On approximation of real, complex, and p-adic numbers by algebraic numbers of bounded degree

BY
K. I. Tsishchanka

I. On approximation by rational numbers

Theorem 1 (Dirichlet, 1842). For any real irrational number ξ there exist infinitely many rational numbers p / q such that

$$
\left|\xi-\frac{p}{q}\right|<\frac{1}{q^{2}}
$$

Example: Let $\xi=e$. Consider the continued fraction expansion:

$$
e=2+\frac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{4+\ldots}}}}}
$$

We have

$$
2+\frac{1}{1}=3 \quad 2+\frac{1}{1+\frac{1}{2}}=\frac{8}{3} \quad 2+\frac{1}{1+\frac{1}{2+\frac{1}{1}}}=\frac{11}{4}
$$

$$
2+\frac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{1}}}}=\frac{19}{7}
$$

$$
2+\frac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{4}}}}}=\frac{87}{32}
$$

$$
\begin{array}{ll}
\delta_{0}=2 & |e-2|<1 \\
\delta_{1}=3 & \\
\delta_{2}=\frac{8}{3} & |e-3|<1 \\
\delta_{3}=\frac{11}{4} & \left|e-\frac{8}{3}\right|<\frac{1}{3^{2}} \\
\delta_{4}=\frac{19}{7} & \left|e-\frac{19}{7}\right|<\frac{1}{4^{2}} \\
\delta_{5}=\frac{87}{32} & \left|e-\frac{87}{32}\right|<\frac{1}{32^{2}} \\
\delta_{6}=\frac{106}{39} & \left|e-\frac{106}{39}\right|<\frac{1}{39^{2}} \\
\delta_{7}=\frac{193}{71} & \left|e-\frac{193}{71}\right|<\frac{1}{71^{2}} \\
\delta_{8}=\frac{1264}{465} & \left|e-\frac{1264}{465}\right|<\frac{1}{465^{2}} \\
\delta_{9}=\frac{1457}{536} & \left|e-\frac{1457}{536}\right|<\frac{1}{536^{2}} \\
\delta_{10}=\frac{2721}{1001} & \left|e-\frac{2721}{1001}\right|<\frac{1}{1001^{2}}
\end{array}
$$

$$
\begin{aligned}
& \delta_{0}=2 \\
& |e-2|<1 \\
& \delta_{1}=3 \\
& |e-3|<\frac{1}{2 \cdot 1^{2}} \\
& \delta_{2}=\frac{8}{3} \\
& \delta_{3}=\frac{11}{4} \\
& \left\lvert\, \begin{array}{l}
e-\frac{\mathbf{8}}{\mathbf{3}} \\
e-\frac{11}{4}\left|<\frac{\mathbf{1}}{\mathbf{2 \cdot \mathbf { 3 } ^ { 2 }}}\right|<\frac{1}{4^{2}}
\end{array}\right. \\
& \delta_{4}=\frac{19}{7} \\
& \left|e-\frac{19}{7}\right|<\frac{1}{2 \cdot 7^{2}} \\
& \delta_{5}=\frac{87}{32} \\
& \left|e-\frac{87}{32}\right|<\frac{1}{2 \cdot 32^{2}} \\
& \delta_{6}=\frac{106}{39} \\
& \left|e-\frac{106}{39}\right|<\frac{1}{39^{2}} \\
& \delta_{7}=\frac{193}{71} \\
& \left|e-\frac{193}{71}\right|<\frac{1}{2 \cdot 71^{2}} \\
& \delta_{8}=\frac{1264}{465} \\
& \delta_{9}=\frac{1457}{536} \\
& \delta_{10}=\frac{\mathbf{2 7 2 1}}{\mathbf{1 0 0 1}} \\
& \left|e-\frac{1264}{465}\right|<\frac{1}{2 \cdot 465^{2}} \\
& \left|e-\frac{1457}{536}\right|<\frac{1}{536^{2}} \\
& \left|e-\frac{2721}{1001}\right|<\frac{1}{2 \cdot 1001^{2}}
\end{aligned}
$$

