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Abstract. We generalize a result of Emerton on the relationship between unitary comple-
tions of locally Qp-analytic and locally Qp-algebraic principal series representations induced
from certain locally Qp-algebraic characters of the diagonal torus of GL2(L), where L is a
finite extension of Qp. Namely, under a non-critical slope hypothesis on the character being
induced, the map on universal unitary completions arising from the inclusion of the locally
algebraic induction into the locally analytic induction is a topological isomorphism (Theo-
rem 3.1). (Emerton proved this result for L = Qp.) The main ingredients in carrying out
a “several-variable” version of Emerton’s argument are the description of the local convex
space of locally Qp-analytic functions on the group OL in terms of the embeddings of L into
our p-adic coefficient field, given in §2, and a generalization by Breuil of the classical result
of Amice-Vélu and Vishik on “tempered distributions” on Zp (Lemma 2.6).

1. Introduction

In this note, we generalize a result of Emerton [5, Proposition 2.5] (proved independently
in [1]) on continuous homomorphisms from locally analytic principal series representations
of GL2(L) into unitary Banach space representations. Here L is a finite extension of Qp,
and all representations are over some sufficiently large p-adic field E. For certain locally
algebraic characters χ of T , the subgroup of diagonal matrices in GL2(L), we define the
locally algebraic and locally Qp-analytic B-inductions I(χ) and I la(χ) of χ, where B is the
subgroup of lower triangular matrices in GL2(L) and χ is viewed as a character of B via
the projection B to T . These are admissible locally Qp-analytic representations of GL2(L),
and there is a canonical closed embedding I(χ) ↪→ I la(χ), allowing us to view I(χ) as a
locally algebraic subrepresentation of I la(χ). Let U be a Banach space representation of
GL2(L) admitting a GL2(L)-invariant norm and assume that χ|Z(GL2(L)) takes values in O×E .
Our main result (Theorem 3.1) states that, under a “non-critical slope” hypothesis on χ,
any continuous GL2(L)-equivariant linear map I(χ) → U extends uniquely to a continuous
GL2(L)-equivariant linear map I la(χ) → U . This result is equivalent to the assertion that
I(χ) and I la(χ) have the same universal unitary completion (in the sense of [5, Definition
1.1]). Emerton proved this result for L = Qp. Breuil has proved a similar result [2, Theo-
rem 7.1] covering injective linear maps out of locally J-analytic principal series of GL2(L),
for subsets J ⊆ HomAlg /Qp(L,E) (J = ∅ corresponds to I(χ), while J = HomAlg /Qp(E,L)
corresponds to I la(χ)). Breuil’s result is stated without the hypothesis of injectivity in [3,
Proposition 5.5], and it is asserted there that Breuil’s proof can be made to work in the
more general case. We closely follow Emerton’s method of proof, which is different from
Breuil’s, although we do make use of a generalization of a classical result of Amice-Vélu
and Vishik, Lemma 2.6 below, proved by Breuil in [2, Lemma 6.1]. We should emphasize
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that we make no attempt here to address the question of whether or not the principal series
representations we consider admit non-zero universal unitary completions. This was studied
for L = Qp in the work of Berger-Breuil and Emerton ([1] and [5], respectively) in certain
cases, and is completely understood for L = Qp as a consequence of known properties of the
p-adic local Langlands correspondence. For general extensions L/Qp, this problem is studied
in [3]. For a unitary χ, it is easy to see that the universal unitary completion of I la(χ) is
non-zero, since in this case I la(χ) admits a continuous GL2(L)-equivariant injection into the
continuous induction of χ, which is a unitary Banach space representation.

We introduce our notation below, mostly retaining that of [5]. In §2 we describe the locally
convex space C la(OL, E) of E-valued locally Qp-analytic functions on OL using the set of
embeddings HomAlg /Qp(L,E) (which is assumed to have [L : Qp] elements). Although a de-
scription of this space along these lines has been used (somewhat implicitly) in other places
(e.g. [2]), as far as we know, there is no published proof that it coincides (set-theoretically
and topologically) with the standard description of this space given in [9, §10]. Although this
may be clear to experts, because of the fact that this description of C la(OL, E) is crucial to
our argument, we felt it was worthwhile to give a detailed proof of the equivalence between
our description and the more generally applicable one found in other parts of the literature
on p-adic functional analysis. We define the parabolic inductions I(χ) and I la(χ) in §3, and
state the main result which is proved (following Emerton’s proof in [5, §3]) in §4. The ar-
gument is primarily representation-theoretic and functional-analytic, and most of the work
is dedicated to reducing the statement of Theorem 3.1 to Lemma 2.6 by reinterpreting the
condition of Definition 2.4 in terms of a continuity condition with respect to the action of a
submonoid B+ of B, the group of upper triangular matrices in GL2(L) (this reinterpretation
is provided by Lemma 4.3).
Notation Fix a prime p. Let L and E be finite extensions of Qp with respective rings of
integers OL and OE, and denote by $L a choice of uniformizer for OL. Set r = [L : Qp],
and assume that HomAlg /Qp(L,E) has r distinct elements that we order for convenience:
σ1, . . . , σr (nothing we do will depend on the choice of ordering, and it is only made to ease
notation). The field E will serve as the coefficient field of our representations.

