|^2
ight\} |\overline{P}|^{n-1}|\overline{Q}|^{n-2}$$

$$P(x) = a_\ell x^\ell + \ldots + a_1 x + a_0 = a_\ell (x - lpha_1) \ldots (x - lpha_\ell) \ Q(x) = b_m x^m + \ldots + b_1 x + b_0 = b_m (x - eta_1) \ldots (x - eta_m)$$

Consider

$$a_\ell^m b_m^\ell \prod_{\substack{1 \, \leq \, i \, \leq \, \ell \ 1 \, \leq \, j \, \leq \, m}} \left(lpha_i - eta_j
ight)$$

$$P(x) = a_\ell x^\ell + \ldots + a_1 x + a_0 = a_\ell (x - lpha_1) \ldots (x - lpha_\ell) \ Q(x) = b_m x^m + \ldots + b_1 x + b_0 = b_m (x - eta_1) \ldots (x - eta_m)$$

Consider

$$R(P,Q) = a_\ell^m b_m^\ell \prod_{egin{array}{c} 1 \, \leq \, i \, \leq \, \ell \ 1 \, \leq \, j \, \leq \, m \end{array}} (lpha_i - eta_j)$$

$$P(x) = a_\ell x^\ell + \ldots + a_1 x + a_0 = a_\ell (x - lpha_1) \ldots (x - lpha_\ell) \ Q(x) = b_m x^m + \ldots + b_1 x + b_0 = b_m (x - eta_1) \ldots (x - eta_m)$$

Consider

$$R(P,Q) = a_\ell^m b_m^\ell \prod_{egin{array}{c} 1 \leq i \leq \ell \ 1 \leq j \leq m \end{array}} (lpha_i - eta_j)$$

LEMMA 3: Let $P,Q \in Z[x]$ be polynomials of degree d with $1 < d \le n$. Suppose that P and Q have no common root...

$$P(x) = a_\ell x^\ell + \ldots + a_1 x + a_0 = a_\ell (x - lpha_1) \ldots (x - lpha_\ell) \ Q(x) = b_m x^m + \ldots + b_1 x + b_0 = b_m (x - eta_1) \ldots (x - eta_m)$$

Consider

$$R(P,Q) = a_\ell^m b_m^\ell \prod_{\substack{1 \, \leq \, i \, \leq \, \ell \ 1 \, \leq \, j \, \leq \, m}} \left(lpha_i - eta_j
ight)$$

$$P(x) = a_\ell x^\ell + \ldots + a_1 x + a_0 = a_\ell (x - lpha_1) \ldots (x - lpha_\ell) \ Q(x) = b_m x^m + \ldots + b_1 x + b_0 = b_m (x - eta_1) \ldots (x - eta_m)$$

$$R(P,Q) = a_\ell^m b_m^\ell \prod_{\substack{1 \, \leq \, i \, \leq \, \ell \ 1 \, \leq \, j \, \leq \, m}} \left(lpha_i - eta_j
ight)
eq 0$$

$$P(x) = a_\ell x^\ell + \ldots + a_1 x + a_0 = a_\ell (x - lpha_1) \ldots (x - lpha_\ell) \ Q(x) = b_m x^m + \ldots + b_1 x + b_0 = b_m (x - eta_1) \ldots (x - eta_m)$$

$$|R(P,Q)|=|a_\ell^m b_m^\ell\prod_{\substack{1\,\leq\,i\,\leq\,\ell\1\,\leq\,j\,\leq\,m}}(lpha_i-eta_j)|>0$$

$$P(x) = a_\ell x^\ell + \ldots + a_1 x + a_0 = a_\ell (x - lpha_1) \ldots (x - lpha_\ell) \ Q(x) = b_m x^m + \ldots + b_1 x + b_0 = b_m (x - eta_1) \ldots (x - eta_m)$$

$$|R(P,Q)| = |a_\ell^m b_m^\ell \prod_{\substack{1 \leq i \leq \ell \ 1 < j \leq m}} (lpha_i - eta_j)| > 0.$$

$$P(x) = a_\ell x^\ell + \ldots + a_1 x + a_0 = a_\ell (x - lpha_1) \ldots (x - lpha_\ell) \ Q(x) = b_m x^m + \ldots + b_1 x + b_0 = b_m (x - eta_1) \ldots (x - eta_m)$$

$$|R(P,Q)| = |a_\ell^m b_m^\ell \prod_{\substack{1 \, \leq \, i \, \leq \, \ell \ 1 \, \leq \, j \, \leq \, m}} (lpha_i - eta_j)| \geq 1$$

$$P(x) = a_\ell x^\ell + \ldots + a_1 x + a_0 = a_\ell (x - lpha_1) \ldots (x - lpha_\ell) \ Q(x) = b_m x^m + \ldots + b_1 x + b_0 = b_m (x - eta_1) \ldots (x - eta_m)$$

$$|R(P,Q)| = |a_\ell^m b_m^\ell \prod_{\substack{1 \, \leq \, i \, \leq \, \ell \ 1 \, \leq \, j \, \leq \, m}} (lpha_i - eta_j)| \geq 1$$

$$1 \ll \max \left\{ |P(\xi)|, |Q(\xi)|
ight\}^2 \max \left\{ |\overline{P}|, |\overline{Q}|
ight\}^{2n-2}$$

$$1 \ll \max \left\{ |P(\xi)||P'(\xi)||Q'(\xi)|, |Q(\xi)||P'(\xi)|^2 \right\} \overline{P}^{n-2} \overline{Q}^{n-1}$$

$$1 \ll \max \left\{ |Q(\xi)| |P'(\xi)| |Q'(\xi)|, |P(\xi)| |Q'(\xi)|^2 \right\} \overline{|P|^{n-1}} \overline{|Q|^{n-2}}$$

$$P(x) = a_\ell x^\ell + \ldots + a_1 x + a_0 = a_\ell (x - lpha_1) \ldots (x - lpha_\ell) \ Q(x) = b_m x^m + \ldots + b_1 x + b_0 = b_m (x - eta_1) \ldots (x - eta_m)$$

have
$$|R(P,Q)| = |a_\ell^m b_m^\ell \prod_{\substack{1 \leq i \leq \ell \ 1 < j \leq m}} (lpha_i - eta_j)| \geq 1$$

$$P(x) = a_\ell x^\ell + \ldots + a_1 x + a_0 = a_\ell (x - lpha_1) \ldots (x - lpha_\ell) \ Q(x) = b_m x^m + \ldots + b_1 x + b_0 = b_m (x - eta_1) \ldots (x - eta_m)$$

$$|R(P,Q)| = |a_\ell^m b_m^\ell \prod_{\substack{1 \leq i \leq \ell \ 1 \leq j \leq m}} (lpha_i - eta_j)| \geq 1.$$

$$P(x)=a_\ell x^\ell+\ldots+a_1 x+a_0=a_\ell(x-lpha_1)\ldots(x-lpha_\ell)\ Q(x)=b_m x^m+\ldots+b_1 x+b_0=b_m(x-eta_1)\ldots(x-eta_m)$$

have
$$|R(P,Q)| = |a_\ell^m b_m^\ell \prod_{\substack{1 \leq i \leq \ell \ 1 \leq j \leq m}} (lpha_i - eta_j)| \geq 1$$

$$P(x)=a_\ell x^\ell+\ldots+a_1 x+a_0=a_\ell(x-lpha_1)\ldots(x-lpha_\ell)\ Q(x)=b_m x^m+\ldots+b_1 x+b_0=b_m(x-eta_1)\ldots(x-eta_m)$$

We have

$$|R(P,Q)| = |a_\ell^m b_m^\ell \prod_{\substack{1 \leq i \leq \ell \ 1 \leq j \leq m}} (lpha_i - eta_j)| \geq 1.$$

 $\ll \max\left\{|P(\xi)|,|Q(\xi)|
ight\}^2 \max\left\{|\overline{P}|,|\overline{Q}|
ight\}^{2n-2}$

$$P(x)=a_\ell x^\ell+\ldots+a_1 x+a_0=a_\ell(x-lpha_1)\ldots(x-lpha_\ell)\ Q(x)=b_m x^m+\ldots+b_1 x+b_0=b_m(x-eta_1)\ldots(x-eta_m)$$

We have

$$|R(P,Q)| = |a_\ell^m b_m^\ell \prod_{\substack{1 \leq i \leq \ell \ 1 \leq i \leq m}} (lpha_i - eta_j)| \geq 1$$

 $\ll \max \{|P(\xi)||P'(\xi)||Q'(\xi)|,|Q(\xi)||P'(\xi)|^2\} |\overline{P}|^{n-2}|\overline{Q}|^{n-1}$

$$P(x) = a_\ell x^\ell + \ldots + a_1 x + a_0 = a_\ell (x - lpha_1) \ldots (x - lpha_\ell) \ Q(x) = b_m x^m + \ldots + b_1 x + b_0 = b_m (x - eta_1) \ldots (x - eta_m)$$

We have

$$|R(P,Q)| = |a_\ell^m b_m^\ell \prod_{\substack{1 \leq i \leq \ell \ 1 < j \leq m}} (lpha_i - eta_j)| \geq 1$$

 $\ll \max \{|Q(\xi)||P'(\xi)||Q'(\xi)|,|P(\xi)||Q'(\xi)|^2\} |\overline{P}|^{n-1}|\overline{Q}|^{n-2}$

$\left \begin{array}{c}P^{(5)}(\xi)\\5!\end{array}\right $	$\frac{P^{(4)}(\xi)}{4!}$	$\frac{P^{(3)}(\xi)}{3!}$	$rac{P''(\xi)}{2!}$	$P'(\xi)$	$P(\xi)$	0	0	0	0
0	$\frac{P^{(5)}(\xi)}{5!}$	$\frac{P^{(4)}(\xi)}{4!}$	$\frac{P^{(3)}(\xi)}{3!}$	$rac{P''(\xi)}{2!}$	$P'(\xi)$	$P(\xi)$	0	0	0
0	0	$\frac{P^{(5)}(\xi)}{5!}$	$\frac{P^{(4)}(\xi)}{4!}$	$\frac{P^{(3)}(\xi)}{3!}$	$rac{P''(\xi)}{2!}$	$P'(\xi)$	$P(\xi)$	0	0
0	0	0	$\frac{P^{(5)}(\xi)}{5!}$	$\frac{P^{(4)}(\xi)}{4!}$	$\frac{P^{(3)}(\xi)}{3!}$	$rac{P''(\xi)}{2!}$	$P'(\xi)$	$P(\xi)$	0
0	0	0	0	$\frac{P^{(5)}(\xi)}{5!}$	$\frac{P^{(4)}(\xi)}{4!}$	$\frac{P^{(3)}(\xi)}{3!}$	$rac{P''(\xi)}{2!}$	$P'(\xi)$	$P(\xi)$
$\frac{Q^{(5)}(\xi)}{5!}$	$\frac{Q^{(4)}(\xi)}{4!}$	$\frac{Q^{(3)}(\xi)}{3!}$	$rac{Q''(\xi)}{2!}$	$Q'(\xi)$	$Q(\xi)$	0	0	0	0
0	$\frac{Q^{(5)}(\xi)}{5!}$	$\frac{Q^{(4)}(\xi)}{4!}$	$\frac{Q^{(3)}(\xi)}{3!}$	$rac{Q''(\xi)}{2!}$	$Q'(\xi)$	$Q(\xi)$	0	0	0
0	0	$\frac{Q^{(5)}(\xi)}{5!}$	$\frac{Q^{(4)}(\xi)}{4!}$	$rac{Q^{(3)}(\xi)}{3!}$	$rac{Q''(\xi)}{2!}$	$Q'(\xi)$	$Q(\xi)$	0	0
0	0	0	$rac{Q^{(5)}(\xi)}{5!}$	$rac{Q^{(4)}(\xi)}{4!}$	$rac{Q^{(3)}(\xi)}{3!}$	$rac{Q''(\xi)}{2!}$	$Q'(\xi)$	$Q(\xi)$	0
0	0	0	0	$\frac{Q^{(5)}(\xi)}{5!}$	$\frac{Q^{(4)}(\xi)}{4!}$	$rac{Q^{(3)}(\xi)}{3!}$	$rac{Q''(\xi)}{2!}$	$Q'(\xi)$	$Q(\xi)$

