ABOUT A CIRCLE AND BEYOND

Kiryl Tsishchanka

kit@knox.edu

Department of Mathematics
Knox College

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

$$
\begin{aligned}
& \text { 1. } C=2 \pi r \\
& \text { 2. } A=\pi r^{2}
\end{aligned}
$$

3. Isoperimetric Problem

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$

Archimedes

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

$$
\text { 1. } C=2 \pi r
$$

Archimedes

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

Archimedes

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

Archimedes

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

Archimedes

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

Archimedes

$$
3<\pi<2 \sqrt{3}
$$

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

Archimedes

$$
3<\pi<2 \sqrt{3} \approx 3.46
$$

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

Archimedes

$\frac{223}{71}<\pi<\frac{22}{7}$

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

Archimedes $\quad 3.14084 \approx \frac{223}{71}<\pi<\frac{22}{7} \approx 3.14285$

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

$$
\begin{aligned}
& 1 . C=2 \pi r \\
& C=\int_{0}^{2 \pi} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \\
&= \int_{0}^{2 \pi} r d \theta \\
&= 2 \pi r
\end{aligned}
$$

Archimedes

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

$$
\text { 1. } C=2 \pi r
$$

Archimedes

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$

Archimedes

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$

Archimedes

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

Archimedes

1. $C=2 \pi r$
2. $A=\pi r^{2}$

$A=(\pi r) r=\pi r^{2}$

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

Archimedes

$$
\begin{gathered}
\text { 1. } C=2 \pi r \\
\text { 2. } A=\pi r^{2} \\
A=\int_{0}^{2 \pi} d \theta \int_{0}^{r} r d r \\
= \\
=(2 \pi)\left(\frac{1}{2} r^{2}\right) \\
=\pi r^{2}
\end{gathered}
$$

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

$$
\begin{aligned}
& \text { 1. } C=2 \pi r \\
& \text { 2. } A=\pi r^{2}
\end{aligned}
$$

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

$$
\begin{aligned}
& \text { 1. } C=2 \pi r \\
& \text { 2. } A=\pi r^{2}
\end{aligned}
$$

3. Isoperimetric Problem

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.

WHO? WHEN?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.

WHO? WHEN? HOW?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.

WHO? WHEN? HOW?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.

WHO? WHEN? HOW?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.

WHO? WHEN? HOW?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.

WHO? WHEN? HOW?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

$$
\ell=\int_{t_{1}}^{t_{2}} \sqrt{x^{\prime 2}+y^{\prime 2}} d t, \quad A=\frac{1}{2} \int_{t_{1}}^{t_{2}}\left(x y^{\prime}-x^{\prime} y\right) d t
$$

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

$$
\begin{aligned}
& \text { 1. } C=2 \pi r \\
& \text { 2. } A=\pi r^{2}
\end{aligned}
$$

3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.
Jakob Steiner
(1796-1863)

DEFINITION:

A set in Euclidean space is convex set if it contains all the line segments connecting any pair of its points.

DEFINITION:

A set in Euclidean space is convex set if it contains all the line segments connecting any pair of its points.

DEFINITION:

A set in Euclidean space is convex set if it contains all the line segments connecting any pair of its points.

DEFINITION:

A set in Euclidean space is convex set if it contains all the line segments connecting any pair of its points.

DEFINITION:

A set in Euclidean space is convex set if it contains all the line segments connecting any pair of its points.

DEFINITION:

A set in Euclidean space is convex set if it contains all the line segments connecting any pair of its points.

CONVEX

DEFINITION:

A set in Euclidean space is convex set if it contains all the line segments connecting any pair of its points.

CONVEX

DEFINITION:

A set in Euclidean space is convex set if it contains all the line segments connecting any pair of its points.

CONVEX

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.
LEMMA 2:

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.

LEMMA 2:

Choose points S and T on the curve that the points divide the perimeter into two equal parts.

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.

LEMMA 2:

Choose points S and T on the curve that the points divide the perimeter into two equal parts. Then the segment $S T$

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.

LEMMA 2:

Choose points S and T on the curve that the points divide the perimeter into two equal parts. Then the segment $S T$ must divide the area of the shape into two equal parts.