We normalize the discrete valuation of E, ord = ordE, by ordE(p) = e(L/Qp) (the ramifi-
cation index of L over Qp) and use the absolute value | · | = | · |E defined by |α| = q− ord(α),
where q is the cardinality of the residue field of L. If we use the same normalizations for the
discrete valuation and absolute value on L, then L is endowed with its canonical absolute
value, i.e., the one giving $L absolute value q−1, and each σi is an isometry. We will therefore
denote the discrete valuation on either E or L simply by ord, and the absolute value by | · |.

We denote by G the group GL2(L), viewed as the group of Qp-points of the connected re-
ductive linear algebraic Qp-group G = ResL/Qp(GL2/L). Thus we regard GL2(L) as a locally
Qp-analytic group, and by “locally analytic,” we will always mean “locally Qp-analytic.” We
apply the same convention to all other groups that we consider. We let B and B denote
the groups of Qp-points of the upper triangular and lower triangular, respectively, Borel
subgroups of G, N and N the groups of Qp-points of their unipotent radicals, and T the
group of Qp-points of the diagonal torus in G. Setting G0 = G0(0) = GL2(OL), we define,
for each integer s ≥ 1,

G0(s) =

{(
a b
c d

)
∈ G0 : c ≡ 0 (mod $s

LOL)

}
.
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These are compact open subgroups of G admitting an Iwahori decomposition with respect
to B and B, meaning that if T0 = T ∩ G0(s) = T ∩ G0, N0 = N ∩ G0(s) = N ∩ G0, and
N(s) = N ∩ G0(s) for s ≥ 1, then the natural multiplication map N0T0N(s) → G0(s) is a
bijection. If T+ = {t ∈ T : tN0t

−1 ⊆ N0}, then T+ is a submonoid of T containing T0, and for
each t ∈ T+ and each integer s ≥ 1, t−1N(s)t ⊆ N(s). Explicitly, T+ consists of all matrices(
a 0
0 d

)
∈ T with ad−1 ∈ OL. One can verify then that for s ≥ 1, G+(s) = N0T

+N(s) is an
open submonoid of G containing G0(s). We write B+ for G+(1) ∩ B = N0T

+ (the equality
holds because N ∩ B = {1}, and shows we could replace the integer 1 in the definition
of B+ by any integer s ≥ 1 without changing the result); this is a submonoid of B which
(by inspection) generates B as a group. Each of these subgroups (respectively submonoids)
of G will be regarded as a subgroup (respectively submonoid) of the group of E-points of
G×Qp E =

∏r
i=1 GL2/L×σiE via the continuous injection(

a b
c d

)
7→
((

σi(a) σi(b)
σi(c) σi(d)

))
1≤i≤r

.

We will generally identify N0 with OL via the locally analytic isomorphism
(
1 z
0 1

)
7→ z.

Elements of Zr
≥0 will be denoted by underlined Roman letters, e.g. m = (m1, . . . ,mr),

and we set |m| =
∑r

i=1mi. For each integer n ≥ 0, we write An for the affinoid E-algebra
of formal power series

F = F (X1, . . . , Xr) =
∑

m∈Zr
≥0

amX
m1
1 · · ·Xmr

r ∈ E[[X1, . . . , Xr]]

satisfying lim|m|→∞ |am|q−n|m| = 0. This is an E-Banach algebra with the multiplicative

Gauss norm ‖ · ‖n given by ‖F‖n = maxm |am|q−n|m|. When n = 0, we will write A
(respectively ‖ · ‖A ) instead of A0 (respectively ‖ · ‖0). If k ∈ Zr

≥0, then we will denote

by A k the finite-dimensional (hence closed) subspace of A consisting of all polynomials in
E[X1, . . . , Xr] whose degree in Xi is at most ki for 1 ≤ i ≤ r (note that in fact A k is a
closed subspace of An for all n ≥ 0). We will refer to A k as the space of polynomials in A
“of degree at most k.”