$ \mid \frac{P^{(5)}(\xi)}{5!}$	$\frac{P^{(4)}(\xi)}{4!}$	$\frac{P^{(3)}(\xi)}{3!}$	$rac{P''(\xi)}{2!}$	$P'(\xi)$	$P(\xi)$	0	0	0	0
0	$\frac{P^{(5)}(\xi)}{5!}$	$\frac{P^{(4)}(\xi)}{4!}$	$\frac{P^{(3)}(\xi)}{3!}$	$rac{P''(\xi)}{2!}$	$P'(\xi)$	$P(\xi)$	0	0	0
0	0	$\frac{P^{(5)}(\xi)}{5!}$	$\frac{P^{(4)}(\xi)}{4!}$	$\frac{P^{(3)}(\xi)}{3!}$	$rac{P''(\xi)}{2!}$	$P'(\xi)$	$P(\xi)$	0	0
0	0	0	$\frac{P^{(5)}(\xi)}{5!}$	$\frac{P^{(4)}(\xi)}{4!}$	$\frac{P^{(3)}(\xi)}{3!}$	$rac{P''(\xi)}{2!}$	$P'(\xi)$	$P(\xi)$	0
0	0	0	0	$\frac{P^{(5)}(\xi)}{5!}$	$\frac{P^{(4)}(\xi)}{4!}$	$\frac{P^{(3)}(\xi)}{3!}$	$rac{P''(\xi)}{2!}$	$P'(\xi)$	$P(\xi)$
$rac{Q^{(5)}(\xi)}{5!}$	$rac{Q^{(4)}(\xi)}{4!}$	$rac{Q^{(3)}(\xi)}{3!}$	$rac{Q''(\xi)}{2!}$	$Q'(\xi)$	$Q(\xi)$	0	0	0	0
0	$rac{Q^{(5)}(\xi)}{5!}$	$rac{Q^{(4)}(\xi)}{4!}$	$rac{Q^{(3)}(\xi)}{3!}$	$rac{Q''(\xi)}{2!}$	$Q'(\xi)$	$Q(\xi)$	0	0	0
0	0	$rac{Q^{(5)}(\xi)}{5!}$	$rac{Q^{(4)}(\xi)}{4!}$	$rac{Q^{(3)}(\xi)}{3!}$	$rac{Q''(\xi)}{2!}$	$Q'(\xi)$	$Q(\xi)$	0	0
0	0	0	$rac{Q^{(5)}(\xi)}{5!}$	$rac{Q^{(4)}(\xi)}{4!}$	$rac{Q^{(3)}(\xi)}{3!}$	$rac{Q''(\xi)}{2!}$	$Q'(\xi)$	$Q(\xi)$	0
0	0	0	0	$rac{Q^{(5)}(\xi)}{5!}$	$rac{Q^{(4)}(\xi)}{4!}$	$rac{Q^{(3)}(\xi)}{3!}$	$rac{Q''(\xi)}{2!}$	$Q'(\xi)$	$Q(\xi)$
ı									١

P	$oldsymbol{P}$	P	$oldsymbol{P}$	$oldsymbol{P}$	P	0	0	0	0
0	$oldsymbol{P}$	$ m{P} $	$ oldsymbol{P} $	$ m{P} $	$ m{P} $	$ m{P} $	0	0	0
0	0	$ m{P} $	$ m{P} $	$ m{P} $	$ m{P} $	$ oldsymbol{P} $	$P(\xi)$	0	0
0	0	0	$ oldsymbol{P} $	P	$ m{P} $	$ m{P} $	$P'(\xi)$	$P(\xi)$	0
0	0	0	0	P	P	$ m{P} $	$rac{P''(\xi)}{2!}$	$P'(\xi)$	$P(\xi)$
Q	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	0	0	0	0
0	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	$ oldsymbol{Q} $	$oldsymbol{Q}$	0	0	0
0	0	$ oldsymbol{Q} $	$oldsymbol{Q}$	$oldsymbol{Q}$	$ oldsymbol{Q} $	$ oldsymbol{Q} $	$Q(\xi)$	0	0
0	0	0	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	$ oldsymbol{Q} $	$Q'(\xi)$	$Q(\xi)$	0
0	0	0	0	$oldsymbol{Q}$	Q	$ oldsymbol{Q} $	$rac{Q''(\xi)}{2!}$	$Q'(\xi)$	$Q(\xi)$
I									ı

P	P	P	P	$oldsymbol{P}$	$ m{P} $	0	0	0	0
0	$oldsymbol{P}$	$ m{P} $	$ m{P} $	$ m{P} $	$ m{P} $	$ m{P} $	0	0	0
0	0	P	$ m{P} $	$oldsymbol{P}$	$ m{P} $	$ m{P} $	$P(\xi)$	0	0
0	0	0	$ oldsymbol{P} $	$oldsymbol{P}$	$ oldsymbol{P} $	$ oldsymbol{P} $	$P'(\xi)$	$P(\xi)$	0
0	0	0	0	$oldsymbol{P}$	$ m{P} $	P	P	$P'(\xi)$	$P(\xi)$
$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	$ oldsymbol{Q} $	0	0	0	0
0	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	$ oldsymbol{Q} $	$oldsymbol{Q}$	0	0	0
0	0	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	$ oldsymbol{Q} $	$oldsymbol{Q}$	$Q(\xi)$	0	0
0	0	0	$oldsymbol{Q}$	$oldsymbol{Q}$	$ oldsymbol{Q} $	$oldsymbol{Q}$	$Q'(\xi)$	$Q(\xi)$	0
0	0	0	0	$oldsymbol{Q}$	$ oldsymbol{Q} $	$oldsymbol{Q}$	Q	$Q'(\xi)$	$Q(\xi)$

P	$oldsymbol{P}$	P	P	$oldsymbol{P}$	P	0	0	0	0
0	$oldsymbol{P}$	P	$ m{P} $	P	$ oldsymbol{P} $	$ m{P} $	0	0	0
0	0	$ m{P} $	$ m{P} $	P	$ m{P} $	$ m{P} $	$ m{P} $	0	0
0	0	0	P	$oldsymbol{P}$	P	P	$P'(\xi)$	$P(\xi)$	0
0	0	0	0	$oldsymbol{P}$	$ oldsymbol{P} $	P	P	$P'(\xi)$	$P(\xi)$
Q	$oldsymbol{Q}$	$ oldsymbol{Q} $	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	0	0	0	0
0	$oldsymbol{Q}$	$ oldsymbol{Q} $	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	0	0	0
0	0	$ oldsymbol{Q} $	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	Q	0	0
0	0	0	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	$Q'(\xi)$	$Q(\xi)$	0
0	0	0	0	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	$ m{Q} $	$Q'(\xi)$	$Q(\xi)$

P	$oldsymbol{P}$	$ m{P} $	$ m{P} $	$oldsymbol{P}$	P	0	0	0	0
0	$oldsymbol{P}$	$ m{P} $	$ m{P} $	P	P	P	0	0	0
0	0	$ oldsymbol{P} $	$ m{P} $	$ m{P} $	$ m{P} $	$ m{P} $	$ m{P} $	0	0
0	0	0	P	P	P	$ m{P} $	$P'(\xi)$	$P(\xi)$	0
0	0	0	0	$ m{P} $	$ m{P} $	$ m{P} $	$ m{P} $	$P'(\xi)$	$P(\xi)$
Q	$oldsymbol{Q}$	$ oldsymbol{Q} $	$ oldsymbol{Q} $	$ oldsymbol{Q} $	$ oldsymbol{Q} $	0	0	0	0
0	$oldsymbol{Q}$	$ oldsymbol{Q} $	$oldsymbol{Q}$	$ oldsymbol{Q} $	$ oldsymbol{Q} $	$ oldsymbol{Q} $	0	0	0
0	0	$ oldsymbol{Q} $	Q	0	0				
0	0	0	$ oldsymbol{Q} $	$ oldsymbol{Q} $	$ oldsymbol{Q} $	$ oldsymbol{Q} $	$Q'(\xi)$	$Q(\xi)$	0
0	0	0	0	$ oldsymbol{Q} $	$ oldsymbol{Q} $	$ oldsymbol{Q} $	$ oldsymbol{Q} $	$Q'(\xi)$	$Q(\xi)$
									ļ

 $\ll \max \left\{ |P(\xi)|, |Q(\xi)|
ight\}^2 \max \left\{ |\overline{P}|, |\overline{Q}|
ight\}^8$

P	$oldsymbol{P}$	$ m{P} $	P	$oldsymbol{P}$	P	0	0	0	0
0	$oldsymbol{P}$	$ m{P} $	P	P	$ m{P} $	$ m{P} $	0	0	0
0	0	$ oldsymbol{P} $	$ m{P} $	$ m{P} $	$ oldsymbol{P} $	$ oldsymbol{P} $	$ m{P} $	0	0
0	0	0	$ m{P} $	$ m{P} $	$ m{P} $	$ m{P} $	$P'(\xi)$	$P(\xi)$	0
0	0	0	0	P	$ oldsymbol{P} $	P	$ m{P} $	$P'(\xi)$	$P(\xi)$
Q	$oldsymbol{Q}$	$ oldsymbol{Q} $	$oldsymbol{Q}$	$oldsymbol{Q}$	$ oldsymbol{Q} $	0	0	0	0
0	$oldsymbol{Q}$	$ oldsymbol{Q} $	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	Q	0	0	0
0	0	$ oldsymbol{Q} $	$oldsymbol{Q}$	$oldsymbol{Q}$	$ oldsymbol{Q} $	$ oldsymbol{Q} $	$ m{Q} $	0	0
0	0	0	$oldsymbol{Q}$	$oldsymbol{Q}$	$ oldsymbol{Q} $	$ oldsymbol{Q} $	$Q'(\xi)$	$Q(\xi)$	0
0	0	0	0	$oldsymbol{Q}$	$ oldsymbol{Q} $	$ oldsymbol{Q} $	Q	$Q'(\xi)$	$Q(\xi)$

 $\ll \max\left\{|P(\xi)||P'(\xi)||Q'(\xi)|,|Q(\xi)||P'(\xi)|^2
ight\}|\overline{P}|^3|\overline{Q}|^4$

P	$oldsymbol{P}$	$ m{P} $	P	$oldsymbol{P}$	P	0	0	0	0
0	$oldsymbol{P}$	$ m{P} $	P	P	$ m{P} $	$ m{P} $	0	0	0
0	0	$ oldsymbol{P} $	$ m{P} $	$ m{P} $	$ m{P} $	$ oldsymbol{P} $	$ m{P} $	0	0
0	0	0	$ m{P} $	$ m{P} $	$ m{P} $	$ m{P} $	$P'(\xi)$	$P(\xi)$	0
0	0	0	0	P	$ oldsymbol{P} $	P	$ m{P} $	$P'(\xi)$	$P(\xi)$
Q	$oldsymbol{Q}$	$ oldsymbol{Q} $	$oldsymbol{Q}$	$oldsymbol{Q}$	$ oldsymbol{Q} $	0	0	0	0
0	$oldsymbol{Q}$	$ oldsymbol{Q} $	$oldsymbol{Q}$	$oldsymbol{Q}$	$oldsymbol{Q}$	Q	0	0	0
0	0	$ oldsymbol{Q} $	$oldsymbol{Q}$	$oldsymbol{Q}$	$ oldsymbol{Q} $	$ oldsymbol{Q} $	$ m{Q} $	0	0
0	0	0	$oldsymbol{Q}$	$oldsymbol{Q}$	$ oldsymbol{Q} $	$ oldsymbol{Q} $	$Q'(\xi)$	$Q(\xi)$	0
0	0	0	0	$oldsymbol{Q}$	$ oldsymbol{Q} $	$ oldsymbol{Q} $	Q	$Q'(\xi)$	$Q(\xi)$

 $\ll \max\left\{|Q(\xi)||P'(\xi)||Q'(\xi)|,|P(\xi)||Q'(\xi)|^2
ight\}|\overline{P}|^4|\overline{Q}|^3$

$$P(x) = a_\ell x^\ell + \ldots + a_1 x + a_0 = a_\ell (x - lpha_1) \ldots (x - lpha_\ell) \ Q(x) = b_m x^m + \ldots + b_1 x + b_0 = b_m (x - eta_1) \ldots (x - eta_m)$$

$$|R(P,Q)| = |a_\ell^m b_m^\ell \prod_{\substack{1 \, \leq \, i \, \leq \, \ell \ 1 \, \leq \, j \, \leq \, m}} (lpha_i - eta_j)| \geq 1$$

$$P(x) = a_\ell x^\ell + \ldots + a_1 x + a_0 = a_\ell (x - lpha_1) \ldots (x - lpha_\ell) \ Q(x) = b_m x^m + \ldots + b_1 x + b_0 = b_m (x - eta_1) \ldots (x - eta_m)$$

$$|R(P,Q)| = |a_\ell^m b_m^\ell \prod_{\substack{1 \leq i \leq \ell \ 1 \leq j \leq m}} (lpha_i - eta_j)| \geq 1$$

$$|R(P,Q)| \ll egin{cases} \max{\{|P(\xi)|,|Q(\xi)|\}^2 \max{\{ar{P},ar{Q}\}^{2n-2}} \ \max{\{|P(\xi)||P'(\xi)||Q'(\xi)|,|Q(\xi)||P'(\xi)|^2\} ar{P}^{n-2}ar{Q}^{n-1} \ \max{\{|Q(\xi)||P'(\xi)||Q'(\xi)|,|P(\xi)||Q'(\xi)|^2\} ar{P}^{n-1}ar{Q}^{n-2} \end{cases}$$

$$1 \ll \max\left\{|P(\xi)|,|Q(\xi)|
ight\}^2 \max\left\{|\overline{P}|,|\overline{Q}|
ight\}^{2n-2}$$

$$1 \ll \max \left\{ |P(\xi)||P'(\xi)||Q'(\xi)|, |Q(\xi)||P'(\xi)|^2 \right\} |\overline{P}|^{n-2}|\overline{Q}|^{n-1}$$

$$1 \ll \max \left\{ |Q(\xi)||P'(\xi)||Q'(\xi)|, |P(\xi)||Q'(\xi)|^2
ight\} |\overline{P}|^{n-1}|\overline{Q}|^{n-2}$$

