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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.
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2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle
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√
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Jakob Steiner
(1796 - 1863)
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DEFINITION:

A set in Euclidean space is convex set if it contains all the line seg-

ments connecting any pair of its points.
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THEOREM:
Among all planar shapes with the same perimeter the circle has

the largest area.

LEMMA 1:
The figure that solves the Theorem must be convex.

ABOUT A CIRCLE AND BEYOND – p.68/63



THEOREM:
Among all planar shapes with the same perimeter the circle has

the largest area.

LEMMA 1:
The figure that solves the Theorem must be convex.

ABOUT A CIRCLE AND BEYOND – p.68/63



THEOREM:
Among all planar shapes with the same perimeter the circle has

the largest area.

LEMMA 1:
The figure that solves the Theorem must be convex.

ABOUT A CIRCLE AND BEYOND – p.68/63



THEOREM:
Among all planar shapes with the same perimeter the circle has

the largest area.

LEMMA 1:
The figure that solves the Theorem must be convex.

ABOUT A CIRCLE AND BEYOND – p.69/63



THEOREM:
Among all planar shapes with the same perimeter the circle has

the largest area.

LEMMA 1:
The figure that solves the Theorem must be convex.

ABOUT A CIRCLE AND BEYOND – p.70/63



THEOREM:
Among all planar shapes with the same perimeter the circle has

the largest area.

LEMMA 1:
The figure that solves the Theorem must be convex.

ABOUT A CIRCLE AND BEYOND – p.71/63



THEOREM:
Among all planar shapes with the same perimeter the circle has

the largest area.

LEMMA 1:
The figure that solves the Theorem must be convex.

ABOUT A CIRCLE AND BEYOND – p.72/63



THEOREM:
Among all planar shapes with the same perimeter the circle has

the largest area.

LEMMA 1:
The figure that solves the Theorem must be convex.

ABOUT A CIRCLE AND BEYOND – p.73/63



THEOREM:
Among all planar shapes with the same perimeter the circle has

the largest area.

LEMMA 1:
The figure that solves the Theorem must be convex.

ABOUT A CIRCLE AND BEYOND – p.74/63



THEOREM:
Among all planar shapes with the same perimeter the circle has

the largest area.

LEMMA 1:
The figure that solves the Theorem must be convex.

ABOUT A CIRCLE AND BEYOND – p.75/63



THEOREM:
Among all planar shapes with the same perimeter the circle has

the largest area.

LEMMA 1:
The figure that solves the Theorem must be convex.

ABOUT A CIRCLE AND BEYOND – p.76/63



THEOREM:
Among all planar shapes with the same perimeter the circle has

the largest area.

LEMMA 1:
The figure that solves the Theorem must be convex.

ABOUT A CIRCLE AND BEYOND – p.77/63



THEOREM:
Among all planar shapes with the same perimeter the circle has

the largest area.

LEMMA 1:
The figure that solves the Theorem must be convex.

LEMMA 2:

Choose points S and T on the curve that the points divide the

perimeter into two equal parts. Then the segment ST must divide

the area of the shape into two equal parts. aaaaaaaaaaaaaaaaaaaa
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THEOREM:
Among all planar shapes with the same perimeter the circle has

the largest area.

LEMMA 1:
The figure that solves the Theorem must be convex.

LEMMA 2:

Choose points S and T on the curve that the points divide the

perimeter into two equal parts. Then the segment ST must divide

the area of the shape into two equal parts. aaaaaaaaaaaaaaaaaaaa

LEMMA 3: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Consider all arcs with a given length and endpoints on a line. The

curve that encloses the maximum area between it and the line is a

semicircle.
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THEOREM:
Among all planar shapes with the same perimeter the circle has

the largest area.

LEMMA 1:
The figure that solves the Theorem must be convex.