Theorem 2. For any real irrational number ξ there exist infinitely many rational numbers p / q such that

$$
\left|\xi-\frac{p}{q}\right|<\frac{1}{2 q^{2}} .
$$

$$
\delta_{10}=\frac{2721}{1001}
$$

$$
\left|e-\frac{2721}{1001}\right|<\frac{1}{\sqrt{5} \cdot 1001^{2}}
$$

$$
\begin{aligned}
& \delta_{0}=2 \quad|e-2|<1 \\
& \delta_{1}=3 \\
& |e-3|<\frac{1}{\sqrt{5} \cdot 1^{2}} \\
& \left|e-\frac{8}{3}\right|<\frac{1}{2 \cdot 3^{2}} \\
& \delta_{3}=\frac{11}{4} \\
& \delta_{4}=\frac{19}{7} \\
& \delta_{5}=\frac{87}{32} \\
& \delta_{6}=\frac{106}{39} \\
& \delta_{7}=\frac{193}{71} \\
& \left|e-\frac{106}{39}\right|<\frac{1}{39^{2}} \\
& \left|e-\frac{87}{32}\right|<\frac{1}{2 \cdot 32^{2}} \\
& \left|e-\frac{193}{71}\right|<\frac{1}{\sqrt{5} \cdot 71^{2}} \\
& \delta_{8}=\frac{1264}{465} \\
& \delta_{9}=\frac{1457}{536}
\end{aligned}
$$

Theorem 3 (Hurwitz). For any real irrational number ξ there exist infinitely many rational numbers p / q such that

$$
\left|\xi-\frac{p}{q}\right|<\frac{1}{\sqrt{5} q^{2}} .
$$

This result is the best possible.
Example:

$$
\xi=\frac{1+\sqrt{5}}{2}=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots}}}}}
$$

II. Polynomial Interpretation

For any real irrational number ξ there exist infinitely many rational numbers p / q such that

$$
\begin{gathered}
\left|\xi-\frac{p}{q}\right|<\frac{1}{q^{2}} . \\
\Downarrow \\
|q \xi-p|<q^{-1} .
\end{gathered}
$$

Theorem 4. For any real irrational number ξ there exist infinitely many polynomials $P \in \mathbb{Z}[x]$ of the first degree such that

$$
|P(\xi)| \ll \mid P^{-1}
$$

where $|P|$ denotes the height of the polynomial P, that is the maximum of absolute values of its coefficients, \ll is the Vinogradov symbol.

Theorem 5. For any real number $\xi \notin \mathbb{A}_{n}$ there exist infinitely many polynomials $P \in \mathbb{Z}[x]$ of degree $\leq n$ such that

$$
|P(\xi)| \ll|P|^{-n}
$$

where \mathbb{A}_{n} is the set of real algebraic numbers of degree $\leq n$.

$$
\begin{aligned}
& \left|\xi-\frac{p}{q}\right|<q^{-2} \quad \longrightarrow|q \xi-p|<q^{-1} \\
& |\xi-\alpha| \ll ? \quad \backsim|P(\xi)| \ll \mid P^{-n}
\end{aligned}
$$

III. Conjecture of Wirsing

Conjecture (Wirsing, 1961). For any real number $\xi \notin \mathbb{A}_{n}$, there exist infinitely many algebraic numbers $\alpha \in \mathbb{A}_{n}$ with

$$
|\xi-\alpha| \ll H(\alpha)^{-n-1+\epsilon}, \quad \epsilon>0,
$$

where $H(\alpha)$ is the height of α.
Further W. M. Schmidt conjectured that the exponent

$$
-n-1+\epsilon
$$

can be replaced even by

$$
-n-1
$$

$\left\|\xi-\frac{p}{q}\right\|<q^{-2}$	\longrightarrow
	$\|q \xi-p\|<q^{-1}$
$\|\xi-\alpha\| \ll H(\alpha)^{-n-1} \ldots$	$\|P(\xi)\| \ll P^{-n}$

At the moment this Conjecture is proved only for

$$
\begin{array}{lll}
n=1 & \Rightarrow|\xi-\alpha| \ll H(\alpha)^{-2} & \text { (Dirichlet, 1842) } \\
n=2 & \Rightarrow|\xi-\alpha| \ll H(\alpha)^{-3} & \text { (Davenport - Schmidt, 1967) } \\
n>2 & \Rightarrow \text { ??? }
\end{array}
$$

$$
P(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}=a_{n}\left(x-\alpha_{1}\right) \cdot \ldots \cdot\left(x-\alpha_{n}\right)
$$

