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I. On approximation by rational numbers

THEOREM 1 (Dirichlet, 1842). For any real irrational number &£
there exist infinitely many rational numbers p/q such that
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THEOREM 2. For any real irrational number & there exist infinitely
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many rational numbers p/q such that
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THEOREM 3 (Hurwitz). For any real irrational number £ there
exist infinitely many rational numbers p/q such that

P 1
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This result is the best possible.
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II. Polynomial Interpretation

For any real irrational number £ there exist infinitely many rational
numbers p/q such that

|
s
ql " q
J
g€ —pl < q .

THEOREM 4. For any real irrational number & there exist infinitely
many polynomials P € z[x] of the first degree such that

[P(g)| < [P,

where |P| denotes the height of the polynomial P, that is the maximum
of absolute values of its coefficients, < is the Vinogradov symbol.

THEOREM 5. For any real number & & A, there exist infinitely
many polynomials P € z[z]| of degree < n such that

|P(&)] < IPI™",

where A, is the set of real algebraic numbers of degree < n.

<q? - g€ —p| < q7!

E—al<? - P& < [PI"




II1I. Conjecture of Wirsing

CONJECTURE (WIRSING, 1961). For any real number & & A,
there exist infinitely many algebraic numbers a € a,, with

€ —a| < H(a)"1 >0,

where H () is the height of a.
Further W. M. Schmidt conjectured that the exponent

—n—1+e€
can be replaced even by
—n — 1.
p _ _
‘€—§<q2 - g€ —pl<q”
€ — o < H(a)™! [P < 1Pl

At the moment this Conjecture is proved only for

n=1 = |[£—a|/ < H(a)™? (Dirichlet, 1842)
n=2 = |{—a < H(a)™? (Davenport — Schmidt, 1967)

n>2 = 777



Consider the polynomial
Pz)=ax"+...Yax+ay=a(r —aq) ...  (x — ay).

Without loss of generality we can assume that «; is the root of P(x)
closest to £&. We have

[P(E)]
P&

’f — 041‘ <

By Theorem 3 there are infinitely many polynomials P € z|x] of degree
< n such that

|P(&)| < [P,

Let n = 1. Then

PO =] <[Pl = ||t —ay| < %—lzm—z

Let n = 2. Then for some 6 < 1

[P'(&)] = [2a26 + ar| < [PV = € — | < % = [P|7270 777

)




QUESTION: Can one prove that the following is impossible:

All polynomials with [P(£)| < [PI™™ have

a “small” derivative |P'(€)| < [P, § < 1.

ANSWER: Yes, for n=1 (Dirichlet, 1842)
n=2 (Davenport — Schmidt, 1967)




IV. Theorem of Wirsing

THEOREM 6 (Wirsing, 1961). For any real number & & 4, there
exist infinitely many algebraic numbers a € A, with

€ —a| < H(@) 27, lim \, = 2.

n—oo

By Dirichlet’s Box principle there are infinitely polynomials
Px)=ay(r —ai) ... - (x — ay)

such that

|P(&)] < IPI™",

therefore

€ —ar| . |€ — au| < [P "a; "

Even if a,, = |Pl, we can only prove that

€ —au] .. € —an| < [P < H(ag)™
4

n+1

‘f — 041‘ <K H(Ozl)_T 777

It is also clear, that the worth case for us is when

€ —af=... =& -l



QUESTION: Can one prove that for infinitely many polynomials

P € z]x] with |P(§)| < [PI™" the situation

€ —af=... =8 — )

is impossible?

ANSWER: For infinitely many polynomials P € z[z] with
[P ()| < [PI7" we have:

€ — o] < € —ag] < 1,

€ —asl,...,|§ —a,| are “big”.




Step 1: Construct oo-many P, @ € z[x|, deg P,Q < n, such that

[P(&)] < [Pl

P, () have no
RE)I < @™ | and

common root
Pl < Q|

Step 2. Consider the resultant of P, () :

RP,Q) =dyby [] (e 5)).

1<i,7<n

On the one hand,
R(P,Q) #0,

since P, () have no common root. Moreover,
R(P,Q) € z,

since P, () have integer coefficients.
Therefore we get

R(P,Q)| > 1.



Step 3. On the other hand,

IR(P,Q) =anbp ] lew— 3l

1<i,5<n

< ﬁjZn :[]: Mli—-ﬁ%’

1<i,j<n

< [PP" [ max(|é = ail, 1€ = 5.