Theorem 5 (Wirsing, 1961): For any real number $\xi \not\in A_n$ there exist infinitely many algebraic numbers $\alpha \in A_n$ with

$$|\xi-lpha| \ll H(lpha)^{-rac{n}{2}-rac{3}{2}}$$

THEOREM 5 (Wirsing, 1961): For any real number $\xi \not\in A_n$ there exist infinitely many algebraic numbers $\alpha \in A_n$ with

$$|\xi-lpha|\ll H(lpha)^{-rac{n}{2}-rac{3}{2}}$$

Theorem 6 (Wirsing, 1961): For any real number $\xi \not\in A_n$ there exist infinitely many algebraic numbers $\alpha \in A_n$ with

$$|\xi-lpha| \ll H(lpha)^{-rac{n}{2}-\lambda_n}, \quad \lim_{n o\infty} \lambda_n = 2$$

THEOREM 5 (Wirsing, 1961): For any real number $\xi \not\in A_n$ there exist infinitely many algebraic numbers $\alpha \in A_n$ with

$$|\xi-lpha| \ll H(lpha)^{-rac{n}{2}-rac{3}{2}}$$

THEOREM 6 (Wirsing, 1961): For any real number $\xi \not\in A_n$ there exist infinitely many algebraic numbers $\alpha \in A_n$ with

$$|\xi-lpha| \ll H(lpha)^{-rac{n}{2}-\lambda_n}, \quad \lim_{n o\infty} \lambda_n = 2$$

THEOREM 7: For any real number $\xi \not\in A_n$ there exist infinitely many algebraic numbers $\alpha \in A_n$ with

$$|\xi-lpha| \ll H(lpha)^{-rac{n}{2}-\lambda_n}, \quad \lim_{n o\infty} \lambda_n = 3$$

n	Th. 5, 1961	Th. 6, 1961	Th. 7, 1993	Conjecture
3	3	3.28	3.5	4
4	3.5	3.82	$\boldsymbol{4.12}$	5
5	4	4.35	4.71	6
6	4.5	4.87	5.28	7
7	5	5.39	5.84	8
8	5.5	5.9	6.39	9
9	6	$\boldsymbol{6.41}$	6.93	10
10	6.5	$\boldsymbol{6.92}$	7.47	11
15	9	$\boldsymbol{9.44}$	10.09	16
20	11.5	11.95	12.67	21
50	26.5	26.98	27.84	51
100	51.5	51.99	$\boldsymbol{52.92}$	101

n	Th. 5, 1961	Th. 6, 1961	Th. 7, 1993	Conjecture
3	3	3.28	3.5	4
4	3.5	3.82	$\boldsymbol{4.12}$	5
5	4	4.35	$\boldsymbol{4.71}$	6
6	4.5	4.87	5.28	7
7	5	5.39	5.84	8
8	5.5	5.9	6.39	9
9	6	6.41	$\boldsymbol{6.93}$	10
10	6.5	$\boldsymbol{6.92}$	7.47	11
15	9	9.44	10.09	16
20	11.5	11.95	12.67	21
50	26.5	26.98	27.84	51
100	51.5	51.99	$\boldsymbol{52.92}$	101

Theorem 5 (Wirsing, 1961): For any real number $\xi \not\in A_n$ there exist infinitely many algebraic numbers $\alpha \in A_n$ with

$$|\xi-lpha|\ll H(lpha)^{-rac{n}{2}-rac{3}{2}}$$

n	Th. 5, 1961	Th. 6, 1961	Th. 7, 1993	Conjecture
3	3	3.28	3.5	4
4	3.5	3.82	4.12	5
5	4	4.35	4.71	6
6	4.5	4.87	5.28	7
7	5	5.39	5.84	8
8	5.5	5.9	6.39	9
9	6	6.41	6.93	10
10	6.5	$\boldsymbol{6.92}$	7.47	11
15	9	9.44	10.09	16
20	11.5	11.95	12.67	21
50	26.5	26.98	27.84	51
100	51.5	$\boldsymbol{51.99}$	$\boldsymbol{52.92}$	101

Theorem 6 (Wirsing, 1961): For any real number $\xi \not\in A_n$ there exist infinitely many algebraic numbers $\alpha \in A_n$ with

$$|\xi-lpha| \ll H(lpha)^{-rac{n}{2}-\lambda_n}, \quad \lim_{n o\infty}\lambda_n=2$$

n	Th. 5, 1961	Th. 6, 1961	Th. 7, 1993	Conjecture
3	3	3.28	3.5	4
4	3.5	3.82	$\boldsymbol{4.12}$	5
5	4	4.35	$\boldsymbol{4.71}$	6
6	4.5	4.87	5.28	7
7	5	5.39	5.84	8
8	5.5	5.9	6.39	9
9	6	6.41	$\boldsymbol{6.93}$	10
10	6.5	$\boldsymbol{6.92}$	7.47	11
15	9	9.44	10.09	16
20	11.5	11.95	12.67	21
50	26.5	26.98	27.84	51
100	51.5	51.99	$\boldsymbol{52.92}$	101

Theorem 7: For any real number $\xi \not\in A_n$ there exist infinitely many algebraic numbers $\alpha \in A_n$ with

$$|\xi-lpha| \ll H(lpha)^{-rac{n}{2}-\lambda_n}, \quad \lim_{n o\infty} \lambda_n = 3$$

n	Th. 5, 1961	Th. 6, 1961	Th. 7, 1993	Conjecture
3	3	3.28	3.5	4
4	3.5	3.82	$\boldsymbol{4.12}$	5
5	4	4.35	4.71	6
6	4.5	4.87	5.28	7
7	5	5.39	5.84	8
8	5.5	5.9	6.39	9
9	6	$\boldsymbol{6.41}$	6.93	10
10	6.5	$\boldsymbol{6.92}$	7.47	11
15	9	$\boldsymbol{9.44}$	10.09	16
20	11.5	11.95	12.67	21
50	26.5	26.98	27.84	51
100	51.5	51.99	$\boldsymbol{52.92}$	101

n	Th. 5, 1961	Th. 6, 1961	Th. 7, 1993	Th. 9, 2005	Conjecture
3	3	3.28	3.5	3.73	4
4	3.5	3.82	4.12	4.45	5
5	4	4.35	4.71	5.14	6
6	4.5	4.87	5.28	5.76	7
7	5	5.39	5.84	6.36	8
8	5.5	5.9	6.39	6.93	9
9	6	6.41	6.93	7.50	10
10	6.5	$\boldsymbol{6.92}$	7.47	8.06	11
15	9	9.44	10.09	10.77	16
20	11.5	11.95	12.67	13.40	21
50	26.5	26.98	27.84	28.70	51
100	51.5	51.99	$\boldsymbol{52.92}$	53.84	101

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

$$(\mathrm{ii}) \quad \overline{P_1} < \overline{P_2} < \ldots < \overline{P_i} < \ldots$$

(iii) for any
$$P \in Z[x], \deg P \le n, \ P \not\equiv 0,$$
 with $|P(\xi)| < |P_i(\xi)|$ we have $|P| \ge |P_{i+1}|$.

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

$$(\mathrm{ii}) \quad \overline{P_1} < \overline{P_2} < \ldots < \overline{P_i} < \ldots$$

(iii) for any
$$P \in Z[x], \ \deg P \le n, \ P \not\equiv 0,$$
 with $|P(\xi)| < |P_i(\xi)|$ we have $|P| \ge |P_{i+1}|$.

EXAMPLE: Let
$$n=1$$
 and $\xi=\frac{1+\sqrt{5}}{2}$.

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$|P_1| < |P_2| < \ldots < |P_i| < \ldots$$

(iii) for any
$$P \in Z[x], \ \deg P \le n, \ P \not\equiv 0,$$
 with $|P(\xi)| < |P_i(\xi)|$ we have $|P| \ge |P_{i+1}|$.

EXAMPLE: Let n=1 and $\xi=\frac{1+\sqrt{5}}{2}$. Then

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

$$(\mathrm{ii}) \quad \overline{P_1} < \overline{P_2} < \ldots < \overline{P_i} < \ldots$$

(iii) for any
$$P \in Z[x], \deg P \le n, \ P \not\equiv 0,$$
 with $|P(\xi)| < |P_i(\xi)|$ we have $|P| \ge |P_{i+1}|$.

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$|P_1| < |P_2| < \ldots < |P_i| < \ldots$$

(iii) for any
$$P \in Z[x], \ \deg P \le n, \ P \not\equiv 0,$$
 with $|P(\xi)| < |P_i(\xi)|$ we have $|P| \ge |P_{i+1}|$.

LEMMA 1: For any $i \geq 1$ we have

$$|P_i(\xi)|<|P_i|^{-n}$$

LEMMA: There are infinitely many polynomials $P,\ Q\in Z[x]$ of degree $\leq n,$ such that

 $|P(\xi)| \ll |\overline{P}|^{-n}$ $|Q(\xi)| \ll |\overline{P}|^{-n}$ $|\overline{Q}| \ll |\overline{P}|$

and

P,Q have no common root

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$|P_1| < |P_2| < \ldots < |P_i| < \ldots$$

(iii) for any
$$P \in Z[x], \deg P \le n, \ P \not\equiv 0,$$
 with $|P(\xi)| < |P_i(\xi)|$ we have $|P| \ge |P_{i+1}|$.

LEMMA 1: For any $i \geq 1$ we have

$$|P_i(\xi)| < \overline{|P_i|^{-n}}$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$|P_1| < |P_2| < \ldots < |P_i| < \ldots$$

(iii) for any
$$P \in Z[x], \deg P \le n, \ P \not\equiv 0,$$
 with $|P(\xi)| < |P_i(\xi)|$ we have $|P| \ge |P_{i+1}|$.

LEMMA 1: For any $i \geq 1$ we have

$$|P_i(\xi)|<|P_i|^{-n}$$

Assume to the contrary that there exists a real number $\xi \not\in A_n$ such that $|\xi - \alpha| \gg H(\alpha)^{-\omega}$ for any algebraic number $\alpha \in A_n$.

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

$$(\mathrm{ii}) \quad \overline{P_1} < \overline{P_2} < \ldots < \overline{P_i} < \ldots$$

(iii) for any
$$P \in Z[x]$$
, $\deg P \le n$, $P \not\equiv 0$, with $|P(\xi)| < |P_i(\xi)|$ we have $|P| \ge |P_{i+1}|$.

LEMMA 1: For any $i \geq 1$ we have

$$|P_i(\xi)|< \overline{|P_i|^{-n}}$$

Assume to the contrary that there exists a real number $\xi \not\in A_n$ such that $|\xi - \alpha| \gg H(\alpha)^{-\omega}$ for any algebraic number $\alpha \in A_n$.

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1 < |P_i(\xi)|^3 |P_i|^{2\omega + 2n - 3}$$

LEMMA: Let $P, Q \in Z[x]$ be polynomials of degree d with $1 < d \le n$. Suppose that P and Q have no common root. Then at least one of the following estimates is true:

$$1 \ll \max \left\{ |P(\xi)|, |Q(\xi)| \right\}^2 \max \left\{ |\overline{P}|, |\overline{Q}| \right\}^{2n-2}$$

$$1 \ll \max \left\{ |P(\xi)| |P'(\xi)| |Q'(\xi)|, |Q(\xi)| |P'(\xi)|^2 \right\} |\overline{P}|^{n-2} |\overline{Q}|^{n-1}$$

$$1 \ll \max \left\{ |Q(\xi)||P'(\xi)||Q'(\xi)|, |P(\xi)||Q'(\xi)|^2 \right\} |\overline{P}|^{n-1}|\overline{Q}|^{n-2}$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

$$(\mathrm{ii}) \quad \overline{P_1} < \overline{P_2} < \ldots < \overline{P_i} < \ldots$$

(iii) for any
$$P \in Z[x], \deg P \le n, \ P \not\equiv 0,$$
 with $|P(\xi)| < |P_i(\xi)|$ we have $|P| \ge |P_{i+1}|$.