Without loss of generality we can assume that α_{1} is the root of $P(x)$ closest to ξ. We have

$$
\left|\xi-\alpha_{1}\right| \ll \frac{|P(\xi)|}{\left|P^{\prime}(\xi)\right|} .
$$

By Theorem 3 there are infinitely many polynomials $P \in \mathbb{Z}[x]$ of degree $\leq n$ such that

$$
|P(\xi)| \ll \mid P^{-n} .
$$

Let $n=1$. Then

$$
\left|P^{\prime}(\xi)\right|=\left|a_{1}\right| \asymp|P| \quad \Rightarrow \quad\left|\xi-\alpha_{1}\right| \ll \frac{|P|^{-1}}{|P|}=|P|^{-2}
$$

Let $n=2$. Then for some $\delta \leq 1$

$$
\left|P^{\prime}(\xi)\right|=\left|2 a_{2} \xi+a_{1}\right| \asymp\left|P^{\delta} \Rightarrow\right| \xi-\alpha_{1}\left|\ll \frac{|P|^{-2}}{|P|^{\delta}}=| |^{-2-\delta} ? ? ?\right.
$$

Question: Can one prove that the following is impossible:
All polynomials with $|P(\xi)| \ll|P|^{-n}$ have
a "small" derivative $\left.\left|P^{\prime}(\xi)\right| \asymp\right|^{\delta}, \delta<1$.

ANSWER: Yes, for $\mathrm{n}=1$ (Dirichlet, 1842)
n=2 (Davenport - Schmidt, 1967)

IV. Theorem of Wirsing

Theorem 6 (Wirsing, 1961). For any real number $\xi \notin \mathbb{A}_{n}$ there exist infinitely many algebraic numbers $\alpha \in \mathbb{A}_{n}$ with

$$
|\xi-\alpha| \ll H(\alpha)^{-\frac{n}{2}-\lambda_{n}}, \quad \lim _{n \rightarrow \infty} \lambda_{n}=2
$$

By Dirichlet's Box principle there are infinitely polynomials

$$
P(x)=a_{n}\left(x-\alpha_{1}\right) \cdot \ldots \cdot\left(x-\alpha_{n}\right)
$$

such that

$$
|P(\xi)| \ll \mid P^{-n}
$$

therefore

$$
\left|\xi-\alpha_{1}\right| \cdot \ldots \cdot\left|\xi-\alpha_{n}\right| \ll|P|^{-n} a_{n}^{-1} .
$$

Even if $a_{n}=\bar{P}$, we can only prove that

$$
\begin{gathered}
\left|\xi-\alpha_{1}\right| \cdot \ldots \cdot\left|\xi-\alpha_{n}\right| \ll \mid P^{-n-1} \ll H\left(\alpha_{1}\right)^{-n-1}, \\
\Downarrow \\
\left|\xi-\alpha_{1}\right| \ll H\left(\alpha_{1}\right)^{-\frac{n+1}{n} ? ? ?}
\end{gathered}
$$

It is also clear, that the worth case for us is when

$$
\left|\xi-\alpha_{1}\right|=\ldots=\left|\xi-\alpha_{n}\right| .
$$

Question: Can one prove that for infinitely many polynomials $P \in \mathbb{Z}[x]$ with $|P(\xi)| \ll|P|^{-n}$ the situation

$$
\left|\xi-\alpha_{1}\right|=\ldots=\left|\xi-\alpha_{n}\right|
$$

is impossible?

ANSWER: For infinitely many polynomials $P \in \mathbb{Z}[x]$ with $|P(\xi)| \ll|P|^{-n}$ we have:
$\left|\xi-\alpha_{1}\right| \ll\left|\xi-\alpha_{2}\right| \ll 1$,
$\left|\xi-\alpha_{3}\right|, \ldots,\left|\xi-\alpha_{n}\right|$ are "big".