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.

LEMMA 2:

Choose points S and T on the curve that the points divide the perimeter into two equal parts. Then the segment $S T$ must divide the area of the shape into two equal parts.

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.

LEMMA 2:

Choose points S and T on the curve that the points divide the perimeter into two equal parts. Then the segment $S T$ must divide the area of the shape into two equal parts.

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.

LEMMA 2:

Choose points S and T on the curve that the points divide the perimeter into two equal parts. Then the segment $S T$ must divide the area of the shape into two equal parts.

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.

LEMMA 2:

Choose points S and T on the curve that the points divide the perimeter into two equal parts. Then the segment $S T$ must divide the area of the shape into two equal parts.

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.

LEMMA 2:

Choose points S and T on the curve that the points divide the perimeter into two equal parts. Then the segment $\boldsymbol{S T}$ must divide the area of the shape into two equal parts.

LEMMA 3:

Consider all arcs with a given length and endpoints on a line. The curve that encloses the maximum area between it and the line is a semicircle.

THEOREM:

Among all planar shapes with the same perimeter the circle has the largest area.

LEMMA 1:

The figure that solves the Theorem must be convex.

LEMMA 2:

Choose points S and T on the curve that the points divide the perimeter into two equal parts. Then the segment $S T$ must divide the area of the shape into two equal parts.

LEMMA 3:

Consider all arcs with a given length and endpoints on a line. The curve that encloses the maximum area between it and the line is a semicircle.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

Jakob Steiner (1796-1863)

Lejeune Dirichlet (1805-1859)

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

Jakob Steiner (1796-1863)

Karl Weierstrass (1815-1897)

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

Adolf Hurwitz (1859-1919)

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem

Among all planar shapes with the same perimeter the circle has the largest area.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

$$
\begin{aligned}
& \text { 1. } C=2 \pi r \\
& \text { 2. } A=\pi r^{2}
\end{aligned}
$$

3. Isoperimetric Problem

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

$$
\begin{aligned}
& \text { 1. } C=2 \pi r \\
& \text { 2. } A=\pi r^{2}
\end{aligned}
$$

3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$

3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$

3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$

3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$

3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

Archimedes (287 BC - 212 BC)

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

Archimedes (287 BC - 212 BC)

$$
\pi \approx \frac{22}{7}
$$

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

Zu Chongzhi
(429-501)

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

> Zu Chongzhi $(429-501)$

$$
\pi \approx \frac{355}{113}
$$

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

Johann Lambert
(1728-1777)

THEOREM (Lambert, 1761):
The number π is not rational.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

Johann Lambert
(1728-1777)

THEOREM (Lambert, 1761):
The number π is irrational.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

THEOREM: $\sqrt{2}$ is irrational.

THEOREM: $\sqrt{2}$ is irrational.
PROOF:

THEOREM: $\sqrt{2}$ is irrational.
PROOF: Assume to the contrary that

$$
\sqrt{2}=\frac{p}{q}
$$

THEOREM: $\sqrt{2}$ is irrational.
PROOF: Assume to the contrary that

$$
\sqrt{2}=\frac{p}{q}
$$

where \boldsymbol{p} and \boldsymbol{q} have no common divisor.

THEOREM: $\sqrt{2}$ is irrational.
PROOF: Assume to the contrary that

$$
\sqrt{2}=\frac{p}{q}
$$

$\sqrt{2}=\frac{1414213562}{1000000000}$

where \boldsymbol{p} and \boldsymbol{q} have no common divisor.

THEOREM: $\sqrt{2}$ is irrational.
PROOF: Assume to the contrary that

$$
\sqrt{2}=\frac{p}{q}
$$

$$
\sqrt{2}=\frac{2 \cdot 707106781}{2 \cdot 500000000}
$$

where \boldsymbol{p} and \boldsymbol{q} have no common divisor.

THEOREM: $\sqrt{2}$ is irrational.
PROOF: Assume to the contrary that

$$
\sqrt{2}=\frac{p}{q}
$$

$$
\sqrt{2}=\frac{707106781}{500000000}
$$

where \boldsymbol{p} and \boldsymbol{q} have no common divisor.