LEMMA 1: For any $i \geq 1$ we have

$$|P_i(\xi)| < \overline{P_i}^{-n}$$

Assume to the contrary that there exists a real number $\xi \not\in A_n$ such that $|\xi - \alpha| \gg H(\alpha)^{-\omega}$ for any algebraic number $\alpha \in A_n$.

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1 < |P_i(\xi)|^3 |P_i|^{2\omega + 2n - 3}$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$|P_1| < |P_2| < \ldots < |P_i| < \ldots$$

(iii) for any $P \in Z[x], \ \deg P \le n, \ P \not\equiv 0,$ with $|P(\xi)| < |P_i(\xi)|$ we have $|P| \ge |P_{i+1}|$.

LEMMA 1: For any $i \geq 1$ we have

$$|P_i(\xi)|<\overline{P_i}^{-n}$$

Assume to the contrary that there exists a real number $\xi \not\in A_n$ such that $|\xi - \alpha| \gg H(\alpha)^{-\omega}$ for any algebraic number $\alpha \in A_n$.

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1<|P_i(\xi)|^3\overline{|P_i|^{2\omega+2n-3}}$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$|P_1| < |P_2| < \ldots < |P_i| < \ldots$$

(iii) for any
$$P \in Z[x], \deg P \le n, \ P \not\equiv 0,$$
 with $|P(\xi)| < |P_i(\xi)|$ we have $|P| \ge |P_{i+1}|$.

LEMMA 1: For any $i \geq 1$ we have

$$|P_i(\xi)| < \overline{P_i}^{-n}$$

Assume to the contrary that there exists a real number $\xi \not\in A_n$ such that $|\xi - \alpha| \gg H(\alpha)^{-\omega}$ for any algebraic number $\alpha \in A_n$.

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1<|P_i(\xi)|^3\overline{|P_i|^{2\omega+2n-3}}$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$|P_1| < |P_2| < \ldots < |P_i| < \ldots$$

(iii) for any $P \in Z[x], \deg P \le n, \ P \not\equiv 0,$ with $|P(\xi)| < |P_i(\xi)|$ we have $|P| \ge |P_{i+1}|$.

LEMMA 1: For any $i \geq 1$ we have

$$|P_i(\xi)|<\overline{P_i}^{-n}$$

Assume to the contrary that there exists a real number $\xi \not\in A_n$ such that $|\xi - \alpha| \gg H(\alpha)^{-\omega}$ for any algebraic number $\alpha \in A_n$.

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1<|P_i(\xi)|^3\overline{|P_i|^{2\omega+2n-3}}$$

$$1 < |P_i(\xi)|^3 |P_i|^{2\omega + 2n - 3}$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$|P_1| < |P_2| < \ldots < |P_i| < \ldots$$

(iii) for any
$$P \in Z[x]$$
, $\deg P \le n$, $P \not\equiv 0$, with $|P(\xi)| < |P_i(\xi)|$ we have $|P| \ge |P_{i+1}|$.

LEMMA 1: For any $i \geq 1$ we have

$$|P_i(\xi)| < \overline{P_i}^{-n}$$

Assume to the contrary that there exists a real number $\xi \not\in A_n$ such that $|\xi - \alpha| \gg H(\alpha)^{-\omega}$ for any algebraic number $\alpha \in A_n$.

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1 < |P_i(\xi)|^3 \overline{|P_i|^{2\omega + 2n - 3}}$$

$$1 < |P_i(\xi)|^3 |P_i|^{2\omega + 2n - 3} < |P_i|^{-n + 2\omega - 3}$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$|P_1| < |P_2| < \ldots < |P_i| < \ldots$$

(iii) for any $P \in Z[x], \ \deg P \le n, \ P \not\equiv 0,$ with $|P(\xi)| < |P_i(\xi)|$ we have $|P| \ge |P_{i+1}|$.

LEMMA 1: For any $i \geq 1$ we have

$$|P_i(\xi)|<\overline{P_i}^{-n}$$

Assume to the contrary that there exists a real number $\xi \not\in A_n$ such that $|\xi - \alpha| \gg H(\alpha)^{-\omega}$ for any algebraic number $\alpha \in A_n$.

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1<|P_i(\xi)|^3\overline{|P_i|^{2\omega+2n-3}}$$

$$1<|P_i(\xi)|^3|P_i|^{2\omega+2n-3}<|P_i|^{-n+2rac{n+3}{2}-3}$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

$$(\mathrm{ii}) \quad \overline{|P_1|} < \overline{|P_2|} < \ldots < \overline{|P_i|} < \ldots$$

(iii) for any $P \in Z[x], \deg P \le n, \ P \not\equiv 0,$ with $|P(\xi)| < |P_i(\xi)|$ we have $|P| \ge |P_{i+1}|$.

LEMMA 1: For any $i \geq 1$ we have

$$|P_i(\xi)|<\overline{P_i}^{-n}$$

Assume to the contrary that there exists a real number $\xi \not\in A_n$ such that $|\xi - \alpha| \gg H(\alpha)^{-\omega}$ for any algebraic number $\alpha \in A_n$.

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1 < |P_i(\xi)|^3 \overline{|P_i|^{2\omega + 2n - 3}}$$

$$1 < |P_i(\xi)|^3 \overline{|P_i|^{2\omega + 2n - 3}} < \overline{|P_i|^0}$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$|P_1| < |P_2| < \ldots < |P_i| < \ldots$$

(iii) for any $P \in Z[x], \deg P \le n, \ P \not\equiv 0,$ with $|P(\xi)| < |P_i(\xi)|$ we have $|P| \ge |P_{i+1}|$.

LEMMA 1: For any $i \geq 1$ we have

$$|P_i(\xi)|<\overline{P_i}^{-n}$$

Assume to the contrary that there exists a real number $\xi \not\in A_n$ such that $|\xi - \alpha| \gg H(\alpha)^{-\omega}$ for any algebraic number $\alpha \in A_n$.

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1 < |P_i(\xi)|^3 \overline{|P_i|^{2\omega + 2n - 3}}$$

$$1 < |P_i(\xi)|^3 \overline{|P_i|^{2\omega + 2n - 3}} < 1$$

Lemma 1: For any $i \geq 1$ we have

$$|P_i(\xi)|<|P_i|^{-n}$$

$$|P_i(\xi)|< \overline{|P_i|^{-n}}$$

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1<|P_i(\xi)|^3|\overline{P_i}|^{2\omega+2n-3}$$

$$|P_i(\xi)|< \overline{|P_i|^{-n}}$$

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1 < |P_i(\xi)|^3 |P_i|^{2\omega + 2n - 3}$$

Lemma 3: We have

$$|\xi-lpha| \ll rac{|P_i(\xi)|}{|P_i'(\xi)|}$$

where α is the root of P_i closest to ξ .

$$|P_i(\xi)|<\overline{|P_i|^{-n}}$$

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1 < |P_i(\xi)|^3 |P_i|^{2\omega + 2n - 3}$$

LEMMA 3: We have

$$|\xi-lpha| \ll rac{|P_i(\xi)|}{|P_i'(\xi)|}$$

where α is the root of P_i closest to ξ .

Remark:

$$|P_i(\xi)| < \overline{|P_i|^{-n}}$$

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1<|P_i(\xi)|^3|\overline{P_i}|^{2\omega+2n-3}$$

Lemma 3: We have

$$|\xi-lpha| \ll rac{|P_i(\xi)|}{|P_i'(\xi)|}$$

where α is the root of P_i closest to ξ .

Remark: If $|P_i'(\xi)| pprox |P_i|$

$$|P_i(\xi)| < \overline{|P_i|^{-n}}$$

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1<|P_i(\xi)|^3|\overline{P_i}|^{2\omega+2n-3}$$

Lemma 3: We have

$$|\xi-lpha| \ll rac{|P_i(\xi)|}{|P_i'(\xi)|}$$

where α is the root of P_i closest to ξ .

REMARK: If $|P_i'(\xi)| pprox |P_i|$, then

$$|\xi-lpha| \ll rac{|P_i(\xi)|}{|P_i|}$$

$$|P_i(\xi)| < \overline{|P_i|^{-n}}$$

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1 < |P_i(\xi)|^3 |P_i|^{2\omega + 2n - 3}$$

LEMMA 3: We have

$$|\xi-lpha| \ll rac{|P_i(\xi)|}{|P_i'(\xi)|}$$

where α is the root of P_i closest to ξ .

REMARK: If $|P_i'(\xi)| pprox |P_i|$, then

$$|\xi-lpha| \ll rac{|P_i(\xi)|}{|P_i|} \ll |\overline{P_i}|^{-n-1}$$

$$|P_i(\xi)| < \overline{|P_i|^{-n}}$$

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1 < |P_i(\xi)|^3 |P_i|^{2\omega + 2n - 3}$$

LEMMA 3: We have

$$|\xi - lpha| \ll rac{|P_i(\xi)|}{|P_i'(\xi)|}$$

where α is the root of P_i closest to ξ .

REMARK: If $|P_i'(\xi)| pprox |P_i|$, then

$$|\xi-lpha| \ll rac{|P_i(\xi)|}{|P_i|} \ll |\overline{P_i}|^{-n-1} \ll H(lpha)^{-n-1}$$

$$|P_i(\xi)|<|P_i|^{-n}$$

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1<|P_i(\xi)|^3|\overline{P_i}|^{2\omega+2n-3}$$

Lemma 3: We have

$$|\xi-lpha| \ll rac{|P_i(\xi)|}{|P_i'(\xi)|}$$

where α is the root of P_i closest to ξ .

$$|P_i(\xi)| < \overline{|P_i|^{-n}}$$

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1<|P_i(\xi)|^3|\overline{P_i}|^{2\omega+2n-3}$$

LEMMA 3: We have

$$|\xi-lpha| \ll rac{|P_i(\xi)|}{|P_i'(\xi)|}$$

where α is the root of P_i closest to ξ .

EXAMPLE:

$$|P_i(\xi)| < \overline{|P_i|^{-n}}$$

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1 < |P_i(\xi)|^3 |P_i|^{2\omega + 2n - 3}$$

Lemma 3: We have

$$|\xi-lpha| \ll rac{|P_i(\xi)|}{|P_i'(\xi)|}$$

where α is the root of P_i closest to ξ .

EXAMPLE: Consider $P(x) = x^2 - 1000x + 1000$.

$$|P_i(\xi)| < \overline{|P_i|^{-n}}$$

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1 < |P_i(\xi)|^3 |P_i|^{2\omega + 2n - 3}$$

LEMMA 3: We have

$$|\xi-lpha| \ll rac{|P_i(\xi)|}{|P_i'(\xi)|}$$

where α is the root of P_i closest to ξ .

EXAMPLE: Consider $P(x) = x^2 - 1000x + 1000$. Then

 $|x^2 - 1000x + 1000| \ll 1000^{-2}$ at $\xi = 1.001002003...$

$$|P_i(\xi)| < \overline{P_i}^{-n}$$

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1 < |P_i(\xi)|^3 |P_i|^{2\omega + 2n - 3}$$

LEMMA 3: We have

$$|\xi-lpha| \ll rac{|P_i(\xi)|}{|P_i'(\xi)|}$$

where α is the root of P_i closest to ξ .