If H is a locally Qp-analytic group, C la(H,E) denotes the locally convex space of locally
analytic E-valued functions on H (see [9, §10] for a detailed description of the locally convex
topology on this space, and §2 below for an alternative description in the case H = OL)
and C sm(H,E) denotes the space of smooth (i.e. locally constant) E-valued functions on
H. For an open subset U of H, 1U denotes the characteristic function of U (so 1U ∈
C sm(H,E) ⊆ C la(H,E)). The isomorphism N0

∼= OL yields a topological isomorphism
C la(N0, E) ∼= C la(OL, E).

If V and W are locally convex spaces over E, L(V,W ) denotes the space of continuous
E-linear maps from V to W . If moreover each of V,W is endowed with an action of a
topological monoid H by E-linear (topological) automorphisms, then LH(V,W ) denotes the
subspace of L(V,W ) consisting of continuous H-equivariant E-linear maps. We will not need
to consider any locally convex topologies on the space L(V,W ), so an isomorphism between
spaces of continuous linear maps is simply intended as an isomorphism of E-vector spaces.
An E-Banach space representation U of H is unitary if the topology of U can be defined by
a norm that is invariant under H. Thus an E-valued character of H is unitary if and only
if it takes values in O×E .
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2. The locally convex space C la(OL, E) and tempered linear maps

In accordance with our convention regarding locally analytic structures mentioned in §1,
we regard the locally L-analytic group OL as a locally Qp-analytic group by restriction of
scalars. Explicitly, if we choose a Zp-basis for OL, then the induced Zp-linear isomorphism
OL
∼= Zr

p is a global chart for the locally Qp-analytic structure on OL. By definition, a
function f : OL → E is locally analytic if, upon choosing an isomorphism OL

∼= Zr
p, the

resulting function Zr
p → E admits a power expansion (in r variables, with coefficients in

E) in a sufficiently small ball around each point of Zr
p. Thus, given a choice of coordinates

OL
∼= Zr

p, elements of the affinoid algebras An give rise to locally analytic functions on OL.
In fact it is somewhat more intrinsic (but equivalent) to consider functions which are locally
given by convergent power series in the embeddings σi : L ↪→ E, as we now explain.

If w ∈ OL and n ≥ 0, then because each σi : L ↪→ E is an isometry for our choice
of absolute values on E and L, an element F ∈ An gives rise to a continuous function
Fn,w : w + $n

LOL → E defined by Fn,w(z) = F (σ1(z − w), . . . , σr(z − w)) (we will abuse
notation by sometimes writing the right-hand side of this definition as F (z − w), and will
use the same notation to denote the function on OL obtained by extending Fn,w by zero).
It turns out that the E-valued locally analytic functions on OL are precisely the functions
OL → E which locally arise from this construction in the sense of the following proposition.

Proposition 2.1. A function f : OL → E is locally analytic if and only if for each w ∈ OL

there exists an integer n ≥ 0 and a series F ∈ An such that f |w+$n
LOL

= Fn,w.

Proof. Let {z1, . . . , zr} be a Zp-basis for OL and let π : OL
∼= Zr

p be the Zp-linear iso-
morphism defined by this choice of basis. Then π is an isomorphism of locally analytic
groups. For 1 ≤ i ≤ r let πi : OL → Zp be the Zp-linear map given by πi(zj) = δij,
so that π(z) = (π1(z), . . . , πr(z)) for each z ∈ OL. The πi form an E-basis for the space
M = HomMod /Zp(OL, E), and we have

σj =
r∑
i=1

σj(zi)πi.

for 1 ≤ j ≤ r. As the σi also form an E-basis for M , we can write

πj =
r∑
i=1

βijσi

for some βij ∈ E, 1 ≤ i, j ≤ r. The r×r matrices (βij) and (σj(zi)) are then mutually inverse
in GLr(E), and (σj(zi)) has coefficients in OE (though it need not have unit determinant, i.e.,
(βij) might not have integral coefficients). This is the essential point of the argument which
shows that both the σi and the πi can serve as “coordinates” for locally analytic functions
on OL. A similar idea is used in the proof of [7, Lemma 4.1]. However, since the σi do not
constitute an actual chart for OL, and since L/Qp is not assumed Galois as in loc. cit., we
make the details of going from one set of “coordinates” to the other explicit below.