THEOREM: $\sqrt{2}$ is irrational.
PROOF: Assume to the contrary that

$$
\sqrt{2}=\frac{p}{q}
$$

where \boldsymbol{p} and \boldsymbol{q} have no common divisor.

THEOREM: $\sqrt{2}$ is irrational.
PROOF: Assume to the contrary that

$$
\sqrt{2}=\frac{p}{q}
$$

where p and q have no common divisor. We have

THEOREM: $\sqrt{2}$ is irrational.
PROOF: Assume to the contrary that

$$
\sqrt{2}=\frac{p}{q}
$$

where p and q have no common divisor. We have

$$
2 q^{2}=p^{2}
$$

THEOREM: $\sqrt{2}$ is irrational.
PROOF: Assume to the contrary that

$$
\sqrt{2}=\frac{p}{q}
$$

where p and q have no common divisor. We have

$$
\begin{equation*}
2 q^{2}=p^{2} \tag{*}
\end{equation*}
$$

THEOREM: $\sqrt{2}$ is irrational.
PROOF: Assume to the contrary that

$$
\sqrt{2}=\frac{p}{q}
$$

where \boldsymbol{p} and \boldsymbol{q} have no common divisor. We have

$$
\begin{equation*}
2 q^{2}=p^{2} \tag{*}
\end{equation*}
$$

so p^{2} is even.

THEOREM: $\sqrt{2}$ is irrational.
PROOF: Assume to the contrary that

$$
\sqrt{2}=\frac{p}{q}
$$

where \boldsymbol{p} and \boldsymbol{q} have no common divisor. We have

$$
\begin{equation*}
2 q^{2}=p^{2} \tag{*}
\end{equation*}
$$

so p^{2} is even. Therefore p is even.

THEOREM: $\sqrt{2}$ is irrational.
PROOF: Assume to the contrary that

$$
\sqrt{2}=\frac{p}{q}
$$

where \boldsymbol{p} and \boldsymbol{q} have no common divisor. We have

$$
\begin{equation*}
2 q^{2}=p^{2} \tag{*}
\end{equation*}
$$

so p^{2} is even. Therefore p is even, i.e. $p=2 k$.

THEOREM: $\sqrt{2}$ is irrational.
PROOF: Assume to the contrary that

$$
\sqrt{2}=\frac{p}{q}
$$

where \boldsymbol{p} and \boldsymbol{q} have no common divisor. We have

$$
\begin{equation*}
2 q^{2}=p^{2} \tag{*}
\end{equation*}
$$

so p^{2} is even. Therefore p is even, i.e. $p=2 k$. Substituting this into ($*$), we get

THEOREM: $\sqrt{2}$ is irrational.
PROOF: Assume to the contrary that

$$
\sqrt{2}=\frac{p}{q}
$$

where \boldsymbol{p} and \boldsymbol{q} have no common divisor. We have

$$
\begin{equation*}
2 q^{2}=p^{2} \tag{*}
\end{equation*}
$$

so p^{2} is even. Therefore p is even, i.e. $p=2 k$. Substituting this into ($*$), we get

$$
2 q^{2}=(2 k)^{2}
$$

THEOREM: $\sqrt{2}$ is irrational.
PROOF: Assume to the contrary that

$$
\sqrt{2}=\frac{p}{q}
$$

where \boldsymbol{p} and \boldsymbol{q} have no common divisor. We have

$$
\begin{equation*}
2 q^{2}=p^{2} \tag{*}
\end{equation*}
$$

so p^{2} is even. Therefore p is even, i.e. $p=2 k$. Substituting this into ($*$), we get

$$
2 q^{2}=4 k^{2}
$$

THEOREM: $\sqrt{2}$ is irrational.
PROOF: Assume to the contrary that

$$
\sqrt{2}=\frac{p}{q}
$$

where \boldsymbol{p} and \boldsymbol{q} have no common divisor. We have

$$
\begin{equation*}
2 q^{2}=p^{2} \tag{*}
\end{equation*}
$$

so p^{2} is even. Therefore p is even, i.e. $p=2 k$. Substituting this into ($*$), we get

$$
q^{2}=2 k^{2}
$$

THEOREM: $\sqrt{2}$ is irrational.
PROOF: Assume to the contrary that

$$
\sqrt{2}=\frac{p}{q}
$$

where \boldsymbol{p} and \boldsymbol{q} have no common divisor. We have

$$
\begin{equation*}
2 q^{2}=p^{2} \tag{*}
\end{equation*}
$$

so p^{2} is even. Therefore p is even, i.e. $p=2 k$. Substituting this into ($*$), we get

$$
q^{2}=2 k^{2}
$$

so q^{2} is even.