1<4,5<n
If
E—ai|=... = ¢ —a,| < [P,
1
E—0Bil=...=|§— B < [P,
then

IR(P,Q)| < [PPI(-=n)n" = [PInn* < 1,

which contradicts to Step 2.



LEMMA (Wirsing, 1961):

|P(€)|2]Q(€)|[PI"3,
€ — | < max

3

[P(6)]|Q(€)[2[PI-3,

where v is a root of P or () closest to &.
Since

|P(&)| < [PI7™,

Q) < Q™

we get

V[N

€~ < [PrEed = prid



V. “Big Derivative” Method

THEOREM 7 (Bernik-Tsishchanka, 1993). For any real number
& & A, there exist infinitely many algebraic numbers oo € a,, with

€ —a| < H()"27™, lim A, = 3.

n—oo

The following table contains the values of
n
Z 4N,
5 +

corresponding to Wirsing’s Theorem (1961), the Theorem of Bernik-
Tsishchanka (1993), and the Conjecture:

n | 1961 | 1993 | Conj.
3 1328 | 35 4
4 1382 | 4.12 5
5 | 435 | 471 6
6 | 4.87 | 5.28 7
71539 | 5.84 8
8 | 5.9 | 6.39 9
9 1641 | 693 | 10
10 | 6.92 | 747 | 11
151944 110.09| 16
20 [11.95]12.67| 21
50 126.98|27.84| 51
100 51.99 | 52.92 | 101




Fix some H > 0. By Dirichlet’s Box Principle there exists an integer
polynomial P such that

lan| < H, ..., |ao] < H, |ai| < HY, Jao| < H,

(1)
[P < H™",

where € > 0. We now consider two cases:

Case A: Let
max(|a1|, |ao|) > H,
that is
max(|a1|, |ao|) = H™ = [P, 0<d<e.

It is clear that in this case the derivative of P is “big”, that is
[P'(&)] =< H™. (2)

We have the following well-known inequality

P(E) .
P/ J ( )
[P'(£)]

where « is the root of the polynomial P closest to €. Substituting (1)
and (2) into (3), we get

£ — o] <

—n—e

H1+6

e—al <« T e pe o (o)t



Case B: Let
max(|a1|, |ao|) < H,

then
Pl < H. (4)

Using Dirichlet’s Box we construct an integer polynomial () such that

b,| < H, ..., |bo| < H, |bi] < HY, |b] < H,
5
Q)| < H™", ?
If max(|b1|, |bo|) > H, then
€= Bl < H(B) "
If max(|b1|, |bo|]) < H, then
Q< H. (6)

Then we can apply Wirsing’s Lemma:

|P(6)|2]Q(€)|[P1"3,
€ — 7] < max

1P()||Q(&)|2IPI3,

Substituting (4), (5), (6), and |P(£)| < H "¢, we get:

3_3

€=l < H3375 < H(y) 3707



Let us compare estimates in the Case A and Case B:

_ nt+1+42€

Case A: |€ —al < H(a)™ T+

Case B: [€ — o] < H(a)—%—%—iﬁ
If we take e = 0, then
Case A: | —a| < H(a)™ !
Case B: | — o] < H(a)_%_%
On the other hand, if we take e = 2, then
Case A: |€ —a| K H(a)_nT%
Case B: |¢ —a| < H(a) 2745

Finally, if we choose an optimal value of €, namely

we obtain

in both cases.



VI. “Improvement”

Let us consider an integer polynomial P such that

la,| < H, ..., |ao| < HY, | < HY,  ao| < H™,

[P()] < H" >

We have
Case A: |€ —a| K 111-(0z)_n+11++636
Case B: € — | < H(a)_%_%_‘%.
Put 10
e=1——,
n
then

€ —a] < H(oz)_”/zﬂn, lim A\, = 4.5,

n—oo
in both cases.
However, the Case A does not work. In fact,

max(|as|, |ai], |aol) > H # |P'(§)| is “big”.



VII. Method of “Polynomial Staircase”

In 1996 a new approach to this problem was introduced:

Step 1. Let R™ be a polynomial with k& “big” coefficients. We
construct the following n polynomials

Q(S), o Cz(n—l—l)7 P(n—l—l)’

which are small at &.
Step 2. We prove that they are linearly independent.