Define polynomials gj =
∑r

i=1 σj(zi)Xi and hj =
∑r

i=1 βijXi in E[X1, . . . , Xr] for 1 ≤ j ≤
r, noting that

(2.1) gj(π1(z), . . . , πr(z)) = σj(z)
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and

(2.2) hj(σ1(z), . . . , σr(z)) = πj(z)

for all z ∈ OL and 1 ≤ j ≤ r. Suppose f : OL → E is locally-analytic and fix w ∈ OL. We
may then choose an integer k ≥ 0 and a power series F0 ∈ Ak such that

(f ◦ π−1)(x1, . . . , xr) = F0(x1 − π1(w), . . . , xr − πr(w))

for each (x1, . . . , xr) ∈ Zr
p with maxi |xi − πi(w)| ≤ q−k. Now choose an integer n ≥ 0 large

enough to ensure that ‖hj‖n = q−n maxi |βij| is less than or equal to q−k for 1 ≤ j ≤ r (the
coefficients βij have valuation depending on the ramification of L over Qp). There is then a
unique continuous E-algebra homomorphism Ak → An satisfying Xj 7→ hj for 1 ≤ j ≤ r,
and this E-algebra homomorphism is compatible with evaluation of series in An on points of
the closed ball around 0 in Er of radius q−n. (This is the universal property of Tate algebras,
and details can be found in [9, Proposition 5.4]. Implicit in the statement about evaluation
on points is that each hj maps the closed ball of radius q−n around 0 in Er into the closed
ball of radius q−k around 0 in E.) Let F be the image of F0 under this homomorphism
(so we think of F as F0(h1, . . . , hr)). Given z ∈ w + $n

LOL, we have |σi(z − w)| ≤ q−n for
1 ≤ i ≤ r. Using the aforementioned compatibility of F0 7→ F with evaluation on points, we
find that

F (σ1(z − w), . . . , σr(z − w))

= F0(h1(σ1(z − w), . . . , σr(z − w)), . . . , hr(σ1(z − w), . . . , σr(z − w)))

= F0(π1(z − w), . . . , πr(z − w)) = F0(π1(z)− π1(w), . . . , πr(z)− πr(w))

= (f ◦ π−1)(π1(z), . . . , πr(z))

where, in going from the second to the third line, we have used Equation (2.2), and in the final
equality, we have used the parenthetical remark above explaining why |πi(z)− πi(w)| ≤ q−k

for 1 ≤ i ≤ r. Thus f has the desired local form.
The converse is similar but more straightforward because the gj have integral coefficients,

which gives ‖gj‖n ≤ q−n for 1 ≤ j ≤ r and for any n. We thus have a unique continuous
E-algebra homomorphism An → An satisfying Xj 7→ gj for 1 ≤ j ≤ r. This map is
compatible with evaluation on points as before, and we may use it (together with Equation
(2.1)) to prove that a function satisfying the condition in the statement of the proposition is
locally analytic by converting a local power series expansion in the σi to a local power series
expansion in the πi. �

Remark 2.2. It is actually not necessary to check the condition in Proposition 2.1 at every w ∈
OL. In fact, the condition in the proposition is equivalent to the condition that there exists a
single integer n ≥ 0 such that for each w in a (necessarily finite) set of coset representatives
for $n

LOL in OL, there exists F ∈ An (depending on w) such that f |w+$n
LOL

= Fn,w. This
follows from [9, Corollary 5.5], which shows that, for any w′ ∈ w + $n

LOL, the function
Fn,w for F ∈ An coincides with F ′n,w′ for some F ′ ∈ An (and one even necessarily has
‖F‖n = ‖F ′‖n.)

We now describe the locally convex topology on C la(OL, E) in terms of the description
of this vector space provided by Proposition 2.1. For each n ≥ 0, let Tn be a set of coset
representatives in OL for $n

LOL, and let ιn :
∏

w∈Tn An → C la(OL, E) be given by sending a
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tuple (Fw)w∈Tn of q−n-convergent power series to the function OL → E that is given on the
ball w + $n

LOL by z 7→ Fw(σ1(z − w), . . . , σr(z − w)) (that this function is in fact locally
analytic follows from Proposition 2.1 coupled with Remark 2.2). The Zariski density of the
L-valued points of an affinoid ball over L ensure that each ιn is injective, and both the image
Fn(OL, E) of ιn and the norm induced on Fn(OL, E) from the maximum of the Gauss norms
on each factor of the source of ιn are independent of the choice of Tn (again by Remark 2.2).
Thus Fn(OL, E) is canonically an E-Banach space. We have Fn(OL, E) ⊆ Fn+1(OL, E)
for each n ≥ 0, a continuous inclusion, and Remark 2.2 shows that the natural E-linear
injection lim−→n