LEMMA 2:

Choose points S and T on the curve that the points divide the

perimeter into two equal parts. Then the segment ST must divide

the area of the shape into two equal parts. aaaaaaaaaaaaaaaaaaaa

LEMMA 3: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Consider all arcs with a given length and endpoints on a line. The

curve that encloses the maximum area between it and the line is a

semicircle.
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Jakob Steiner
(1796 - 1863)

Lejeune Dirichlet
(1805 - 1859)

Among all planar shapes
with the same perimeter
the circle has the largest
area.
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Jakob Steiner
(1796 - 1863)

Karl Weierstrass
(1815 - 1897)

Among all planar shapes
with the same perimeter
the circle has the largest
area.
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Adolf Hurwitz
(1859-1919)

Among all planar shapes
with the same perimeter
the circle has the largest
area.
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?

ABOUT A CIRCLE AND BEYOND – p.116/63



DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A
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1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

x
1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?

ABOUT A CIRCLE AND BEYOND – p.126/63



DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

x y
1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

x y

x + y

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

x y − x

y

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.
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1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

x

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

x

y
1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1

x

y
1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1

x

y/x

y
1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the CircleArchimedes
(287 BC - 212 BC)

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the CircleArchimedes
(287 BC - 212 BC)

π ≈ 22

7

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the CircleZu Chongzhi
(429 - 501)

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the CircleZu Chongzhi
(429 - 501)

π ≈ 355

113

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the CircleJohann Lambert
(1728 - 1777)

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the CircleJohann Lambert
(1728 - 1777)

THEOREM (Lambert, 1761):

The number π is not rational.

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?

ABOUT A CIRCLE AND BEYOND – p.140/63



DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the CircleJohann Lambert
(1728 - 1777)

THEOREM (Lambert, 1761):

The number π is irrational.

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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THEOREM:
√

2 is irrational.

PROOF: Assume to the contrary that

√
2 =

p

q

where p and q have no common divisor.
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THEOREM:
√

2 is irrational.

PROOF:

Assume to the contrary that

√
2 =

p

q

where p and q have no common divisor.
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THEOREM:
√

2 is irrational.

PROOF: Assume to the contrary that

√
2 =

p

q
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THEOREM:
√

2 is irrational.

PROOF: Assume to the contrary that

√
2 =

p

q

where p and q have no common divisor.

√
2 =

1414213562

1000000000
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THEOREM:
√

2 is irrational.

PROOF: Assume to the contrary that

√
2 =

p

q

where p and q have no common divisor.

√
2 =

2 · 707106781

2 · 500000000
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THEOREM:
√

2 is irrational.

PROOF: Assume to the contrary that

√
2 =

p

q

where p and q have no common divisor.

√
2 =

707106781

500000000
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THEOREM:
√

2 is irrational.

PROOF: Assume to the contrary that

√
2 =

p

q

where p and q have no common divisor.

We have

2q2 = p2 (∗)

so p2 is even. Therefore p is even., i.e. p = 2k. Substituting this

into (∗), we get

q2 = 2k2

so q2 is even. Therefore q is even. Contradiction. �
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2 is irrational.

PROOF: Assume to the contrary that

√
2 =

p

q

where p and q have no common divisor. We have

2q2 = p2 (∗)

so p2 is even. Therefore p is even., i.e. p = 2k. Substituting this

into (∗), we get

q2 = 2k2

so q2 is even. Therefore q is even. Contradiction. �
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THEOREM:
√

2 is irrational.

PROOF: Assume to the contrary that

√
2 =

p

q

where p and q have no common divisor. We have

2q2 = p2

2q2 = p2 (∗)

so p2 is even. Therefore p is even., i.e. p = 2k. Substituting this

into (∗), we get

q2 = 2k2

so q2 is even. Therefore q is even. Contradiction. �
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where p and q have no common divisor. We have

2q2 = p2 (∗)

so p2 is even. Therefore p is even., i.e. p = 2k. Substituting this
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THEOREM:
√
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PROOF: Assume to the contrary that

√
2 =

p

q

where p and q have no common divisor. We have

2q2 = p2 (∗)

so p2 is even.