THEOREM: $\sqrt{2}$ is irrational.
PROOF: Assume to the contrary that

$$
\sqrt{2}=\frac{p}{q}
$$

where \boldsymbol{p} and \boldsymbol{q} have no common divisor. We have

$$
\begin{equation*}
2 q^{2}=p^{2} \tag{*}
\end{equation*}
$$

so p^{2} is even. Therefore p is even, i.e. $p=2 k$. Substituting this into ($*$), we get

$$
q^{2}=2 k^{2}
$$

so q^{2} is even. Therefore q is even.

THEOREM: $\sqrt{2}$ is irrational.
PROOF: Assume to the contrary that

$$
\sqrt{2}=\frac{p}{q}
$$

where \boldsymbol{p} and \boldsymbol{q} have no common divisor. We have

$$
\begin{equation*}
2 q^{2}=p^{2} \tag{*}
\end{equation*}
$$

so p^{2} is even. Therefore p is even, i.e. $p=2 k$. Substituting this into $(*)$, we get

$$
q^{2}=2 k^{2}
$$

so q^{2} is even. Therefore q is even. Contradiction.

THEOREM: $\sqrt{2}$ is irrational.
PROOF: Assume to the contrary that

$$
\sqrt{2}=\frac{p}{q}
$$

where \boldsymbol{p} and \boldsymbol{q} have no common divisor. We have

$$
\begin{equation*}
2 q^{2}=p^{2} \tag{*}
\end{equation*}
$$

so p^{2} is even. Therefore p is even, i.e. $p=2 k$. Substituting this into $(*)$, we get

$$
q^{2}=2 k^{2}
$$

so q^{2} is even. Therefore q is even. Contradiction. \square

THEOREM: $e=2.718 \ldots$ is irrational.

THEOREM: $e=2.718 \ldots$ is irrational.

Leonhard Euler (1707-1783)

THEOREM: $e=2.718 \ldots$ is irrational.

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Leonhard Euler
(1707-1783)

THEOREM: $e=2.718 \ldots$ is irrational.

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

$$
\begin{gathered}
\text { Leonhard Euler } \\
e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\ldots
\end{gathered}
$$

THEOREM: $e=2.718 \ldots$ is irrational.
$e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$

$$
\begin{gathered}
\text { Leonhard Euler } \\
e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\ldots \\
e=2.718281828459045235 \ldots
\end{gathered}
$$

THEOREM: $e=2.718 \ldots$ is irrational.
$e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$

$$
\begin{aligned}
& e=2+\frac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{4+\frac{1}{1+\frac{1}{1+\frac{1}{6+} \frac{1^{1}}{1+\frac{1}{1+\frac{1}{8+\frac{1}{1+\frac{1}{1+\frac{1}{10+\ldots}}}}}}}}}}}}} \\
& =1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\ldots
\end{aligned}
$$

$$
\begin{gathered}
e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+ \\
e=2.718281828459045235 \ldots
\end{gathered}
$$

THEOREM: $e=2.718 \ldots$ is irrational.

THEOREM: $e=2.718 \ldots$ is irrational.

THEOREM: $e=2.718 \ldots$ is irrational.

$$
\begin{gathered}
\text { Leonhard Euler } \\
\begin{array}{c}
(1707-1783) \\
e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}+R_{n} \\
0<R_{n}<\frac{3}{(n+1)!}
\end{array}
\end{gathered}
$$

THEOREM: $e=2.718 \ldots$ is irrational.

$$
\begin{gathered}
\text { Leonhard Euler } \\
\frac{a}{b}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}+R_{n} \\
0<R_{n}<\frac{3}{(n+1)!}
\end{gathered}
$$

THEOREM: $e=2.718 \ldots$ is irrational.