Step 1: Construct ∞-many $P, Q \in \mathbb{Z}[x]$, $\operatorname{deg} P, Q \leq n$, such that

$\|P(\xi)\| \ll \mid P^{-n}$
$\|Q(\xi)\| \ll\|Q\|^{-n}$
$\|P\| \ll\|Q\|$

and | P, Q have no |
| :---: |
| common root |

Step 2. Consider the resultant of P, Q :

$$
R(P, Q)=a_{m}^{\ell} b_{\ell}^{m} \prod_{1 \leq i, j \leq n}\left(\alpha_{i}-\beta_{j}\right) .
$$

On the one hand,

$$
R(P, Q) \neq 0
$$

since P, Q have no common root. Moreover,

$$
R(P, Q) \in \mathbb{Z}
$$

since P, Q have integer coefficients.
Therefore we get

$$
|R(P, Q)| \geq 1
$$

Step 3. On the other hand,

$$
\begin{aligned}
|R(P, Q)| & =a_{m}^{\ell} b_{\ell}^{m} \prod_{1 \leq i, j \leq n}\left|\alpha_{i}-\beta_{j}\right| \\
& \ll P^{2 n} \prod_{1 \leq i, j \leq n}\left|\alpha_{i}-\beta_{j}\right| \\
& \ll P^{2 n} \prod_{1 \leq i, j \leq n} \max \left(\left|\xi-\alpha_{i}\right|,\left|\xi-\beta_{j}\right|\right)
\end{aligned}
$$

If

$$
\begin{aligned}
& \left|\xi-\alpha_{1}\right|=\ldots=\left|\xi-\alpha_{n}\right| \ll \left\lvert\, P^{-1-\frac{1}{n}}\right. \\
& \left|\xi-\beta_{1}\right|=\ldots=\left|\xi-\beta_{n}\right| \ll| |^{-1-\frac{1}{n}}
\end{aligned}
$$

then

$$
|R(P, Q)| \ll|P|^{2 n}|P|^{\left(-1-\frac{1}{n}\right) n^{2}}=\mid P^{n-n^{2}}<1,
$$

which contradicts to Step 2.

Lemma (Wirsing, 1961):

$$
|\xi-\gamma| \ll \max \left\{\begin{array}{l}
\mid P(\xi)) \left.^{\frac{1}{2}}|Q(\xi)| \right\rvert\, P^{n-\frac{3}{2}}, \\
\left.|P(\xi)||Q(\xi)|^{\frac{1}{2}} \right\rvert\, P^{n-\frac{3}{2}},
\end{array}\right.
$$

where γ is a root of P or Q closest to ξ.
Since

$$
\begin{aligned}
& |P(\xi)| \ll\left|\left.\right|^{-n},\right. \\
& |Q(\xi)| \ll|Q|^{-n},
\end{aligned}
$$

we get

$$
|\xi-\gamma| \ll|P|^{-\frac{n}{2}-n+n-\frac{3}{2}}=\left\lvert\, P^{-\frac{n}{2}-\frac{3}{2}} .\right.
$$

V. "Big Derivative" Method

Theorem 7 (Bernik-Tsishchanka, 1993). For any real number $\xi \notin \mathbb{A}_{n}$ there exist infinitely many algebraic numbers $\alpha \in \mathbb{A}_{n}$ with

$$
|\xi-\alpha| \ll H(\alpha)^{-\frac{n}{2}-\lambda_{n}}, \quad \lim _{n \rightarrow \infty} \lambda_{n}=3
$$

The following table contains the values of

$$
\frac{n}{2}+\lambda_{n}
$$

corresponding to Wirsing's Theorem (1961), the Theorem of BernikTsishchanka (1993), and the Conjecture:

n	1961	1993	Conj.
3	3.28	3.5	4
4	3.82	4.12	5
5	4.35	4.71	6
6	4.87	5.28	7
7	5.39	5.84	8
8	5.9	6.39	9
9	6.41	6.93	10
10	6.92	7.47	11
15	9.44	10.09	16
20	11.95	12.67	21
50	26.98	27.84	51
100	51.99	52.92	101

Fix some $H>0$. By Dirichlet's Box Principle there exists an integer polynomial P such that

$$
\begin{align*}
& \left|a_{n}\right| \ll H, \ldots,\left|a_{2}\right| \ll H, \quad\left|a_{1}\right| \ll H^{1+\epsilon}, \quad\left|a_{0}\right| \ll H^{1+\epsilon}, \tag{1}\\
& |P(\xi)| \ll H^{-n-\epsilon},
\end{align*}
$$

where $\epsilon>0$. We now consider two cases:
Case A: Let

$$
\max \left(\left|a_{1}\right|,\left|a_{0}\right|\right) \gg H,
$$

that is

$$
\max \left(\left|a_{1}\right|,\left|a_{0}\right|\right)=H^{1+\delta}=|P|, \quad 0<\delta \leq \epsilon .
$$