EXAMPLE: Consider $P(x) = x^2 - 1000x + 1000$. Then

$$|x^2 - 1000x + 1000| \ll 1000^{-2}$$
 at $\xi = 1.001002003...$

and

$$|P_i'(\xi)| = |2\xi - 1000| \approx 998$$

$$\left\{egin{array}{ll} |eta_{i1}x_1+\ldots+eta_{in}x_n|<\lambda_1 & (1\leq i\leq n-1) \ |eta_{n1}x_1+\ldots+eta_{nn}x_n|\leq \lambda_n \end{array}
ight.$$

$$\left\{egin{array}{ll} |eta_{i1}x_1+\ldots+eta_{in}x_n|<\lambda_1 & (1\leq i\leq n-1) \ |eta_{n1}x_1+\ldots+eta_{nn}x_n|\leq \lambda_n \end{array}
ight.$$

EXAMPLE:

$$\left\{egin{array}{ll} |eta_{i1}x_1+\ldots+eta_{in}x_n|<\lambda_1 & (1\leq i\leq n-1) \ |eta_{n1}x_1+\ldots+eta_{nn}x_n|\leq \lambda_n \end{array}
ight.$$

EXAMPLE: For any $\xi \in R$ and any H > 0, there exist $p,q \in Z$ such that

$$\left\{egin{array}{l} |q\xi+p| < H^{-1} \ & |q| \leq H \end{array}
ight.$$

$$\left\{egin{array}{ll} |eta_{i1}x_1+\ldots+eta_{in}x_n|<\lambda_1 & (1\leq i\leq n-1) \ |eta_{n1}x_1+\ldots+eta_{nn}x_n|\leq \lambda_n \end{array}
ight.$$

EXAMPLE: For any $\xi \in R$ and any H > 0, there exist $p, q \in Z$ such that

$$\left\{egin{array}{l} |q\xi+p| < H^{-1} \ & \ |q| \leq H \end{array}
ight.$$

In fact,

$$|D| = \left\|egin{array}{cc} \xi & 1 \ 1 & 0 \end{array}
ight\| = 1$$

$$\left\{egin{array}{ll} |eta_{i1}x_1+\ldots+eta_{in}x_n|<\lambda_1 & (1\leq i\leq n-1) \ |eta_{n1}x_1+\ldots+eta_{nn}x_n|\leq \lambda_n \end{array}
ight.$$

EXAMPLE: For any $\xi \in R$ and any H > 0, there exist $a,b,c \in Z$ such that

$$\left\{egin{array}{ll} |a\xi^2+b\xi+c| < H^{-2} \ |a| \le H \ |b| < H \end{array}
ight. |D| = \left\|egin{array}{ll} \xi^2 \ \xi \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \end{array}
ight| = 1 \ \end{array}
ight.$$

$$\left\{egin{array}{ll} |eta_{i1}x_1+\ldots+eta_{in}x_n|<\lambda_1 & (1\leq i\leq n-1) \ |eta_{n1}x_1+\ldots+eta_{nn}x_n|\leq \lambda_n \end{array}
ight.$$

EXAMPLE: For any $\xi \in R$ and any H > 0, there exist

$$\overline{a,b,c,d} \in Z ext{ such that}$$
 $\begin{cases} |a\xi^3+b\xi^2+c\xi+d| < H^{-3} \ |b| \le H \ |c| \le H \end{cases}$ $|D| = \left\| egin{array}{c} \xi^3 & \xi^2 & \xi & 1 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{array}
ight\| = 1$

$$\left\{egin{array}{ll} |eta_{i1}x_1+\ldots+eta_{in}x_n|<\lambda_1 & (1\leq i\leq n-1) \ |eta_{n1}x_1+\ldots+eta_{nn}x_n|\leq \lambda_n \end{array}
ight.$$

THEOREM: For any real number $\xi \not\in A_n$ there exist infinitely many polynomials $P(x) \in Z[x]$ of degree $\leq n$ such that

$$|P(\xi)| \ll |\overline{P}|^{-n}$$

$$\left\{egin{array}{ll} |eta_{i1}x_1+\ldots+eta_{in}x_n|<\lambda_1 & (1\leq i\leq n-1) \ |eta_{n1}x_1+\ldots+eta_{nn}x_n|\leq \lambda_n \end{array}
ight.$$

EXAMPLE: For any $\xi \in R$ and any H > 0, there exist $a,b,c,d \in Z$ such that

$$\left\{egin{array}{l} |a\xi^2+b| < H^{-1/2} \ |a\xi+c| \leq H^{-1/2} \ |a| \leq H \end{array}
ight. \mid D| = \left\|egin{array}{ccc} \xi^2 & 1 & 0 \ \xi & 0 & 1 \ 1 & 0 & 0 \end{array}
ight| = 1$$

$$\left\{egin{array}{ll} |eta_{i1}x_1+\ldots+eta_{in}x_n|<\lambda_1 & (1\leq i\leq n-1) \ |eta_{n1}x_1+\ldots+eta_{nn}x_n|\leq \lambda_n \end{array}
ight.$$

EXAMPLE: For any $\xi \in R$ and any H > 0, there exist $a,b,c,d \in Z$ such that

$$\left\{egin{array}{ll} |a\xi^2+b\xi+c| < H^{-2} \ |2a\xi+b| \le H \ |a| < H \end{array}
ight. \quad |D| = \left\|egin{array}{cccc} \xi^2 & \xi & 1 \ 2\xi & 1 & 0 \ 1 & 0 & 0 \end{array}
ight| = 1$$

$$\left\{egin{array}{ll} |eta_{i1}x_1+\ldots+eta_{in}x_n|<\lambda_1 & (1\leq i\leq n-1) \ |eta_{n1}x_1+\ldots+eta_{nn}x_n|\leq \lambda_n \end{array}
ight.$$

EXAMPLE: For any $\xi \in R$ and any H > 0, there exist $a,b,c,d \in Z$ such that

$$\left\{egin{array}{ll} |a\xi^2+b\xi+c| < H^{-1/2} \ |2a\xi+b| \le H^{-1/2} \ |a| \le H \end{array}
ight. \quad |D| = \left\|egin{array}{ccc} \xi^2 & \xi & 1 \ 2\xi & 1 & 0 \ 1 & 0 & 0 \end{array}
ight| = 1$$

$$|P_i(\xi)| < \overline{|P_i|^{-n}}$$

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1 < |P_i(\xi)|^3 |P_i|^{2\omega + 2n - 3}$$

LEMMA 3: We have

$$|\xi-lpha| \ll rac{|P_i(\xi)|}{|P_i'(\xi)|}$$

where α is the root of P_i closest to ξ .

EXAMPLE: Consider $P(x) = x^2 - 1000x + 1000$. Then

$$|x^2 - 1000x + 1000| \ll 1000^{-2}$$
 at $\xi = 1.001002003...$

and

$$|P_i'(\xi)| = |2\xi - 1000| \approx 998$$

LEMMA 1: For any $i \geq 1$ we have $|P_i(\xi)| < \overline{|P_i|}^{-n}$.

LEMMA 2: If i is sufficiently large and P_i is irreducible, then $1 < |P_i(\xi)|^3 |P_i|^{2\omega + 2n - 3}$.

LEMMA 3: We have

$$|\xi - lpha| \ll rac{|P_i(\xi)|}{|P_i'(\xi)|}$$

where α is the root of P_i closest to ξ .

EXAMPLE: Consider $P(x) = x^2 - 1000x + 1000$. Then

$$|x^2 - 1000x + 1000| \ll 1000^{-2}$$
 at $\xi = 1.001002003...$

and

$$|P_i'(\xi)| = |2\xi - 1000| \approx 998$$

LEMMA 1: For any $i \ge 1$ we have $|P_i(\xi)| < \overline{|P_i|}^{-n}$.

<u>Lemma 2</u>: If i is sufficiently large and P_i is irreducible, then $1 < |P_i(\xi)|^3 |\overline{P_i}|^{2\omega + 2n - 3}$.

LEMMA 3: We have

$$|\xi - lpha| \ll rac{|P_i(\xi)|}{|P_i'(\xi)|}$$

where α is the root of P_i closest to ξ .

EXAMPLE: Consider $P(x) = x^2 - 1000x + 1000$. Then

$$|x^2 - 1000x + 1000| \ll 1000^{-2}$$
 at $\xi = 1.001002003...$

and

$$|P_i'(\xi)| = |2\xi - 1000| \approx 998$$

EXAMPLE: For any $\xi \in R$ and any H > 0, there exist $a_n, \ldots, a_1, a_0 \in Z$ such that

$$\left\{egin{array}{l} |a_n \xi^n + \ldots + a_1 \xi + a_0| < H^{-n} \ |a_n| \leq H \ & \ldots \ |a_2| \leq H \ |a_1| \leq H \end{array}
ight.$$

LEMMA 1: For any $i \geq 1$ we have $|P_i(\xi)| < \overline{|P_i|}^{-n}$.

Lemma 2: If i is sufficiently large and P_i is irreducible, then $1 < |P_i(\xi)|^3 |\overline{P_i}|^{2\omega + 2n - 3}$.

LEMMA 3: We have

$$|\xi - lpha| \ll rac{|P_i(\xi)|}{|P_i'(\xi)|}$$

where α is the root of P_i closest to ξ .

EXAMPLE: Consider $P(x) = x^2 - 1000x + 1000$. Then

$$|x^2 - 1000x + 1000| \ll 1000^{-2}$$
 at $\xi = 1.001002003...$

and

$$|P_i'(\xi)| = |2\xi - 1000| \approx 998$$

EXAMPLE: For any $\xi \in R$ and any H>0, there exist $a_n,\ldots,a_1,a_0 \in Z$ such that

$$\begin{cases} |a_n \xi^n + \ldots + a_1 \xi + a_0| < H^{-n-\epsilon} \ |a_n| \leq H \ & \cdots \ |a_2| \leq H \ |a_1| \leq H^{1+\epsilon} \end{cases}$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

$$\text{(ii)} \quad \overline{|P_1|} < \overline{|P_2|} < \ldots < \overline{|P_i|} < \ldots$$

(iii) for any
$$P \in Z[x], \ \deg P \le n, \ P \not\equiv 0, \ \text{with} \ |P(\xi)| < |P_i(\xi)| \ \text{we have}$$

$$|P| \geq |P_{i+1}|$$
.

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$\overline{|P_1|} < \overline{|P_2|} < \ldots < \overline{|P_i|} < \ldots$$

(iii) for any
$$P \in Z[x], \deg P \le n, \ P \not\equiv 0, \text{ with } |P(\xi)| < |P_i(\xi)| \text{ we have }$$

$$|P| \geq |P_{i+1}|$$
.

Fix any $i \geq 1$. By Minkowski's Linear Forms Theorem there is a polynomial $G(x) = a_n x^n + \ldots + a_1 x + a_0 \in Z[x]$ of degree $\leq n$ having

$$|G(\xi)| < |P_i(\xi)|$$

$$|a_n| \leq \overline{P_{i+1}}$$

$$|a_2| \leq \overline{P_{i+1}}$$

$$|a_1| \leq |P_i(\xi)|^{-1} \overline{|P_{i+1}|}^{-n+1}$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$|\overline{P_1}| < |\overline{P_2}| < \ldots < |\overline{P_i}| < \ldots$$

(iii) for any
$$P \in Z[x]$$
, $\deg P \le n$, $P \not\equiv 0$, with $|P(\xi)| < |P_i(\xi)|$ we have

$$|P| \geq |P_{i+1}|$$
.

Fix any $i \geq 1$. By Minkowski's Linear Forms Theorem there is a polynomial $G(x) = a_n x^n + \ldots + a_1 x + a_0 \in Z[x]$ of degree $\leq n$ having

$$|G(\xi)| < |P_i(\xi)|$$
 $|a_n| \le c^{-1} \overline{|P_{i+1}|}$
...
 $|a_2| \le c^{-1} \overline{|P_{i+1}|}$
 $|a_1| \le c^{n-1} |P_i(\xi)|^{-1} \overline{|P_{i+1}|}^{-n+1}$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$\overline{|P_1|} < \overline{|P_2|} < \ldots < \overline{|P_i|} < \ldots$$

(iii) for any
$$P \in Z[x]$$
, $\deg P \le n$, $P \not\equiv 0$, with $|P(\xi)| < |P_i(\xi)|$ we have

$$|P| \geq |P_{i+1}|$$
.

Fix any $i \geq 1$. By Minkowski's Linear Forms Theorem there is a polynomial $G(x) = a_n x^n + \ldots + a_1 x + a_0 \in Z[x]$ of degree $\leq n$ having

$$|G(\xi)| < |P_i(\xi)|$$
 $|a_n| \le c^{-1} \overline{|P_{i+1}|}$
 \dots
 $|a_2| \le c^{-1} \overline{|P_{i+1}|}$
 $|a_1| \le c^{n-1} |P_i(\xi)|^{-1} \overline{|P_{i+1}|}^{-n+1}$

We have

$$|\overline{G}| pprox |G'(\xi)|$$

THEOREM: For any real number $\xi \not\in A_n$ there exist infinitely many algebraic numbers $\alpha \in A_n$ with

$$|\xi - \alpha| \ll H(\alpha)^{-\omega}$$

LEMMA 1: We have

$$|\xi - \alpha| \ll \frac{|P(\xi)|}{|P'(\xi)|} \tag{1}$$

where α is the root of P closest to ξ .

PROOF OF THE THEOREM: Assume to the contrary that there exists a real number $\xi \not\in A_n$ such that

$$|\xi - \alpha| \gg H(\alpha)^{-\omega} \tag{2}$$

for any algebraic number $\alpha \in A_n$. From (1) and (2) it follows that

$$|P'(\xi)| \ll |P(\xi)| \overline{P}^{\omega} \tag{3}$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$\overline{|P_1|} < \overline{|P_2|} < \ldots < \overline{|P_i|} < \ldots$$

(iii) for any
$$P \in \mathbb{Z}[x]$$
, $\deg P \le n$, $P \not\equiv 0$, with $|P(\xi)| < |P_i(\xi)|$ we have

$$|P| \geq |P_{i+1}|$$
.