Leonhard Euler
(1707-1783)

$$
\begin{gathered}
n!b \frac{a}{b}=n!b\left(1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}+R_{n}\right) \\
0<R_{n}<\frac{3}{(n+1)!}
\end{gathered}
$$

THEOREM: $e=2.718 \ldots$ is irrational.

Leonhard Euler
(1707-1783)

$$
\begin{gathered}
n!a=n!b\left(1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}+R_{n}\right) \\
0<R_{n}<\frac{3}{(n+1)!}
\end{gathered}
$$

THEOREM: $e=2.718 \ldots$ is irrational.

$$
\begin{aligned}
& \text { Leonhard Euler } \\
& \begin{array}{c}
(1707-1783) \\
n!a=n!b+\frac{n!b}{1!}+\frac{n!b}{2!}+\frac{n!b}{3!}+\ldots+\frac{n!b}{n!}+n!b R_{n} \\
0<R_{n}<\frac{3}{(n+1)!}
\end{array}
\end{aligned}
$$

THEOREM: $e=2.718 \ldots$ is irrational.

$$
\begin{aligned}
& \text { Leonhard Euler } \\
& \begin{array}{c}
(1707-1783) \\
n!a=n!b+\frac{n!b}{1!}+\frac{n!b}{2!}+\frac{n!b}{3!}+\ldots+\frac{n!b}{n!}+n!b R_{n} \\
0<n!b R_{n}<\frac{3 n!b}{(n+1)!}
\end{array}
\end{aligned}
$$

THEOREM: $e=2.718 \ldots$ is irrational.

$$
\begin{gathered}
\begin{array}{l}
\text { Leonhard Euler } \\
(1707-1783) \\
n!a=n!b+\frac{n!b}{1!}+\frac{n!b}{2!}+\frac{n!b}{3!}+\ldots+\frac{n!b}{n!}+n!b R_{n} \\
0<n!b R_{n}<\frac{3 b}{n+1}
\end{array}
\end{gathered}
$$

THEOREM (Lambert, 1761): The number π is irrational.

THEOREM (Lambert, 1761): The number π is irrational.
PROOF (Niven, 1947):

THEOREM (Lambert, 1761): The number π is irrational. PROOF (Niven, 1947): Assume to the contrary that $\pi=\frac{a}{b}$.

THEOREM (Lambert, 1761): The number $\boldsymbol{\pi}$ is irrational. PROOF (Niven, 1947): Assume to the contrary that $\pi=\frac{a}{b}$. Let

$$
f(x)=\frac{x^{n}(a-b x)^{n}}{n!}
$$

THEOREM (Lambert, 1761): The number π is irrational. PROOF (Niven, 1947): Assume to the contrary that $\pi=\frac{a}{b}$. Let

$$
f(x)=\frac{x^{n}(a-b x)^{n}}{n!}
$$

and

$$
F(x)=f(x)-f^{\prime \prime}(x)+f^{(4)}(x)-\ldots+(-1)^{n} f^{(2 n)}(x)
$$

THEOREM (Lambert, 1761): The number π is irrational. PROOF (Niven, 1947): Assume to the contrary that $\pi=\frac{a}{b}$. Let

$$
f(x)=\frac{x^{n}(a-b x)^{n}}{n!}
$$

and

$$
F(x)=f(x)-f^{\prime \prime}(x)+f^{(4)}(x)-\ldots+(-1)^{n} f^{(2 n)}(x)
$$

Then $f(x)$ and $F(x)$ have the following properties:

THEOREM (Lambert, 1761): The number $\boldsymbol{\pi}$ is irrational. PROOF (Niven, 1947): Assume to the contrary that $\pi=\frac{a}{b}$. Let

$$
f(x)=\frac{x^{n}(a-b x)^{n}}{n!}
$$

and

$$
F(x)=f(x)-f^{\prime \prime}(x)+f^{(4)}(x)-\ldots+(-1)^{n} f^{(2 n)}(x)
$$

Then $f(x)$ and $\boldsymbol{F}(\boldsymbol{x})$ have the following properties:

1. $0 \leq f(x) \leq \frac{(\pi a)^{n}}{n!}$ for $0 \leq x \leq \pi$.
2. $\left(F^{\prime}(x) \sin x-F(x) \cos x\right)^{\prime}=f(x) \sin x$.
3. $\boldsymbol{F}(0)$ and $\boldsymbol{F}(\pi)$ are integers.