It is clear that in this case the derivative of P is "big", that is

$$
\begin{equation*}
\left|P^{\prime}(\xi)\right| \asymp H^{1+\delta} \tag{2}
\end{equation*}
$$

We have the following well-known inequality

$$
\begin{equation*}
|\xi-\alpha| \ll \frac{|P(\xi)|}{\left|P^{\prime}(\xi)\right|} \tag{3}
\end{equation*}
$$

where α is the root of the polynomial P closest to ξ. Substituting (1) and (2) into (3), we get

$$
|\xi-\alpha| \ll \frac{H^{-n-\epsilon}}{H^{1+\delta}}=H^{-(1+\delta) \frac{n+1+\epsilon+\delta}{1+\delta}}=\left\lvert\, P^{-\frac{n+1+\epsilon+\delta}{1+\delta}} \ll H(\alpha)^{-\frac{n+1+2 \epsilon}{1+\epsilon}}\right.
$$

Case B: Let

$$
\max \left(\left|a_{1}\right|,\left|a_{0}\right|\right) \ll H,
$$

then

$$
\begin{equation*}
|P| \ll H \tag{4}
\end{equation*}
$$

Using Dirichlet's Box we construct an integer polynomial Q such that

$$
\begin{align*}
& \left|b_{n}\right| \ll H, \ldots,\left|b_{2}\right| \ll H, \quad\left|b_{1}\right| \ll H^{1+\epsilon}, \quad\left|b_{0}\right| \ll H^{1+\epsilon}, \tag{5}\\
& |Q(\xi)| \ll H^{-n-\epsilon},
\end{align*}
$$

If $\max \left(\left|b_{1}\right|,\left|b_{0}\right|\right) \gg H$, then

$$
|\xi-\beta| \ll H(\beta)^{-\frac{n+1+2 \epsilon}{1+\epsilon}} .
$$

If $\max \left(\left|b_{1}\right|,\left|b_{0}\right|\right) \ll H$, then

$$
\begin{equation*}
|Q| \ll H . \tag{6}
\end{equation*}
$$

Then we can apply Wirsing's Lemma:

$$
|\xi-\gamma| \ll \max \left\{\begin{array}{l}
\left.|P(\xi)|^{\frac{1}{2}}|Q(\xi)| \right\rvert\, P^{n-\frac{3}{2}} \\
\left.|P(\xi)||Q(\xi)|^{\frac{1}{2}} \right\rvert\, P^{n-\frac{3}{2}}
\end{array}\right.
$$

Substituting (4), (5), (6), and $|P(\xi)| \ll H^{-n-\epsilon}$, we get:

$$
|\xi-\gamma| \ll H^{-\frac{n}{2}-\frac{3}{2}-\frac{3}{2} \epsilon} \ll H(\gamma)^{-\frac{n}{2}-\frac{3}{2}-\frac{3}{2} \epsilon} .
$$

Let us compare estimates in the Case A and Case B:
Case A: $\quad|\xi-\alpha| \ll H(\alpha)^{-\frac{n+1+2 \epsilon}{1+\epsilon}}$
Case B: $|\xi-\alpha| \ll H(\alpha)^{-\frac{n}{2}-\frac{3}{2}-\frac{3}{2} \epsilon}$

If we take $\epsilon=0$, then

$$
\begin{array}{ll}
\text { Case A: } & |\xi-\alpha| \ll H(\alpha)^{-n-1} \\
\text { Case B: } & |\xi-\alpha| \ll H(\alpha)^{-\frac{n}{2}-\frac{3}{2}}
\end{array}
$$

On the other hand, if we take $\epsilon=2$, then

$$
\begin{array}{ll}
\text { Case A: } & |\xi-\alpha| \ll H(\alpha)^{-\frac{n+5}{3}} \\
\text { Case B: } & |\xi-\alpha| \ll H(\alpha)^{-\frac{n}{2}-4.5}
\end{array}
$$

Finally, if we choose an optimal value of ϵ, namely

$$
\epsilon=1-\frac{6}{n}
$$

we obtain

$$
|\xi-\alpha| \ll H(\alpha)^{-n / 2+\lambda_{n}}, \quad \lim _{n \rightarrow \infty} \lambda_{n}=3
$$

in both cases.