Fix any $i \geq 1$. By Minkowski's Linear Forms Theorem there is a polynomial $G(x) = a_n x^n + \ldots + a_1 x + a_0 \in Z[x]$ of degree $\leq n$ having

$$|G(\xi)| < |P_i(\xi)|$$
 $|a_n| \le c^{-1} \overline{|P_{i+1}|}$
 \dots
 $|a_2| \le c^{-1} \overline{|P_{i+1}|}$
 $|a_1| \le c^{n-1} |P_i(\xi)|^{-1} \overline{|P_{i+1}|}^{-n+1}$

We have

$$|\overline{G}|pprox |G'(\xi)|\ll |G(\xi)|\overline{G}|^\omega$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$\overline{|P_1|} < \overline{|P_2|} < \ldots < \overline{|P_i|} < \ldots$$

(iii) for any
$$P \in Z[x], \ \deg P \le n, \ P \not\equiv 0, \ \text{with} \ |P(\xi)| < |P_i(\xi)| \ \text{we have}$$

$$|P| \geq |P_{i+1}|$$
.

Fix any $i \geq 1$. By Minkowski's Linear Forms Theorem there is a polynomial $G(x) = a_n x^n + \ldots + a_1 x + a_0 \in Z[x]$ of degree $\leq n$ having

$$|G(\xi)| < |P_i(\xi)|$$
 $|a_n| \le c^{-1} \overline{|P_{i+1}|}$
...
 $|a_2| \le c^{-1} \overline{|P_{i+1}|}$
 $|a_1| \le c^{n-1} |P_i(\xi)|^{-1} \overline{|P_{i+1}|}^{-n+1}$

We have

$$\overline{|G|} \approx |G'(\xi)| \ll |G(\xi)| \overline{|G|^\omega} \ll |P_i(\xi)| \overline{|G|^\omega}$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \dots > |P_i(\xi)| > \dots$$

(ii)
$$\overline{|P_1|} < \overline{|P_2|} < \ldots < \overline{|P_i|} < \ldots$$

(iii) for any
$$P \in Z[x], \deg P \le n, \ P \not\equiv 0, \text{ with } |P(\xi)| < |P_i(\xi)| \text{ we have }$$

$$|P| \geq |P_{i+1}|$$
 .

Fix any $i \geq 1$. By Minkowski's Linear Forms Theorem there is a polynomial $G(x) = a_n x^n + \ldots + a_1 x + a_0 \in Z[x]$ of degree $\leq n$ having

$$|G(\xi)| < |P_i(\xi)|$$
 $|a_n| \le c^{-1} \overline{|P_{i+1}|}$
...
 $|a_2| \le c^{-1} \overline{|P_{i+1}|}$
 $|a_1| \le c^{n-1} |P_i(\xi)|^{-1} \overline{|P_{i+1}|}^{-n+1}$

We have

$$|\overline{G}|pprox |G'(\xi)|\ll |G(\xi)||\overline{G}|^\omega\ll |P_i(\xi)||\overline{G}|^\omega$$

therefore

$$|\overline{G}|^{1-\omega} \ll |P_i(\xi)|$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$\overline{|P_1|} < \overline{|P_2|} < \ldots < \overline{|P_i|} < \ldots$$

(iii) for any
$$P \in Z[x], \ \deg P \le n, \ P \not\equiv 0, \ \text{with} \ |P(\xi)| < |P_i(\xi)| \ \text{we have}$$

$$|P| \geq |P_{i+1}|$$
.

Fix any $i \geq 1$. By Minkowski's Linear Forms Theorem there is a polynomial $G(x) = a_n x^n + \ldots + a_1 x + a_0 \in Z[x]$ of degree $\leq n$ having

$$|G(\xi)| < |P_i(\xi)|$$
 $|a_n| \le c^{-1} \overline{|P_{i+1}|}$
...
 $|a_2| \le c^{-1} \overline{|P_{i+1}|}$
 $|a_1| \le c^{n-1} |P_i(\xi)|^{-1} \overline{|P_{i+1}|}^{-n+1}$

We have

$$|\overline{G}| pprox |G'(\xi)| \ll |G(\xi)| |\overline{G}|^\omega \ll |P_i(\xi)| |\overline{G}|^\omega$$

therefore

$$\left(|P_i(\xi)|^{-1}\overline{|P_{i+1}|}^{-n+1}\right)^{1-\omega}\ll |P_i(\xi)|$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$\overline{|P_1|} < \overline{|P_2|} < \ldots < \overline{|P_i|} < \ldots$$

(iii) for any $P \in Z[x], \deg P \le n, \ P \not\equiv 0, \text{ with } |P(\xi)| < |P_i(\xi)| \text{ we have }$

$$|P| \geq |P_{i+1}|$$
.

Fix any $i \geq 1$. By Minkowski's Linear Forms Theorem there is a polynomial $G(x) = a_n x^n + \ldots + a_1 x + a_0 \in Z[x]$ of degree $\leq n$ having

$$|G(\xi)| < |P_i(\xi)|$$
 $|a_n| \le c^{-1} \overline{|P_{i+1}|}$
...
 $|a_2| \le c^{-1} \overline{|P_{i+1}|}$
 $|a_1| \le c^{n-1} |P_i(\xi)|^{-1} \overline{|P_{i+1}|}^{-n+1}$

We have

$$|\overline{G}| pprox |G'(\xi)| \ll |G(\xi)| |\overline{G}|^\omega \ll |P_i(\xi)| |\overline{G}|^\omega$$

therefore

$$\left(|P_i(\xi)|^{-1}\overline{|P_{i+1}|}^{-n+1}\right)^{1-\omega} \ll |P_i(\xi)|$$

which can be rewritten as

$$|P_i(\xi)| \ll \overline{|P_{i+1}|}^{-(n-1)rac{\omega-1}{\omega-2}}$$

$$|P_i(\xi)|<\overline{|P_i|}^{-n}$$

Lemma 2: If i is sufficiently large and P_i is irreducible, then

$$1<|P_i(\xi)|^3\overline{|P_i|^{2\omega+2n-3}}$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$\overline{|P_1|} < \overline{|P_2|} < \ldots < \overline{|P_i|} < \ldots$$

(iii) for any
$$P \in Z[x], \deg P \le n, \ P \not\equiv 0, \text{ with } |P(\xi)| < |P_i(\xi)| \text{ we have }$$

$$|P| \geq |P_{i+1}|$$
 .

Fix any $i \geq 1$. By Minkowski's Linear Forms Theorem there is a polynomial $G(x) = a_n x^n + \ldots + a_1 x + a_0 \in Z[x]$ of degree $\leq n$ having

$$|G(\xi)| < |P_i(\xi)|$$
 $|a_n| \le c^{-1} \overline{|P_{i+1}|}$
...
 $|a_2| \le c^{-1} \overline{|P_{i+1}|}$
 $|a_1| \le c^{n-1} |P_i(\xi)|^{-1} \overline{|P_{i+1}|}^{-n+1}$

We have

$$|\overline{G}| pprox |G'(\xi)| \ll |G(\xi)| |\overline{G}|^\omega \ll |P_i(\xi)| |\overline{G}|^\omega$$

therefore

$$\left(|P_i(\xi)|^{-1} \overline{|P_{i+1}|}^{-n+1}\right)^{1-\omega} \ll |P_i(\xi)|$$

which can be rewritten as

$$|P_i(\xi)| \ll \left|\overline{P_{i+1}}\right|^{-(n-1)rac{\omega-1}{\omega-2}}$$

$$|P_i(\xi)|< \overline{|P_i|}^{-n}$$

Lemma 2: If i is sufficiently large and P_i is irreducible, then

$$1<|P_i(\xi)|^3\overline{|P_i|^{2\omega+2n-3}}$$

$$|P_i(\xi)|< \overline{|P_{i+1}|}^{-(n-1)rac{\omega-1}{\omega-2}}$$

Lemma 2: If i is sufficiently large and P_i is irreducible, then

$$1<|P_i(\xi)|^3\overline{|P_i|^{2\omega+2n-3}}$$

$$|P_i(\xi)|< \overline{|P_{i+1}|}^{-(n-1)rac{\omega-1}{\omega-2}}$$

Lemma 2: If i is sufficiently large and P_i is irreducible, then

$$1<|P_i(\xi)|^3\overline{|P_i|^{2\omega+2n-3}}$$

Proof of Theorem 7:

$$|P_i(\xi)|< \overline{|P_{i+1}|}^{-(n-1)rac{\omega-1}{\omega-2}}$$

Lemma 2: If i is sufficiently large and P_i is irreducible, then

$$1<|P_i(\xi)|^3\overline{|P_i|^{2\omega+2n-3}}$$

$$|P_i(\xi)|<\left|\overline{P_{i+1}}\right|^{-(n-1)\frac{\omega-1}{\omega-2}}$$

Lemma 2: If i is sufficiently large and P_i is irreducible, then

$$1<|P_i(\xi)|^3\overline{|P_i|^{2\omega+2n-3}}$$

$$1<|P_i(\xi)|^3\overline{|P_i|^{2\omega+2n-3}}$$

$$|P_i(\xi)|<\left|\overline{P_{i+1}}\right|^{-(n-1)\frac{\omega-1}{\omega-2}}$$

Lemma 2: If i is sufficiently large and P_i is irreducible, then

$$1<|P_i(\xi)|^3\overline{|P_i|^{2\omega+2n-3}}$$

$$1 < |P_i(\xi)|^3 |\overline{P_i}|^{2\omega + 2n - 3}$$
 $< |\overline{P_{i+1}}|^{-3(n-1)\frac{\omega - 1}{\omega - 2}} |\overline{P_i}|^{2\omega + 2n - 3}$

Lemma 1: For any $i \geq 1$ we have

$$|P_i(\xi)|$$

Lemma 2: If i is sufficiently large and P_i is irreducible, then

$$1<|P_i(\xi)|^3\overline{|P_i|^{2\omega+2n-3}}$$

$$\begin{split} 1 &< |P_i(\xi)|^3 \overline{|P_i|}^{2\omega + 2n - 3} \\ &< \overline{|P_{i+1}|}^{-3(n-1)\frac{\omega - 1}{\omega - 2}} \overline{|P_i|}^{2\omega + 2n - 3} \\ &< \overline{|P_i|}^{-3(n-1)\frac{\omega - 1}{\omega - 2}} \overline{|P_i|}^{2\omega + 2n - 3} \end{split}$$

$$|P_i(\xi)|$$

Lemma 2: If i is sufficiently large and P_i is irreducible, then

$$1<|P_i(\xi)|^3\overline{|P_i|^{2\omega+2n-3}}$$

PROOF OF THEOREM 7: We have

$$\begin{split} 1 &< |P_i(\xi)|^3 \overline{|P_i|}^{2\omega + 2n - 3} \\ &< \overline{|P_{i+1}|}^{-3(n-1)\frac{\omega - 1}{\omega - 2}} \overline{|P_i|}^{2\omega + 2n - 3} \\ &< \overline{|P_i|}^{-3(n-1)\frac{\omega - 1}{\omega - 2} + 2\omega + 2n - 3} \end{split}$$

LEMMA 1: For any $i \geq 1$ we have

$$|P_i(\xi)|<\left|\overline{P_{i+1}}
ight|^{-(n-1)rac{\omega-1}{\omega-2}}$$

Lemma 2: If i is sufficiently large and P_i is irreducible, then

$$1<|P_i(\xi)|^3\overline{|P_i|^{2\omega+2n-3}}$$

PROOF OF THEOREM 7: We have

$$egin{split} 1 &< |P_i(\xi)|^3 \overline{|P_i|}^{2\omega+2n-3} \ &< \overline{|P_{i+1}|}^{-3(n-1)rac{\omega-1}{\omega-2}} \overline{|P_i|}^{2\omega+2n-3} \ &< \overline{|P_i|}^{-3(n-1)rac{\omega-1}{\omega-2}+2\omega+2n-3} \end{split}$$

 \mathbf{so}

$$-3(n-1)\frac{\omega-1}{\omega-2}+2\omega+2n-3>0$$

$$|P_i(\xi)|<\left|\overline{P_{i+1}}\right|^{-(n-1)\frac{\omega-1}{\omega-2}}$$

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1 < |P_i(\xi)|^3 \overline{|P_i|^{2\omega + 2n - 3}}$$