Therefore p is even., i.e. p = 2k. Substituting this
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q2 = 2k2

so q2 is even. Therefore q is even. Contradiction. �

ABOUT A CIRCLE AND BEYOND – p.143/63



THEOREM:
√

2 is irrational.

PROOF: Assume to the contrary that

√
2 =

p

q

where p and q have no common divisor. We have

2q2 = p2 (∗)

so p2 is even. Therefore p is even.

, i.e. p = 2k. Substituting this

into (∗), we get

q2 = 2k2

so q2 is even. Therefore q is even. Contradiction. �

ABOUT A CIRCLE AND BEYOND – p.143/63



THEOREM:
√

2 is irrational.

PROOF: Assume to the contrary that

√
2 =

p

q

where p and q have no common divisor. We have

2q2 = p2 (∗)

so p2 is even. Therefore p is even., i.e. p = 2k.

Substituting this

into (∗), we get

q2 = 2k2

so q2 is even. Therefore q is even. Contradiction. �
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THEOREM:
√

2 is irrational.

PROOF: Assume to the contrary that

√
2 =

p

q

where p and q have no common divisor. We have

2q2 = p2 (∗)

so p2 is even. Therefore p is even., i.e. p = 2k. Substituting this

into (∗), we get

q2 = 2k2

so q2 is even. Therefore q is even. Contradiction. �
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THEOREM:
√

2 is irrational.

PROOF: Assume to the contrary that

√
2 =

p

q

where p and q have no common divisor. We have

2q2 = p2 (∗)

so p2 is even. Therefore p is even., i.e. p = 2k. Substituting this

into (∗), we get

2q2 = (2k)2

q2 = 2k2

so q2 is even. Therefore q is even. Contradiction. �
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THEOREM:
√

2 is irrational.

PROOF: Assume to the contrary that

√
2 =

p

q

where p and q have no common divisor. We have

2q2 = p2 (∗)

so p2 is even. Therefore p is even., i.e. p = 2k. Substituting this

into (∗), we get

2q2 = 4k2

q2 = 2k2

so q2 is even. Therefore q is even. Contradiction. �

ABOUT A CIRCLE AND BEYOND – p.143/63



THEOREM:
√

2 is irrational.

PROOF: Assume to the contrary that

√
2 =

p

q

where p and q have no common divisor. We have

2q2 = p2 (∗)

so p2 is even. Therefore p is even., i.e. p = 2k. Substituting this

into (∗), we get

q2 = 2k2

so q2 is even. Therefore q is even. Contradiction. �
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THEOREM:
√

2 is irrational.

PROOF: Assume to the contrary that

√
2 =

p

q

where p and q have no common divisor. We have

2q2 = p2 (∗)

so p2 is even. Therefore p is even., i.e. p = 2k. Substituting this

into (∗), we get

q2 = 2k2

so q2 is even.

Therefore q is even. Contradiction. �
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THEOREM:
√

2 is irrational.

PROOF: Assume to the contrary that

√
2 =

p

q

where p and q have no common divisor. We have

2q2 = p2 (∗)

so p2 is even. Therefore p is even., i.e. p = 2k. Substituting this

into (∗), we get

q2 = 2k2

so q2 is even. Therefore q is even.

Contradiction. �

ABOUT A CIRCLE AND BEYOND – p.143/63



THEOREM:
√

2 is irrational.

PROOF: Assume to the contrary that

√
2 =

p

q

where p and q have no common divisor. We have

2q2 = p2 (∗)

so p2 is even. Therefore p is even., i.e. p = 2k. Substituting this

into (∗), we get

q2 = 2k2

so q2 is even. Therefore q is even. Contradiction.

�
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THEOREM:
√

2 is irrational.