VI. "Improvement"

Let us consider an integer polynomial P such that

$$
\begin{aligned}
& \left|a_{n}\right| \ll H, \ldots,\left|a_{2}\right| \ll H^{1+\epsilon}, \quad\left|a_{1}\right| \ll H^{1+\epsilon}, \quad\left|a_{0}\right| \ll H^{1+\epsilon}, \\
& |P(\xi)| \ll H^{-n-2 \epsilon} .
\end{aligned}
$$

We have

$$
\text { Case A: }|\xi-\alpha| \ll H(\alpha)^{-\frac{n+1+3 \epsilon}{1+\epsilon}}
$$

Case B: $|\xi-\alpha| \ll H(\alpha)^{-\frac{n}{2}-\frac{3}{2}-3 \epsilon}$.
Put

$$
\epsilon=1-\frac{10}{n},
$$

then

$$
|\xi-\alpha| \ll H(\alpha)^{-n / 2+\lambda_{n}}, \quad \lim _{n \rightarrow \infty} \lambda_{n}=4.5
$$

in both cases.
However, the Case A does not work. In fact,

$$
\max \left(\left|a_{2}\right|,\left|a_{1}\right|,\left|a_{0}\right|\right) \gg H \nRightarrow \quad\left|P^{\prime}(\xi)\right| \quad \text { is "big". }
$$

VII. Method of "Polynomial Staircase"

In 1996 a new approach to this problem was introduced:
Step 1. Let $R^{(k)}$ be a polynomial with k "big" coefficients. We construct the following n polynomials

$$
Q^{(3)}, \ldots, Q^{(n+1)}, P^{(n+1)}
$$

which are small at ξ.
Step 2 . We prove that they are linearly independent.
Step 3. Using a linear combination of these polynomials, we construct the polynomial

$$
L^{(2)}=d_{1} Q^{(3)}+\ldots+d_{n-1} Q^{(n+1)}+d_{n} P^{(n+1)}
$$

with two "big" coefficients. The Case A does work for L. Moreover, it is possible to show that an influence of the numbers d_{1}, \ldots, d_{n} is very weak, so

$$
|L(\xi)| \ll H^{-n-2 \epsilon}
$$

This method allows us to prove the following
THEOREM 8. For any real number $\xi \notin \mathbb{A}_{n}$ there exist infinitely many algebraic numbers $\alpha \in \mathbb{A}_{n}$ with

$$
|\xi-\alpha| \ll H(\alpha)^{-\frac{n}{2}-\lambda_{n}}, \quad \lim _{n \rightarrow \infty} \lambda_{n}=4
$$

The following table contains the values of

$$
\frac{n}{2}+\lambda_{n}
$$

corresponding to Wirsing's Theorem (1961), the Theorem of BernikTsishchanka (1993), Theorem 8 (2001), and the Conjecture:

n	1961	1993	2001	Conj.
3	3.28	3.5	3.73	4
4	3.82	4.12	4.45	5
5	4.35	4.71	5.14	6
6	4.87	5.28	5.76	7
7	5.39	5.84	6.36	8
8	5.9	6.39	6.93	9
9	6.41	6.93	7.50	10
10	6.92	7.47	8.06	11
15	9.44	10.09	10.77	16
20	11.95	12.67	13.40	21
50	26.98	27.84	28.70	51
100	51.99	52.92	53.84	101

VIII. Complex case

Theorem 9 (Wirsing, 1961). For any complex number $\xi \notin \mathbb{A}_{n}$ there exist infinitely many algebraic numbers $\alpha \in \mathbb{A}_{n}$ with

$$
|\xi-\alpha| \ll H(\alpha)^{-A},
$$

where

$$
A=\frac{n}{4}+1 .
$$

Method: "Resultant"
In 2000 this result was slightly improved:

$$
A=\frac{n}{4}+\lambda_{n}, \quad \text { where } \quad \lim _{n \rightarrow \infty} \lambda_{n}=\frac{3}{2} .
$$

Method: "Big Derivative".
Method "Polynomial Staircase": ? ? ?