THEOREM (Lambert, 1761): The number $\boldsymbol{\pi}$ is irrational.
PROOF (Niven, 1947): Assume to the contrary that $\pi=\frac{a}{b}$. Let

$$
f(x)=\frac{x^{n}(a-b x)^{n}}{n!}
$$

and

$$
F(x)=f(x)-f^{\prime \prime}(x)+f^{(4)}(x)-\ldots+(-1)^{n} f^{(2 n)}(x)
$$

Then $f(x)$ and $\boldsymbol{F}(\boldsymbol{x})$ have the following properties:

1. $0 \leq f(x) \leq \frac{(\pi a)^{n}}{n!}$ for $0 \leq x \leq \pi$.
2. $\left(F^{\prime}(x) \sin x-F(x) \cos x\right)^{\prime}=f(x) \sin x$.
3. $\boldsymbol{F}(0)$ and $\boldsymbol{F}(\pi)$ are integers.

From (2) and (3) it follows that $\int_{0}^{\pi} f(x) \sin x d x$ is an integer.

THEOREM (Lambert, 1761): The number π is irrational.
PROOF (Niven, 1947): Assume to the contrary that $\pi=\frac{a}{b}$. Let

$$
f(x)=\frac{x^{n}(a-b x)^{n}}{n!}
$$

and

$$
F(x)=f(x)-f^{\prime \prime}(x)+f^{(4)}(x)-\ldots+(-1)^{n} f^{(2 n)}(x)
$$

Then $f(x)$ and $\boldsymbol{F}(\boldsymbol{x})$ have the following properties:

1. $0 \leq f(x) \leq \frac{(\pi a)^{n}}{n!}$ for $0 \leq x \leq \pi$.
2. $\left(F^{\prime}(x) \sin x-F(x) \cos x\right)^{\prime}=f(x) \sin x$.
3. $\boldsymbol{F}(0)$ and $\boldsymbol{F}(\boldsymbol{\pi})$ are integers.

From (2) and (3) it follows that $\int_{0}^{\pi} f(x) \sin x d x$ is an integer.
This contradicts (1) if n is sufficiently large.

TOP TEN LIST

TOP TEN LIST

10. e is easier to spell than π.

TOP TEN LIST

10. e is easier to spell than π.
11. $\pi \approx 3.14$ while $e \approx 2.718281828459045$.

TOP TEN LIST

10. e is easier to spell than π.
11. $\pi \approx 3.14$ while $e \approx 2.718281828459045$.
12. The character for e can be found on a keyboard, but π can't.

TOP TEN LIST

10. e is easier to spell than π.
11. $\pi \approx 3.14$ while $e \approx 2.718281828459045$.
12. The character for e can be found on a keyboard, but π can't.
13. Everybody fights for their piece of the pie.

TOP TEN LIST

10. e is easier to spell than π.
11. $\pi \approx 3.14$ while $e \approx 2.718281828459045$.
12. The character for e can be found on a keyboard, but π can't.
13. Everybody fights for their piece of the pie.

6 . $\ln \pi$ is a really nasty number, but $\ln e=1$.

TOP TEN LIST

10. e is easier to spell than π.
11. $\pi \approx 3.14$ while $e \approx 2.718281828459045$.
12. The character for e can be found on a keyboard, but π can't.
13. Everybody fights for their piece of the pie.
14. $\ln \pi$ is a really nasty number, but $\ln e=1$.
15. e is used in calculus while π is used in baby geometry.

TOP TEN LIST

10. e is easier to spell than π.
11. $\pi \approx 3.14$ while $e \approx 2.718281828459045$.
12. The character for e can be found on a keyboard, but π can't.
13. Everybody fights for their piece of the pie.