Fn(OL, E) → C la(OL, E) is an isomorphism of E-vector spaces. We may

therefore endow C la(OL, E) with the locally convex inductive limit topology coming from
this isomorphism and the Banach space structure on each Fn(OL, E). Thus if U is a locally
convex space over E, a linear map C la(OL, E)→ U is continuous if and only if the restriction
of the map to Fn(OL, E) is continuous for every n ≥ 0.

Proposition 2.3. The locally convex topology just defined on C la(OL, E) coincides with the
locally convex topology defined in [9, §10].

Proof. Let π : OL
∼= Zr

p be as in the proof of Proposition 2.1 and let e = e(L/Qp) be the
ramification index of L over Qp. Recall that, with our normalizations, |p| = q−e. Thus, if
n ≥ 0, π induces a locally analytic isomorphism $ne

L OL = pnOL
∼= pnZr

p between the balls
around 0 of radius |$ne

L | = |pn| = q−ne in OL and Zr
p (where we use the norm ‖x‖ = maxi |xi|

on Zr
p). In particular, if Tne is a set of coset representatives for $ne

L OL in OL, then π(Tne) is
a set of coset representatives for pnZr

p in Zr
p. We have a diagram∏

w∈Tne
Ane

��

ιne // Fne(OL, E)

⊆
��∏

w∈Tne
Ane

// C la(OL, E)π

where the left-hand vertical map is given in each factor by Xi 7→ gi for 1 ≤ i ≤ r
(in the notation of the proof of Proposition 2.1), the bottom horizontal map sends a tu-
ple of q−ne-convergent power series (Fw)w∈Tne to the function given on w + $ne

L OL by
z 7→ F (π1(z − w), . . . , πr(z − w)), and C la(OL, E)π denotes the E-vector space C la(OL, E)
endowed with the topology of [9, §10]. The commutativity of the diagram holds by the def-
inition of the gi. The map ιne is a topological isomorphism by the definition of Fne(OL, E),
the continuity of the left-hand vertical map is built into its construction, and the bottom
horizontal map is continuous by the definition of the topology on the target. Thus the
right-hand vertical inclusion Fne(OL, E) ⊆ C la(OL, E)π is continuous, from which it follows
that Fn(OL, E) ⊆ C la(OL, E)π is continuous for all n ≥ 0. Therefore the identity map
C la(OL, E)→ C la(OL, E)π is continuous. But the source is of compact type (by a straight-
forward generalization of the argument in the example at the end of [8, §16]), while the
target is of compact type by [10, Lemma 2.1]; as bijective continuous linear maps between
spaces of compact type are necessarily topological isomorphisms [4, Theorem 1.1.17], the
topologies coincide. �

Let k ∈ Zr
≥0. The image under ιn of the finite-dimensional subspace

∏
w∈Tn A k ⊆∏

w∈Tn An will be denoted F k
n (OL, E). The inductive limit lim−→n

F k
n (OL, E) inside C la(OL, E)
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is the subspace C lp≤k(OL, E) of “locally polynomial functions of degree at most k.” Since
finite-dimensional (Hausdorff) locally convex spaces over E are necessarily equipped with
their finest locally convex topologies, the locally convex inductive limit topology on the space
C lp≤k(OL, E) is its finest locally convex topology. Thus if U is a locally convex space over E,
any linear map C lp≤k(OL, E)→ U is continuous. The inclusion C lp≤k(OL, E) ⊆ C la(OL, E)
is then a homeomorphism onto its image, which is closed in C la(OL, E).

We now wish to state a result of Breuil generalizing classical work of Amice-Vélu and
Vishik, but must first introduce a slight variation on the construction of functions via con-
vergent power series. We have already explained how a series F ∈ An gives rise to a
locally analytic function on OL by (roughly) substituting the embeddings σi for the vari-
ables Xi (on choosing a “center point” for each ball of radius q−n). By composing with
certain continuous homomorphisms A → An, we can essentially use A = A0 to produce
the locally analytic functions arising from all the An. Namely, if w ∈ OL, n ≥ 0, and
F ∈ A , we will denote by F ((z − w)/$n

L) the locally analytic function on OL that is given
on w + $n

LOL by z 7→ F (σ1((z − w)/$n
L), . . . , σr((z − w)/$n

L)), and is extended by zero to
the rest of OL. Note that this construction can also be described as the composite of the
map F 7→ Fn,w : An → C la(OL, E) with the continuous E-algebra homomorphism A → An

given by sending Xi to σi($L)−nXi for 1 ≤ i ≤ r. The resulting linear map A → C la(OL, E)
is continuous by the definition of the locally convex topology on the target. Note that we
can in particular restrict this construction to the finite-dimensional subspace A k ⊆ A of
polynomials of degree at most k.