PROOF OF THEOREM 7: We have

$$egin{split} 1 < |P_i(\xi)|^3 \overline{|P_i|}^{2\omega + 2n - 3} \ &< \overline{|P_{i+1}|}^{-3(n-1)rac{\omega - 1}{\omega - 2}} \overline{|P_i|}^{2\omega + 2n - 3} \ &< \overline{|P_i|}^{-3(n-1)rac{\omega - 1}{\omega - 2} + 2\omega + 2n - 3} \end{split}$$

$$-3(n-1)\frac{\omega-1}{\omega-2}+2\omega+2n-3>0$$

$$2\omega^2 - \omega(n+4) - n + 3 > 0$$

$$|P_i(\xi)|<\overline{P_{i+1}}^{-(n-1)\frac{\omega-1}{\omega-2}}$$

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1 < |P_i(\xi)|^3 \overline{|P_i|^{2\omega + 2n - 3}}$$

PROOF OF THEOREM 7: We have

$$\begin{split} 1 &< |P_i(\xi)|^3 \overline{|P_i|}^{2\omega + 2n - 3} \\ &< \overline{|P_{i+1}|}^{-3(n-1)\frac{\omega - 1}{\omega - 2}} \overline{|P_i|}^{2\omega + 2n - 3} \\ &< \overline{|P_i|}^{-3(n-1)\frac{\omega - 1}{\omega - 2} + 2\omega + 2n - 3} \end{split}$$

$$-3(n-1)\frac{\omega-1}{\omega-2}+2\omega+2n-3>0$$

$$2\omega^2 - \omega(n+4) - n + 3 > 0$$

$$\omega>\frac{n+4+\sqrt{n^2+16n-8}}{4}$$

$$|P_i(\xi)|<\overline{|P_{i+1}|}^{-(n-1)rac{\omega-1}{\omega-2}}$$

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1 < |P_i(\xi)|^3 \overline{|P_i|^{2\omega + 2n - 3}}$$

PROOF OF THEOREM 7: We have

$$\begin{split} 1 &< |P_i(\xi)|^3 \overline{|P_i|}^{2\omega + 2n - 3} \\ &< \overline{|P_{i+1}|}^{-3(n-1)\frac{\omega - 1}{\omega - 2}} \overline{|P_i|}^{2\omega + 2n - 3} \\ &< \overline{|P_i|}^{-3(n-1)\frac{\omega - 1}{\omega - 2} + 2\omega + 2n - 3} \end{split}$$

$$-3(n-1)\frac{\omega-1}{\omega-2}+2\omega+2n-3>0$$

$$2\omega^2 - \omega(n+4) - n + 3 > 0$$

$$\omega>rac{n+4+\sqrt{n^2+16n-8}}{4}=rac{n}{2}+\gamma_n
ightarrow 3$$

$$|P_i(\xi)|<\overline{|P_{i+1}|}^{-(n-1)rac{\omega-1}{\omega-2}}$$

LEMMA 2: If i is sufficiently large and P_i is irreducible, then

$$1 < |P_i(\xi)|^3 \overline{|P_i|^{2\omega + 2n - 3}}$$

PROOF OF THEOREM 7: We have

$$\begin{split} 1 &< |P_i(\xi)|^3 \overline{|P_i|}^{2\omega + 2n - 3} \\ &< \overline{|P_{i+1}|}^{-3(n-1)\frac{\omega - 1}{\omega - 2}} \overline{|P_i|}^{2\omega + 2n - 3} \\ &< \overline{|P_i|}^{-3(n-1)\frac{\omega - 1}{\omega - 2} + 2\omega + 2n - 3} \end{split}$$

$$-3(n-1)\frac{\omega-1}{\omega-2}+2\omega+2n-3>0$$

$$2\omega^2 - \omega(n+4) - n + 3 > 0$$

$$\omega > rac{n+4+\sqrt{n^2+16n-8}}{4} = rac{n}{2} + \gamma_n
ightarrow 3$$

LEMMA 1: For any $i \geq 1$ we have $|P_i(\xi)| < \overline{|P_i|}^{-n}$.

<u>Lemma 2</u>: If i is sufficiently large and P_i is irreducible, then $1 < |P_i(\xi)|^3 |\overline{P_i}|^{2\omega + 2n - 3}$.

LEMMA 3: We have

$$|\xi - lpha| \ll rac{|P_i(\xi)|}{|P_i'(\xi)|}$$

where α is the root of P_i closest to ξ .

EXAMPLE: Consider $P(x) = x^2 - 1000x + 1000$. Then

$$|x^2 - 1000x + 1000| \ll 1000^{-2}$$
 at $\xi = 1.001002003...$

and

$$|P_i'(\xi)| = |2\xi - 1000| \approx 998$$

EXAMPLE: For any $\xi \in R$ and any H > 0, there exist $a_n, \ldots, a_1, a_0 \in Z$ such that

$$\begin{cases} |a_n \xi^n + \ldots + a_1 \xi + a_0| < H^{-n} \ |a_n| \leq H \ & \ldots \ |a_2| \leq H \ |a_1| \leq H \end{cases}$$

LEMMA 1: For any $i \ge 1$ we have $|P_i(\xi)| < \overline{|P_i|}^{-n}$.

Lemma 2: If i is sufficiently large and P_i is irreducible, then $1 < |P_i(\xi)|^3 |\overline{P_i}|^{2\omega + 2n - 3}$.

LEMMA 3: We have

$$|\xi - lpha| \ll rac{|P_i(\xi)|}{|P_i'(\xi)|}$$

where α is the root of P_i closest to ξ .

EXAMPLE: Consider $P(x) = x^2 - 1000x + 1000$. Then

$$|x^2 - 1000x + 1000| \ll 1000^{-2}$$
 at $\xi = 1.001002003...$

and

$$|P_i'(\xi)| = |2\xi - 1000| \approx 998$$

EXAMPLE: For any $\xi \in R$ and any H>0, there exist $a_n,\ldots,a_1,a_0 \in Z$ such that

$$\begin{cases} |a_n \xi^n + \ldots + a_1 \xi + a_0| < H^{-n-\epsilon} \ |a_n| \leq H \ & \cdots \ |a_2| \leq H \ |a_1| \leq H^{1+\epsilon} \end{cases}$$

LEMMA 1: For any $i \geq 1$ we have $|P_i(\xi)| < \overline{|P_i|}^{-n}$.

Lemma 2: If i is sufficiently large and P_i is irreducible, then $1 < |P_i(\xi)|^3 |\overline{P_i}|^{2\omega + 2n - 3}$.

LEMMA 3: We have

$$|\xi - lpha| \ll rac{|P_i(\xi)|}{|P_i'(\xi)|}$$

where α is the root of P_i closest to ξ .

EXAMPLE: Consider $P(x) = x^2 - 1000x + 1000$. Then

$$|x^2 - 1000x + 1000| \ll 1000^{-2}$$
 at $\xi = 1.001002003...$

and

$$|P_i'(\xi)| = |2\xi - 1000| \approx 998$$

EXAMPLE: For any $\xi \in R$ and any H>0, there exist $a_n,\ldots,a_1,a_0 \in Z$ such that

$$\{ egin{aligned} |a_n \xi^n + \ldots + a_1 \xi + a_0| &< H^{-n-2\epsilon} \ &|a_n| \leq H \ & \cdots \ &|a_2| \leq H^{1+\epsilon} \ &|a_1| \leq H^{1+\epsilon} \end{aligned}
angle$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$\overline{|P_1|} < \overline{|P_2|} < \ldots < \overline{|P_i|} < \ldots$$

(iii) for any $P \in \mathbb{Z}[x]$, $\deg P \leq n$, $P \not\equiv 0$, with $|P(\xi)| < |P_i(\xi)|$ we have

$$|P| \geq |P_{i+1}|$$
 .

Fix any $i \geq 1$. By Minkowski's Linear Forms Theorem there is a polynomial $G(x) = a_n x^n + \ldots + a_1 x + a_0 \in Z[x]$ of degree $\leq n$ having

$$|G(\xi)| < |P_i(\xi)|$$
 $|a_n| \le c^{-1} \overline{|P_{i+1}|}$
...
 $|a_2| \le c^{-1} \overline{|P_{i+1}|}$
 $|a_1| \le c^{n-1} |P_i(\xi)|^{-1} \overline{|P_{i+1}|}^{-n+1}$

We have

$$|\overline{G}| pprox |G'(\xi)| \ll |G(\xi)| |\overline{G}|^\omega \ll |P_i(\xi)| |\overline{G}|^\omega$$

therefore

$$\left(|P_i(\xi)|^{-1}\overline{|P_{i+1}|}^{-n+1}\right)^{1-\omega} \ll |P_i(\xi)|$$

which can be rewritten as

$$|P_i(\xi)| \ll \overline{|P_{i+1}|}^{-(n-1)rac{\omega-1}{\omega-2}}$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$\overline{|P_1|} < \overline{|P_2|} < \ldots < \overline{|P_i|} < \ldots$$

(iii) for any $P \in Z[x]$, $\deg P \leq n$, $P \not\equiv 0$, with $|P(\xi)| < |P_i(\xi)|$ we have

$$|P| \geq |P_{i+1}|$$
.

Fix any $i \geq 1$. By Minkowski's Linear Forms Theorem there is a polynomial $G(x) = a_n x^n + \ldots + a_1 x + a_0 \in Z[x]$ of degree $\leq n$ having

$$\begin{split} |G(\xi)| &< |P_i(\xi)| \\ |a_n| &\le c^{-1} \overline{|P_{i+1}|} \\ & \cdots \\ |a_3| &\le c^{-1} \overline{|P_{i+1}|} \\ |a_2| &\le c^{(n-2)/2} |P_i(\xi)|^{-1/2} \overline{|P_{i+1}|}^{-(n-2)/2} \\ |a_1| &\le c^{(n-2)/2} |P_i(\xi)|^{-1/2} \overline{|P_{i+1}|}^{-(n-2)/2} \end{split}$$

We have

$$|\overline{G}| pprox |G'(\xi)| \ll |G(\xi)| |\overline{G}|^\omega \ll |P_i(\xi)| |\overline{G}|^\omega$$

therefore

$$\left(|P_i(\xi)|^{-1}\overline{|P_{i+1}|}^{-n+1}\right)^{1-\omega}\ll |P_i(\xi)|$$

which can be rewritten as

$$|P_i(\xi)| \ll \overline{|P_{i+1}|}^{-(n-1)rac{\omega-1}{\omega-2}}$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$\overline{|P_1|} < \overline{|P_2|} < \ldots < \overline{|P_i|} < \ldots$$

(iii) for any $P \in Z[x]$, $\deg P \leq n$, $P \not\equiv 0$, with $|P(\xi)| < |P_i(\xi)|$ we have

$$|P| \geq |P_{i+1}|$$
.

Fix any $i \geq 1$. By Minkowski's Linear Forms Theorem there is a polynomial $G(x) = a_n x^n + \ldots + a_1 x + a_0 \in Z[x]$ of degree $\leq n$ having

$$\begin{split} |G(\xi)| &< |P_i(\xi)| \\ |a_n| &\le c^{-1} \overline{|P_{i+1}|} \\ & \cdots \\ |a_3| &\le c^{-1} \overline{|P_{i+1}|} \\ |a_2| &\le c^{(n-2)/2} |P_i(\xi)|^{-1/2} \overline{|P_{i+1}|}^{-(n-2)/2} \\ |a_1| &\le c^{(n-2)/2} |P_i(\xi)|^{-1/2} \overline{|P_{i+1}|}^{-(n-2)/2} \end{split}$$

We have

$$|\overline{G}| \gg |G'(\xi)| \ll |G(\xi)| \overline{G}|^\omega \ll |P_i(\xi)| \overline{G}|^\omega$$

therefore

$$\left(|P_i(\xi)|^{-1}\overline{|P_{i+1}|}^{-n+1}\right)^{1-\omega}\ll |P_i(\xi)|$$

which can be rewritten as

$$|P_i(\xi)| \ll \overline{|P_{i+1}|}^{-(n-1)rac{\omega-1}{\omega-2}}$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$\overline{|P_1|} < \overline{|P_2|} < \ldots < \overline{|P_i|} < \ldots$$

(iii) for any
$$P \in \mathbb{Z}[x]$$
, $\deg P \leq n$, $P \not\equiv 0$, with $|P(\xi)| < |P_i(\xi)|$ we have

$$|P| \geq |P_{i+1}|$$
.