6 . $\ln \pi$ is a really nasty number, but $\ln e=1$.
5. e is used in calculus while π is used in baby geometry.
4. ' e ' is the most commonly picked vowel in Wheel of Fortune.

TOP TEN LIST

10. e is easier to spell than π.
11. $\pi \approx 3.14$ while $e \approx 2.718281828459045$.
12. The character for e can be found on a keyboard, but π can't.
13. Everybody fights for their piece of the pie.
$6 . \ln \pi$ is a really nasty number, but $\ln e=1$.
14. e is used in calculus while π is used in baby geometry.
15. ' e ' is the most commonly picked vowel in Wheel of Fortune.
16. e stands for Euler's Number, $\boldsymbol{\pi}$ does not stand for squat.

TOP TEN LIST

10. e is easier to spell than π.
11. $\pi \approx 3.14$ while $e \approx 2.718281828459045$.
12. The character for e can be found on a keyboard, but π can't.
13. Everybody fights for their piece of the pie.
$6 . \ln \pi$ is a really nasty number, but $\ln e=1$.
14. e is used in calculus while π is used in baby geometry.
15. ' e ' is the most commonly picked vowel in Wheel of Fortune.
16. e stands for Euler's Number, π does not stand for squat.
17. You don't need to know Greek to be able to use e.

TOP TEN LIST

10. e is easier to spell than π.
11. $\pi \approx 3.14$ while $e \approx 2.718281828459045$.
12. The character for e can be found on a keyboard, but π can't.
13. Everybody fights for their piece of the pie.
$6 . \ln \pi$ is a really nasty number, but $\ln e=1$.
14. e is used in calculus while π is used in baby geometry.
15. ' e ' is the most commonly picked vowel in Wheel of Fortune.
16. e stands for Euler's Number, $\boldsymbol{\pi}$ does not stand for squat.
17. You don't need to know Greek to be able to use e.
18. You can't confuse e with a food product.

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

$\pi \approx \sqrt{10}=3.162 \ldots$

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

| Approximation | Digits |
| :---: | :---: | :---: |
| $\pi \approx \sqrt{10}$ | 1 |
| $\pi \approx \sqrt{\frac{40}{3}-2 \sqrt{3}}$ | 4 |
| $\pi \approx \sqrt{\sqrt{\frac{767}{\sqrt{62}}}}$ | 5 |
| $\pi \approx \sqrt{\sqrt{\frac{2143}{22}}}$ | 6 |
| $\pi \approx \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{8105800789910710}}}}}}$16 | |

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

Ferdinand von Lindemann (1852-1939)

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

Approximation	Polynomial
$\pi \approx \frac{22}{7}$	$7 x-22=0$
$\pi \approx \frac{355}{113}$	$113 x-355=0$
$\pi \approx \sqrt{10}$	$x^{2}-10=0$
$\pi \approx \sqrt{\frac{40}{3}-2 \sqrt{3}}$	$9 x^{4}-240 x^{2}+1492=0$
$\pi \approx \sqrt{\sqrt{\frac{767}{\sqrt{62}}}}$	$62 x^{8}-588289=0$
$\pi \approx \sqrt{\sqrt{\frac{2143}{22}}}$	$22 x^{4}-2143=0$

DEFINITION:

A circle is the set of points in a plane that are equidistant from a given point.

Ferdinand von Lindemann (1852-1939)

THEOREM (Lindemann, 1882):
The number π is transcendental.

1. $C=2 \pi r$
2. $A=\pi r^{2}$
3. Isoperimetric Problem
4. Squaring the Circle

Is it possible to construct a square equal in area to a circle using only a straightedge and compass?