Let U be an E-Banach space and let ‖ · ‖U denote a choice of norm on U inducing its
topology. The following definition is independent of this choice in the sense that if the con-
dition in the definition holds for one norm defining the topology of U , it holds for any other.
The definition is an immediate translation of [5, Definition 3.12] from the case L = Qp.

Definition 2.4. Let α ∈ E×. An element

ϕ ∈ L(C la(OL, E), U) (respectively ϕ ∈ L(C lp≤k(OL, E), U))

is said to be α-tempered if there is a constant C > 0 such that for each F ∈ A (respectively
F ∈ A k), w ∈ OL, and n ∈ Z≥0, we have

(2.3)

∥∥∥∥ϕ(F(z − w$n
L

))∥∥∥∥
U

≤ C|α|−n‖F‖A .

The notation L(C la(OL, E), U)α (respectively L(C lp≤k(OL, E), U)α) indicates the subspace
of L(C la(OL, E), U) (respectively of L(C lp≤k(OL, E), U)) consisting of α-tempered maps.

The following lemma equates the condition given in Definition 2.4, which is more suited
for our argument, with the condition used in [2].

Lemma 2.5. Let α ∈ E× and let c = ord(α). An element ϕ ∈ L(C la(OL, E), U) (respectively
ϕ ∈ L(C lp≤k(OL, E), U)) is α-tempered if and only if there is a constant C > 0 such that for
each w ∈ OL, n ∈ Z≥0, and m ∈ Zr

≥0 (respectively m ∈ Zr
≥0 with mi ≤ ki for 1 ≤ i ≤ r), we

have

(2.4)

∥∥∥∥ϕ(1w+$n
LOL

(z)
r∏
i=1

σi(z − w)mi

)∥∥∥∥
U

≤ Cq−n(|m|−c).
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Proof. Suppose ϕ ∈ L(C la(OL, E), U) is α-tempered in the sense of Definition 2.4 and let
C be a constant for which (2.3) holds. Given w ∈ OL, n ≥ 0, and m ∈ Zr

≥0, consider the
element F =

∏r
i=1X

mi
i of A , noting that ‖F‖A = 1. We have, by definition,

(2.5)

F

(
z − w
$n
L

)
= 1w+$n

LOL
(z)

r∏
i=1

σi

(
z − w
$n
L

)mi

=
r∏
i=1

σi($L)−nmi1w+$n
LOL

(z)
r∏
i=1

σi(z − w)mi .

Therefore, because ϕ is α-tempered,∥∥∥∥ϕ(1w+$n
LOL

(z)
r∏
i=1

σi(z − w)mi

)∥∥∥∥
U

=

∥∥∥∥ϕ( r∏
i=1

σi($L)nmiF

(
z − w
$n
L

))∥∥∥∥
U

=
r∏
i=1

|$L|nmi

∥∥∥∥ϕ(F(z − w$n
L

))∥∥∥∥
U

≤
r∏
i=1

q−nmiC|α|−n‖F‖A = Cq−n|m|qnc = Cq−n(|m|−c).

Thus (2.4) holds for ϕ. The same proof applies to an α-tempered ϕ ∈ L(C lp≤k(OL, E), U),
except that we only take m ∈ Zr

≥0 with mi ≤ ki for 1 ≤ i ≤ r.
Now assume conversely that (2.4) holds for ϕ and all relevant data, with constant C, and

let F be as above. Taking (2.5) into account along with the fact that qnc = |α|−n, (2.4)
becomes ∥∥∥∥∥

r∏
i=1

σi($L)nmiϕ

(
F

(
z − w
$n
L

))∥∥∥∥∥ ≤ Cq−n|m||α|−n.

The absolute value of the quantity multiplying F ((z − w)/$n
L) is q−n|m|, so we may cancel

this factor from both sides of the above inequality and recall that ‖F‖A = 1 to obtain∥∥∥∥ϕ(F(z − w)

$n
L

))∥∥∥∥
U

≤ C|α|−n‖F‖A .