IX. P-adic case

Theorem 10 (Morrison, 1978). Let $\xi \in \mathbb{Q}_{p}$. If $\xi \notin \mathbb{A}_{n}$, then there are infinitely many algebraic numbers $\alpha \in \mathbb{A}_{n}$ with

$$
|\xi-\alpha| \ll H(\alpha)^{-A},
$$

where

$$
A=\left\{\begin{array}{l}
1+\sqrt{3} \quad \text { when } n=2 \\
\frac{n}{2}+\frac{3}{2} \quad \text { when } \quad n>2
\end{array}\right.
$$

Theorem 11 (Teulié, 2002). If $\xi \notin \mathbb{A}_{2}$, then there are infinitely many algebraic numbers $\alpha \in \mathbb{A}_{2}$ with

$$
|\xi-\alpha| \ll H(\alpha)^{-3} .
$$

The second part of Morrison's theorem was also improved:

$$
A=\frac{n}{2}+\lambda_{n}, \quad \text { where } \quad \lim _{n \rightarrow \infty} \lambda_{n}=3 .
$$

Method: "Big Derivative".
Method "Polynomial Staircase": ? ? ?

X. Two Counter-Examples

1. Simultaneous case.

Conjecture. For any two real numbers $\xi_{1}, \xi_{2} \notin \mathbb{A}_{n}$ there exist infinitely many algebraic numbers α_{1}, α_{2} such that

$$
\left\{\begin{array}{l}
\left|\xi_{1}-\alpha_{1}\right| \ll|P|^{-(n+1) / 2} \\
\left|\xi_{2}-\alpha_{2}\right| \ll|P|^{-(n+1) / 2}
\end{array}\right.
$$

where $P(x) \in \mathbb{Z}[x], \quad P\left(\alpha_{1}\right)=P\left(\alpha_{2}\right)=0$, $\operatorname{deg} P \leq n$. The implicit constant in \ll should depend on ξ_{1}, ξ_{2}, and n.

Counter-Example (Roy-Waldschmidt, 2001). For any sufficiently large n there exist real numbers ξ_{1} and ξ_{2} such that

$$
\max \left\{\left|\xi_{1}-\alpha_{1}\right|,\left|\xi_{2}-\alpha_{2}\right|\right\}>\mid P^{-3 \sqrt{n}}
$$

ThEOREM 12. For any real numbers $\xi_{1}, \xi_{2} \notin \mathbb{A}_{n}$ at least one of the following assertions is true:
(i) There exist infinitely many algebraic numbers α_{1}, α_{2} of degree $\leq n$ such that

$$
\left\{\begin{array}{l}
\left|\xi_{1}-\alpha_{1}\right| \ll\left|\left.\right|^{-\frac{n}{8}-\frac{3}{8}}\right. \\
\left|\xi_{2}-\alpha_{2}\right| \ll \left\lvert\, P^{-\frac{n}{8}-\frac{3}{8}}\right.
\end{array}\right.
$$

(ii) For some $\xi \in\left\{\xi_{1}, \xi_{2}\right\}$ there exist infinitely many algebraic numbers α of degree $2 \leq k \leq \frac{n+2}{4}$ such that

$$
|\xi-\alpha| \ll H(\alpha)^{-\frac{n+2}{4}-1}
$$

2. Approximation by algebraic integers.

Theorem 13. (Davenport - Schmidt, 1968) Let $n \geq 3$. Let ξ be real, but not algebraic of degree ≤ 2. Then there are infinitely many algebraic integers α of degree ≤ 3 which satisfy

$$
0<|\xi-\alpha| \ll H(\alpha)^{-\eta_{3}},
$$

where

$$
\eta_{3}=\frac{1}{2}(3+\sqrt{5})=2.618 \ldots
$$

Conjecture. Let ξ be real, but is not algebraic of degree $\leq n$. Suppose $\epsilon>0$. Then there are infinitely many real algebraic integers α of degree $\leq n$ with

$$
|\xi-\alpha| \ll H(\alpha)^{-n+\epsilon} .
$$

Theorem 14 (Roy, 2001). There exist real numbers ξ such that for any algebraic integer α of degree ≤ 3, we have

$$
|\xi-\alpha| \gg H(\alpha)^{-(3 / 2) \eta_{3}}
$$

XI. Most Recent Result

Theorem 15. For any real number $\xi \notin \mathbb{A}_{3}$ there exist infinitely many algebraic numbers $\alpha \in \mathbb{A}_{3}$ such that

$$
|\xi-\alpha| \ll H(\alpha)^{-A},
$$

where $A=3.7475$.. is the largest root of the equation

$$
2 x^{3}-11 x^{2}+11 x+8=0 .
$$