Transcendental Number	Reference
$\sum_{n=1}^{\infty} 10^{-n!}$	Liouville (1850)

Transcendental Number	Reference
$\sum_{n=1}^{\infty} 10^{-n!}$	Liouville (1850)
e	Hermite (1873)

Transcendental Number	Reference
$\sum_{n=1}^{\infty} 10^{-n!}$	Liouville (1850)
e	Hermite (1873)
π	Lindemann (1882)

Transcendental Number	Reference
$\sum_{n=1}^{\infty} 10^{-n!}$	Liouville (1850)
e	Hermite (1873)
π	Lindemann (1882)
e^{π}	Gelfond (1934) Schneider (1934)

Transcendental Number	Reference
$\sum_{n=1}^{\infty} 10^{-n!}$	Liouville (1850)
e	Hermite (1873)
π	Lindemann (1882) Gelfond (1934) Schneider (1934)
e^{π}	Gelfond (1934) Schneider (1934)
$2^{\sqrt{2}}$	

Transcendental Number	Reference
$\sum_{n=1}^{\infty} 10^{-n!}$	Liouville (1850)
e	Hermite (1873)
π	Lindemann (1882) Gelfond (1934) Schneider (1934) Gelfond (1934) Schneider (1934)
e^{π}	???????
$2^{\sqrt{2}}$	e^{e}, π^{π}

Transcendental Number	Reference
$\sum_{n=1}^{\infty} 10^{-n!}$	Liouville (1850)
e	Hermite (1873)
π	Lindemann (1882) Gelfond (1934) Schneider (1934)
e^{π}	Gelfond (1934) Schneider (1934)
$2^{\sqrt{2}}$???????
$\pi^{e}, e^{e}, \pi^{\pi}$???????
$e+\pi, e \pi$	

Approximation	Digits
$\pi \approx \frac{31}{10}$	1
$\pi \approx \frac{314}{100}$	2
$\pi \approx \frac{3141}{1000}$	3
$\pi \approx \frac{31415}{10000}$	4
$\pi \approx \frac{314159}{100000}$	5
$\pi \approx \frac{3141592}{1000000}$	6

Approximation	Digits
$\pi \approx \frac{31}{10}$	1
$\pi \approx \frac{314}{100}$	2
$\pi \approx \frac{3141}{1000}$	3
$\pi \approx \frac{31415}{10000}$	4
$\pi \approx \frac{314159}{100000}$	5
$\pi \approx \frac{3141592}{1000000}$	6

Approximation	Digits
$\pi \approx \frac{22}{7}$	2
$\pi \approx \frac{333}{106}$	4
$\pi \approx \frac{355}{113}$	6
$\pi \approx \frac{103993}{33102}$	9
$\pi \approx \frac{833719}{265381}$	11
$\pi \approx \frac{4272943}{1360120}$	12

Lejeune Dirichlet
(1805-1859)

THEOREM (Dirichlet, 1842): For any real irrational number $\boldsymbol{\xi}$ there exist infinitely many rational numbers p / q such that

$$
|\xi-p / q|<q^{-2}
$$

Lejeune Dirichlet
(1805-1859)
THEOREM (Dirichlet, 1842): For any real irrational number $\boldsymbol{\xi}$ there exist infinitely many rational numbers p / q such that

$$
|\xi-p / q|<q^{-2}
$$

THEOREM (Davenport-Schmidt, 1967): For any real number $\boldsymbol{\xi} \notin \boldsymbol{A}_{2}$ there exist infinitely many numbers $\alpha \in \boldsymbol{A}_{2}$ such that

$$
|\xi-\alpha|<c(\xi) H(\alpha)^{-3}
$$

Lejeune Dirichlet
(1805-1859)
THEOREM (Dirichlet, 1842): For any real irrational number $\boldsymbol{\xi}$ there exist infinitely many rational numbers p / q such that

$$
|\xi-p / q|<q^{-2}
$$

CONJECTURE: For any real number $\boldsymbol{\xi} \notin \boldsymbol{A}_{3}$ there exist infinitely many numbers $\alpha \in A_{3}$ such that

$$
|\xi-\alpha|<c(\xi) H(\alpha)^{-4}
$$

Lejeune Dirichlet
(1805-1859)
THEOREM (Dirichlet, 1842): For any real irrational number $\boldsymbol{\xi}$ there exist infinitely many rational numbers p / q such that

$$
|\xi-p / q|<q^{-2}
$$

THEOREM: For any real number $\boldsymbol{\xi} \notin \boldsymbol{A}_{3}$ there exist infinitely many numbers $\alpha \in A_{3}$ such that

$$
|\xi-\alpha|<c(\xi) H(\alpha)^{-3.73 \ldots}
$$