The strong triangle inequality then implies the desired inequality for any F ∈ A that is a
linear combination of monomials as above. The inequality then holds for a general F ∈ A
because the polynomials in A are dense, and the association

F 7→ F ((z − w)/$n
L) : A → C la(OL, E)

is continuous. The case of ϕ ∈ L(C lp≤k(OL, E), U) follows from the same argument (except
that the final step involving density of the polynomials in A is not necessary). �

We now state Breuil’s generalization to arbitrary L of the result of Amice-Vélu and Vishik
(whose result was stated for L = Qp).

Lemma 2.6. For k = (k1, . . . , kr) ∈ Zr
≥0 and α ∈ E× satisfying ord(α) < ki + 1 for

1 ≤ i ≤ r, the restriction map

L(C la(OL, E), U)→ L(C lp≤k(OL, E), U)

induces an isomorphism

L(C la(OL, E), U)α ∼= L(C lp≤k(OL, E), U)α.
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Proof. This is a special case of [2, Lemma 6.1] (where, in the notation of that reference,
J = ∅, so that J ′ = HomAlg /Qp(L,E)), taking into account the fact that the condition on
linear maps imposed there is equivalent to the condition in Definition 2.4 by Lemma 2.5. �

3. Locally algebraic and locally analytic principal series

Fix k ∈ Zr
≥0. We are interested in locally analytic representations of G induced from

locally algebraic characters of T (regarded as characters of B via the projection B → T ).
More precisely, we consider characters of the form χ = θψk, where θ : T → E× has the form(

a 0
0 d

)
7→ θ1(a)θ2(d)

for smooth characters θ1, θ2 : L× → E×, and ψk : T → E× denotes the character(
a 0
0 d

)
7→

r∏
i=1

σi(d)−ki .

If Vk is the irreducible algebraic representation
⊗r

i=1 Symki
E (E2) of GE, and Wk denotes its

contragredient, then ψk is the restriction to T of the highest weight of Wk (relative to the
upper triangular Borel subgroup of GE).

For χ as above, we define the locally algebraic parabolic induction I(χ) = Wk⊗EIndG
B

(θ)sm,
where the right tensor factor is the smooth parabolic induction of θ. Letting G act on Wk

via the inclusion G ↪→ GE(E) and on IndG
B

(θ)sm via the right regular representation on
C sm(G,E), I(χ) becomes a Wk-locally algebraic representation of G in the sense of [4,

Proposition-Definition 4.2.6]. We also define I la(χ) = IndG
B

(χ), the locally analytic parabolic

induction of χ [5, Example C], which consists of all functions f ∈ C la(G,E) satisfying f(bg) =
χ(b)f(g) for each b ∈ B and g ∈ G. LettingG act on I la(χ) via its right regular representation
on the locally convex space C la(G,E), and endowing I la(χ) with the induced topology, I la(χ)
becomes a strongly admissible locally analytic representation of G [5, Proposition 1.21].

We may view I(χ) as a closed subrepresentation of I la(χ) in the following way. Let O(GE)
denote the affine coordinate ring of GE, and let C alg(G,E) denote the image of the restriction
map O(GE) ↪→ C la(G,E) (the restriction map is injective because G ⊆ GE(E) is Zariski
dense in GE(E)). This is the space of algebraic E-valued functions on G. With e1,i, e2,i the

standard elements in the i-th tensor factor of Vk, e2 = ⊗ri=1e
ki
2,i is a highest weight vector in

Vk relative to the lower triangular Borel subgroup of GE, and the map Wk → O(GE) given
by w 7→ (g 7→ w(g−1e2)) is a GE(E)-equivariant E-linear injection which, when composed
with the isomorphism O(GE) ∼= C alg(G,E), allows us to view Wk as a subrepresentation of
C alg(G,E) (for the right regular action of G). Tensoring the injection

Wk ↪→ C alg(G,E)

with the inclusion IndG
B

(θ)sm ⊆ C sm(G,E) yields an injection

I(χ) ↪→ C alg(G,E)⊗E C sm(G,E),

and following this with the map C alg(G,E)⊗E C sm(G,E)→ C la(G,E) given by multiplica-
tion of algebraic functions and smooth functions gives I(χ) ↪→ C la(G,E) (the injectivity of
this multiplication map is again a consequence of the Zariski density of G in GE) . Writing
down the map Wk ↪→ C alg(G,E) explicitly (using the definition given above and the action
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of g ∈ G on e2) one finds that the image of I(χ) in C la(G,E) is contained in I la(χ). Thus
I(χ) is canonically a G-stable subspace of I la(χ). Moreover, I(χ) is closed in I la(χ), and its
subspace topology coincides with its finest locally convex topology (with respect to which it
is an admissible locally Wk-algebraic representation of G by [4, Proposition 6.3.10]).