Fix any $i \geq 1$. By Minkowski's Linear Forms Theorem there is a polynomial $G(x) = a_n x^n + \ldots + a_1 x + a_0 \in Z[x]$ of degree $\leq n$ having

$$\begin{split} |G(\xi)| &< |P_i(\xi)| \\ |a_n| &\le c^{-1} \overline{|P_{i+1}|} \\ & \cdots \\ |a_3| &\le c^{-1} \overline{|P_{i+1}|} \\ |a_2| &\le c^{(n-2)/2} |P_i(\xi)|^{-1/2} \overline{|P_{i+1}|}^{-(n-2)/2} \\ |a_1| &\le c^{(n-2)/2} |P_i(\xi)|^{-1/2} \overline{|P_{i+1}|}^{-(n-2)/2} \end{split}$$

(i)
$$\frac{1}{2} > |P_1(\xi)| > |P_2(\xi)| > \ldots > |P_i(\xi)| > \ldots$$

(ii)
$$\overline{|P_1|} < \overline{|P_2|} < \ldots < \overline{|P_i|} < \ldots$$

(iii) for any
$$P \in \mathbb{Z}[x]$$
, $\deg P \leq n$, $P \not\equiv 0$, with $|P(\xi)| < |P_i(\xi)|$ we have

$$|P| \geq |P_{i+1}|$$
.

Fix any $i \geq 1$. By Minkowski's Linear Forms Theorem there is a polynomial $G(x) = a_n x^n + \ldots + a_1 x + a_0 \in Z[x]$ of degree $\leq n$ having

$$\begin{split} |G(\xi)| &< |P_i(\xi)| \\ |a_n| &\le c^{-1} \overline{|P_{i+1}|} \\ & \cdots \\ |a_3| &\le c^{-1} \overline{|P_{i+1}|} \\ |a_2| &\le c^{(n-2)/2} |P_i(\xi)|^{-1/2} \overline{|P_{i+1}|}^{-(n-2)/2} \\ |a_1| &\le c^{(n-2)/2} |P_i(\xi)|^{-1/2} \overline{|P_{i+1}|}^{-(n-2)/2} \end{split}$$

Polynomials

$$P_i(x), \quad P_{i+1}(x), \quad G(x)$$

are linearly independent.

 $P_i(x) = 100x^5 + 100x^4 + 100x^3 + 100x^2 + 100x + 100$

$$egin{split} P_{i+1}(x) &= 200x^5 + 200x^4 + 200x^3 + 200x^2 + 200x + 200 \ & \ P_i(x) &= 100x^5 + 100x^4 + 100x^3 + 100x^2 + 100x + 100 \ \end{split}$$

$$egin{split} G_1(x) &= 190x^5 + 300x^4 + 300x^3 + 300x^2 + 300x + 300 \ P_{i+1}(x) &= 200x^5 + 200x^4 + 200x^3 + 200x^2 + 200x + 200 \ P_{i}(x) &= 100x^5 + 100x^4 + 100x^3 + 100x^2 + 100x + 100 \ \end{split}$$

$$egin{aligned} G_2(x) &= 190x^5 + 290x^4 + 400x^3 + 400x^2 + 400x + 400 \ G_1(x) &= 190x^5 + 300x^4 + 300x^3 + 300x^2 + 300x + 300 \ P_{i+1}(x) &= 200x^5 + 200x^4 + 200x^3 + 200x^2 + 200x + 200 \ P_i(x) &= 100x^5 + 100x^4 + 100x^3 + 100x^2 + 100x + 100 \end{aligned}$$

$$egin{aligned} G_3(x) &= 190x^5 + 290x^4 + 390x^3 + 500x^2 + 500x + 500 \ G_2(x) &= 190x^5 + 290x^4 + 400x^3 + 400x^2 + 400x + 400 \ G_1(x) &= 190x^5 + 300x^4 + 300x^3 + 300x^2 + 300x + 300 \ P_{i+1}(x) &= 200x^5 + 200x^4 + 200x^3 + 200x^2 + 200x + 200 \ P_i(x) &= 100x^5 + 100x^4 + 100x^3 + 100x^2 + 100x + 100 \end{aligned}$$

$$P_i(x), \quad P_{i+1}(x), \quad G_1(x), \ldots, G_{n-2}(x)$$

$$|L_i(\xi)| < |P_{i-1}(\xi)|^{rac{1}{\omega-1}} \overline{|P_{i-1}|}^{-n+1}$$

$$|\overline{L_i}| < |P_{i-1}(\xi)|^{3-\omega-rac{\omega-2}{\omega-1}}|\overline{P_i}|^{-(n-2)(\omega-1)}|\overline{P_{i-1}}|^{-n+2}$$

$$P_i(x), \quad P_{i+1}(x), \quad G_1(x), \ldots, G_{n-2}(x)$$

$$|L_i(\xi)| < |P_{i-1}(\xi)|^{rac{1}{\omega-1}} \overline{|P_{i-1}|}^{-n+1}$$

$$|\overline{L_i}| < |P_{i-1}(\xi)|^{3-\omega-rac{\omega-2}{\omega-1}}|\overline{P_i}|^{-(n-2)(\omega-1)}|\overline{P_{i-1}}|^{-n+2}$$

$$|\overline{L_i}|pprox |L_i'(\xi)|$$

$$P_i(x), \quad P_{i+1}(x), \quad G_1(x), \ldots, G_{n-2}(x)$$

$$|L_i(\xi)| < |P_{i-1}(\xi)|^{rac{1}{\omega-1}} \overline{|P_{i-1}|}^{-n+1}$$

$$|\overline{L_i}| < |P_{i-1}(\xi)|^{3-\omega-rac{\omega-2}{\omega-1}}|\overline{P_i}|^{-(n-2)(\omega-1)}|\overline{P_{i-1}}|^{-n+2}$$

$$|L_i|pprox |L_i'(\xi)|$$

$$1<|P_i(\xi)||\overline{P_{i+1}}|^{rac{2\omega+n-2}{3}(1-arrho)}|\overline{P_i}|^{rac{n-1}{3}(1-arrho)+\Phi(n)arrho}|$$

$$P_i(x), \quad P_{i+1}(x), \quad G_1(x), \ldots, G_{n-2}(x)$$

$$|L_i(\xi)| < |P_{i-1}(\xi)|^{rac{1}{\omega-1}} \overline{|P_{i-1}|}^{-n+1}$$

$$|\overline{L_i}| < |P_{i-1}(\xi)|^{3-\omega-rac{\omega-2}{\omega-1}}|\overline{P_i}|^{-(n-2)(\omega-1)}|\overline{P_{i-1}}|^{-n+2}$$

$$|\overline{L_i}|pprox |L_i'(\xi)|$$

$$1 < |P_i(\xi)| \overline{|P_{i+1}|^{rac{2\omega + n - 2}{3}(1 - arrho)} \overline{|P_i|^{rac{n - 1}{3}(1 - arrho) + \Phi(n)arrho}}$$

$$\Phi(n)=2\omega+2n-3-2(n-1)\frac{\omega-1}{\omega-2}$$

$$P_i(x), \quad P_{i+1}(x), \quad G_1(x), \ldots, G_{n-2}(x)$$

$$|L_i(\xi)| < |P_{i-1}(\xi)|^{rac{1}{\omega-1}} \overline{|P_{i-1}|}^{-n+1}$$

$$|\overline{L_i}| < |P_{i-1}(\xi)|^{3-\omega-rac{\omega-2}{\omega-1}}|\overline{P_i}|^{-(n-2)(\omega-1)}|\overline{P_{i-1}}|^{-n+2}$$

$$|\overline{L_i}|pprox |L_i'(\xi)|$$

$$1<|P_i(\xi)||P_{i+1}|^{rac{2\omega+n-2}{3}(1-arrho)}|P_i|^{rac{n-1}{3}(1-arrho)+\Phi(n)arrho}$$

$$\Phi(n)=2\omega+2n-3-2(n-1)\frac{\omega-1}{\omega-2}$$

$$|L_i(\xi)| \ll |\overline{L_i}|^{-\omega+1}$$

$$P_i(x), \quad P_{i+1}(x), \quad G_1(x), \ldots, G_{n-2}(x)$$

$$|L_i(\xi)| < |P_{i-1}(\xi)|^{rac{1}{\omega-1}} \overline{|P_{i-1}|}^{-n+1}$$

$$|\overline{L_i}| < |P_{i-1}(\xi)|^{3-\omega-rac{\omega-2}{\omega-1}}|\overline{P_i}|^{-(n-2)(\omega-1)}|\overline{P_{i-1}}|^{-n+2}$$

$$|\overline{L_i}|pprox |L_i'(\xi)|$$

$$1<|P_i(\xi)|P_{i+1}^{rac{2\omega+n-2}{3}(1-arrho)}P_i^{rac{n-1}{3}(1-arrho)+\Phi(n)arrho}$$

$$\Phi(n)=2\omega+2n-3-2(n-1)\frac{\omega-1}{\omega-2}$$

$$|L_i(\xi)|\gg \overline{|L_i|}^{-\omega+1}$$

Theorem 9: For any real number $\xi \notin A_n$ there exist infinitely many algebraic numbers $\alpha \in A_n$ with

$$|\xi - \alpha| \ll H(\alpha)^{-\omega}$$
,

where

$$\omega = rac{n}{2} + \lambda_n, \quad \lim_{n o \infty} \lambda_n = 4$$

Theorem 9: For any real number $\xi \not\in A_n$ there exist infinitely many algebraic numbers $\alpha \in A_n$ with

$$|\xi - \alpha| \ll H(\alpha)^{-\omega},$$

where

$$\omega = rac{n}{2} + \lambda_n, \quad \lim_{n o \infty} \lambda_n = 4$$

$$4x^5 - (4n + 18)x^4 + (n^2 + 11n + 30)x^3 - (2n^2 + 10n + 22)x^2 + (2n^2 + 7n + 4)x + n^2 - 5n + 2$$
 if $n = 3, 4, 5$

THEOREM 9: For any real number $\xi \notin A_n$ there exist infinitely many algebraic numbers $\alpha \in A_n$ with

$$|\xi - \alpha| \ll H(\alpha)^{-\omega},$$

where

$$\omega = rac{n}{2} + \lambda_n, \quad \lim_{n o \infty} \lambda_n = 4$$

$$4x^5 - (4n + 18)x^4 + (n^2 + 11n + 30)x^3 - (2n^2 + 10n + 22)x^2 + (2n^2 + 7n + 4)x + n^2 - 5n + 2$$
 if $n = 3, 4, 5$

$$2x^5 - (n+12)x^4 + (2n+30)x^3 + (2n-41)x^2 - (3n-29)x + 2n-10$$
 if $n > 5$.

n	Th. 5, 1961	Th. 6, 1961	Th. 7, 1993	Th. 9, 2005	Conjecture
3	3	3.28	3.5	3.73	4
4	3.5	3.82	4.12	4.45	5
5	4	4.35	4.71	5.14	6
6	4.5	4.87	5.28	5.76	7
7	5	5.39	5.84	6.36	8
8	5.5	5.9	6.39	6.93	9
9	6	6.41	6.93	7.50	10
10	6.5	$\boldsymbol{6.92}$	7.47	8.06	11
15	9	9.44	10.09	10.77	16
20	11.5	11.95	12.67	13.40	21
50	26.5	26.98	27.84	28.70	51
100	51.5	51.99	$\boldsymbol{52.92}$	53.84	101

$$0<|\xi-lpha|\ll H(lpha)^{-\eta},\quad \eta=rac{1}{2}(3+\sqrt{5})=2.618...$$

$$0<|\xi-lpha|\ll H(lpha)^{-\eta},\quad \eta=rac{1}{2}(3+\sqrt{5})=2.618...$$

CONJECTURE: Let ξ be real, but is not algebraic of degree $\leq n$. Suppose $\epsilon > 0$. Then there are infinitely many real algebraic integers α of degree $\leq n$ with

$$|\xi - \alpha| \ll H(\alpha)^{-n+\epsilon}$$

$$0<|\xi-lpha|\ll H(lpha)^{-\eta},\quad \eta=rac{1}{2}(3+\sqrt{5})=2.618...$$

CONJECTURE: Let ξ be real, but is not algebraic of degree $\leq n$. Suppose $\epsilon > 0$. Then there are infinitely many real algebraic integers α of degree $\leq n$ with

$$|\xi - \alpha| \ll H(\alpha)^{-n+\epsilon}$$

Theorem 11 (Roy, 2001): There exist real numbers ξ such that for any algebraic integer α of degree ≤ 3 , we have

$$|\xi - \alpha| \gg H(\alpha)^{-\eta}$$

$$\xi = \frac{1}{3 + \frac{1}{2 + \frac{1}{4 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{4 + \dots}}}}}}}}}$$

$$0<|\xi-lpha|\ll H(lpha)^{-\eta},\quad \eta=rac{1}{2}(3+\sqrt{5})=2.618...$$

Conjecture: Let ξ be real, but is not algebraic of degree $\leq n$. Suppose $\epsilon > 0$. Then there are infinitely many real algebraic integers α of degree $\leq n$ with

$$|\xi - lpha| \ll H(lpha)^{-n+\epsilon}$$

Theorem 11 (Roy, 2001): There exist real numbers ξ such that for any algebraic integer α of degree ≤ 3 , we have

$$|\xi - \alpha| \gg H(\alpha)^{-\eta}$$