PROOF: Assume to the contrary that

√
2 =

p

q

where p and q have no common divisor. We have

2q2 = p2 (∗)

so p2 is even. Therefore p is even., i.e. p = 2k. Substituting this

into (∗), we get

q2 = 2k2

so q2 is even. Therefore q is even. Contradiction. �
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THEOREM: e = 2.718... is irrational.

Leonhard Euler
(1707 - 1783)

e = lim
n→∞

(

1 +
1

n

)n

e = 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+ . . .

e = 2.718281828459045235...

e = 2 + 1
1+ 1

2+ 1

1+ 1

1+ 1

4+ 1

1+ 1

1+ 1

6+ 1

1+ 1

1+ 1

8+ 1

1+ 1

1+ 1
10+...
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THEOREM: e = 2.718... is irrational.

Leonhard Euler
(1707 - 1783)

e = 1 +
1

1!
+

1
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+

1

3!
+ . . . +

1

n!
+ Rn

0 < Rn <
3

(n + 1)!
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THEOREM: e = 2.718... is irrational.

Leonhard Euler
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THEOREM: e = 2.718... is irrational.

Leonhard Euler
(1707 - 1783)
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THEOREM: e = 2.718... is irrational.

Leonhard Euler
(1707 - 1783)
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THEOREM: e = 2.718... is irrational.

Leonhard Euler
(1707 - 1783)

n!a= n!b +
n!b

1!
+

n!b

2!
+

n!b

3!
+ . . . +

n!b

n!
+ n!bRn

0 < n!bRn <
3b
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THEOREM (Lambert, 1761): The number π is irrational.

PROOF (Niven, 1947): Assume to the contrary that π =
a

b
. Let

f(x) =
xn(a − bx)n

n!
and

F (x) = f(x) − f ′′(x) + f (4)(x) − . . . + (−1)nf (2n)(x)

Then f(x) and F (x) have the following properties:

1. 0 ≤ f(x) ≤ (πa)n

n!
for 0 ≤ x ≤ π.

2. (F ′(x) sin x − F (x) cos x)′ = f(x) sin x.

3. F (0) and F (π) are integers.

From (2) and (3) it follows that

π
∫

0

f(x) sin x dx is an integer.

This contradicts (1) if n is sufficiently large. �
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TOP TEN LIST

10. e is easier to spell than π.

9. π ≈ 3.14 while e ≈ 2.718281828459045.

8. The character for e can be found on a keyboard, but π can’t.

7. Everybody fights for their piece of the pie.

6. ln π is a really nasty number, but ln e = 1.

5. e is used in calculus while π is used in baby geometry.

4. ’e’ is the most commonly picked vowel in Wheel of Fortune.

3. e stands for Euler’s Number, π does not stand for squat.

2. You don’t need to know Greek to be able to use e.

1. You can’t confuse e with a food product.
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1 x

√
x

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?

ABOUT A CIRCLE AND BEYOND – p.156/63



DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1 10

√
10

π ≈
√

10 = 3.162...

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

A

B

π ≈
√

40/3 − 2
√

3 = 3.1415...
C

C

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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Approximation Digits

π ≈
√

10 1

π ≈
√

40

3
− 2

√
3 4

π ≈

√

√

√

√

√

767
√

62
5

π ≈

√

√

2143

22
6

π ≈

√

√

√

√√
8105800789910710 16
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the Circle

Ferdinand von Lindemann
(1852-1939)

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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Approximation Polynomial

π ≈ 22

7
7x − 22 = 0

π ≈ 355

113
113x − 355 = 0

π ≈
√

10 x2 − 10 = 0

π ≈
√

40

3
− 2

√
3 9x4 − 240x2 + 1492 = 0

π ≈

√

√

√

√

√

767
√

62
62x8 − 588289 = 0

π ≈

√

√

2143

22
22x4 − 2143 = 0
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DEFINITION:

A circle is the set of points in a plane that are equidistant from a

given point.

A

1. C = 2πr

2. A = πr2

3. Isoperimetric Problem

4. Squaring the CircleFerdinand von Lindemann
(1852-1939)

THEOREM (Lindemann, 1882):

The number π is transcendental.