Step 3. Using a linear combination of these polynomials, we con-
struct the polynomial

LP=d,Q¥+ ... +d,_,Q"Y 4 q,P

with two “big” coefficients. The Case A does work for L. Moreover, it
is possible to show that an influence of the numbers dy, ..., d, is very
weak, so

L(E)| < HT .

This method allows us to prove the following
THEOREM 8. For any real number & & A, there exist infinitely
many algebraic numbers a € a,, with

€ —a| < Hl)"27™, lim A, = 4.

n—oo



The following table contains the values of

n
~ 4\,
2—|—

corresponding to Wirsing’s Theorem (1961), the Theorem of Bernik-
Tsishchanka (1993), Theorem 8 (2001), and the Conjecture:

n | 1961 | 1993 | 2001 | Conj.
3 1328 | 35 | 3.73 4
4 1382 | 4.12 | 445

5 | 435 | 471 | 5.14 6
6 | 4.87 | 5.28 | 5.76 7
7 1539 | 5.:84 | 6.36 8
8 | 9.9 | 6.39 | 6.93 9
9 | 641 | 6.93 | 7.50 | 10
10 | 6.92 | 7.47 | 8.06 | 11
15 ] 9.44 110.09|10.77| 16
20 | 11.95]12.67]13.40| 21
50 |26.98|27.84128.70| 51
100 | 51.99 | 52.92 1 53.84 | 101




VIII. Complex case

THEOREM 9 (Wirsing, 1961). For any complex number & ¢ a,
there exist infinitely many algebraic numbers a € a,, with

€ —a| < H(a)™,

where

Method: “Resultant”

In 2000 this result was slightly improved:

A==" + A\, where lim A\, = §
4 2

n—oo

Method: “Big Derivative”.

Method “Polynomial Staircase”: 7 7 7




IX. P-adic case

THEOREM 10 (Morrison, 1978). Let £ € @,. If £ € A, then there
are infinitely many algebraic numbers a € a,, with

€ — o] < H(a)™,
where

1++v3 when n=2,

n 3

§—I-§ when n > 2.

A —

THEOREM 11 (Teulié, 2002). 1If & & Ay, then there are infinitely
many algebraic numbers o € A9 with

€ —a| < H(a)™™.
The second part of Morrison’s theorem was also improved:

A= i + \,, where lim A\, = 3.

2 n—:oo

Method: “Big Derivative”.

Method “Polynomial Staircase”: 7 7 7




X. Two Counter-Examples

1. Simultaneous case.
CONJECTURE. For any two real numbers &, & & A, there exist
infinitely many algebraic numbers a;q, a9 such that

& — o] < [Pt /2

where P(z) € z[z], P(ay) = P(asz) = 0, deg P < n. The implicit
constant in < should depend on &;, &, and n.

COUNTER-EXAMPLE (Roy-Waldschmidt, 2001).  For any suffi-
ciently large n there exist real numbers & and & such that

max{]fl — 041’, ‘fg — 042‘} > F’_B\/ﬁ.

THEOREM 12. For any real numbers &, & ¢ A, at least one of
the following assertions is true:

(7) There exist infinitely many algebraic numbers ay, s of degree
< n such that

6 — 1| < [PI75%,

(0s[V]

& — | < [PI7575.

(27) For some & € {&, &} there exist infinitely many algebraic
numbers « of degree 2 < k£ < ”T” such that

€ —a| < H(a)™" T,

2. Approximation by algebraic integers.



THEOREM 13. (Davenport - Schmidt, 1968) Let n > 3. Let & be
real, but not algebraic of degree < 2. Then there are infinitely many
algebraic integers a of degree < 3 which satisty

0<|¢—al < H(a)™,

where

1
s =503+ V5) = 2.618...

CONJECTURE. Let & be real, but is not algebraic of degree < n.
Suppose € > 0. Then there are infinitely many real algebraic integers
a of degree < n with

€ — o < H(a)™"™.

THEOREM 14 (Roy, 2001). There exist real numbers £ such that
for any algebraic integer o of degree < 3, we have

€ —a| > H(a) ®2m,



XI. Most Recent Result

THEOREM 15. For any real number £ & A3 there exist infinitely
many algebraic numbers oo € a3 such that

€ —al < H(a)™,
where A = 3.7475.. is the largest root of the equation

203 — 1122 + 1lx + 8 = 0.