Is it possible to construct
a square equal in area to a
circle using only a straight-
edge and compass?
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Transcendental Number Reference
∞
∑

n=1

10−n! Liouville (1850)
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Transcendental Number Reference
∞
∑

n=1

10−n! Liouville (1850)

e Hermite (1873)
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Transcendental Number Reference
∞
∑
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10−n! Liouville (1850)

e Hermite (1873)

π Lindemann (1882)
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Transcendental Number Reference
∞
∑

n=1

10−n! Liouville (1850)

e Hermite (1873)

π Lindemann (1882)

eπ Gelfond (1934)

Schneider (1934)
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Transcendental Number Reference
∞
∑

n=1

10−n! Liouville (1850)

e Hermite (1873)

π Lindemann (1882)

eπ Gelfond (1934)

Schneider (1934)

2
√

2 Gelfond (1934)

Schneider (1934)
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Transcendental Number Reference
∞
∑

n=1

10−n! Liouville (1850)

e Hermite (1873)

π Lindemann (1882)

eπ Gelfond (1934)

Schneider (1934)

2
√

2 Gelfond (1934)

Schneider (1934)

πe, ee, ππ ???????
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Transcendental Number Reference
∞
∑

n=1

10−n! Liouville (1850)

e Hermite (1873)

π Lindemann (1882)

eπ Gelfond (1934)

Schneider (1934)

2
√

2 Gelfond (1934)

Schneider (1934)

πe, ee, ππ ???????

e + π, eπ ???????
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Approximation Digits

π ≈ 31

10
1

π ≈
314

100
2

π ≈ 3141

1000
3

π ≈ 31415

10000
4

π ≈ 314159

100000
5

π ≈ 3141592

1000000
6
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Approximation Digits

π ≈ 31

10
1

π ≈
314

100
2

π ≈ 3141

1000
3

π ≈ 31415

10000
4

π ≈ 314159

100000
5

π ≈ 3141592

1000000
6

Approximation Digits

π ≈ 22

7
2

π ≈
333

106
4

π ≈ 355

113
6

π ≈ 103993

33102
9

π ≈ 833719

265381
11

π ≈ 4272943

1360120
12
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Lejeune Dirichlet
(1805 - 1859)

THEOREM (Dirichlet, 1842): For any real irrational number ξ there

exist infinitely many rational numbers p/q such that

|ξ − p/q| < q−2.

ABOUT A CIRCLE AND BEYOND – p.172/63



Lejeune Dirichlet
(1805 - 1859)

THEOREM (Dirichlet, 1842): For any real irrational number ξ there

exist infinitely many rational numbers p/q such that

|ξ − p/q| < q−2.
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Lejeune Dirichlet
(1805 - 1859)

THEOREM (Dirichlet, 1842): For any real irrational number ξ there

exist infinitely many rational numbers p/q such that

|ξ − p/q| < q−2.

THEOREM (Davenport-Schmidt, 1967): For any real number ξ 6∈ A2

there exist infinitely many numbers α ∈ A2 such that

|ξ − α| < c(ξ)H(α)−3.
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Lejeune Dirichlet
(1805 - 1859)

THEOREM (Dirichlet, 1842): For any real irrational number ξ there

exist infinitely many rational numbers p/q such that

|ξ − p/q| < q−2.

CONJECTURE: For any real number ξ 6∈ A3 there exist infinitely

many numbers α ∈ A3 such that

|ξ − α| < c(ξ)H(α)−4.
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Lejeune Dirichlet
(1805 - 1859)

THEOREM (Dirichlet, 1842): For any real irrational number ξ there

exist infinitely many rational numbers p/q such that

|ξ − p/q| < q−2.

THEOREM: For any real number ξ 6∈ A3 there exist infinitely many

numbers α ∈ A3 such that

|ξ − α| < c(ξ)H(α)−3.73....
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