We may now state our main result. The proof will be given in §4.

Theorem 3.1. Assume that

(i) ord(θ1($L)) < ki + 1 for 1 ≤ i ≤ r, and that
(ii) χ|Z(G) is unitary.

Then for any unitary E-Banach space representation U of G, the restriction map

(3.1) LG(I la(χ), U)→ LG(I(χ), U)

is an isomorphism.

Remark 3.2. The statement of Theorem 3.1 can be reformulated as the assertion that the
map I(χ) ↪→ I la(χ) induces a topological isomorphism on universal unitary completions in
the sense of [5, Definition 1.1], under the stated hypotheses.

When L = Qp, this is essentially Proposition 2.5 of [4]. A version of this result (for
general L) is also proved as Theorem 7.1 of [2]. Breuil’s result applies to more general
locally J-analytic parabolic inductions, where J is a subset of HomAlg /Qp(L,E), but he
restricts attention to injective linear maps. (See [2, p. 10] for the definition of the locally
J-analytic induction; locally algebraic induction corresponds to J = ∅, while locally analytic
induction corresponds to J = HomAlg /Qp(L,E)). We follow Emerton’s argument from [5,
§3], which is somewhat more representation-theoretic than Breuil’s (although we do make
crucial use [2, Lemma 6.1], stated as Lemma 2.6 in the previous section, in place of Emerton’s
appeal to the classical result of Amice-Vélu and Vishik, of which [2, Lemma 6.1] is a natural
generalization).

4. Proof of Theorem 3.1

In this section we prove Theorem 3.1. We therefore assume that ord(θ1($L)) < ki + 1 for
1 ≤ i ≤ r and that χ|Z(G), the central character of I la(χ) (and that of I(χ)), is unitary. It
will be clear in the argument where these hypotheses are invoked. Our proof closely follows
that of Emerton in [5, §3]. The key input to make Emerton’s argument go through in the
general case is provided by the description of C la(OL, E) from §2 and the accompanying
Lemma 2.6 (which takes the place of the result of Amice-Vélu and Vishik used by Emerton).

If V is one of I la(χ), I(χ), denote by V (N0) the closed subspace of functions in V whose
support lies in BN0. This is a G+(1)-invariant closed subspace of I la(χ) (see §1 for the
definition of the monoid G+(1), and more generally for the monoids G+(s) used below).
The following result is proved for L = Qp in [5, Lemma 3.1], but the argument given there
applies to an arbitrary finite extension L of Qp (in fact the argument there is extremely
general and would work for any reductive group over any finite extension of Qp, and any
parabolic subgroup, with appropriate analogues of the submonoids G+(s)).

Lemma 4.1. For any E-Banach space representation U of G, the restriction maps

LG(I la(χ), U)→ LG+(s)(I
la(χ)(N0), U)
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and

LG(I(χ), U)→ LG+(s)(I(χ)(N0), U)

are isomorphisms for all integers s ≥ 1.

Thus, for an E-Banach space representation U of G and each s ≥ 1, there is a commutative
diagram of restriction maps

LG(I la(χ), U)

��

// LG(I(χ), U)

��
LG+(s)(I

la(χ)(N0), U) // LG+(s)(I(χ)(N0), U)

where the vertical maps are isomorphisms. To prove Theorem 3.1, which is the assertion that
the top horizontal arrow is an isomorphism, it therefore suffices to prove that the bottom
horizontal arrow is an isomorphism for some s ≥ 1. We ultimately reduce this to Lemma 2.6.
By [6, Lemma 2.3.3], restricting functions in I la(χ) to N0 yields a topological isomorphism
I la(χ)(N0) ∼= C la(N0, U), and composing this with the topological isomorphism C la(N0, E) ∼=
C la(OL, E) (see the discussion of function spaces in §1), we obtain an isomorphism

(4.1) I la(χ)(N0) ∼= C la(OL, E).

Restricting (4.1) to I(χ)(N0), and using the explicit description of the embedding

I(χ) ↪→ I la(χ)

of §3, we obtain an induced isomorphism

(4.2) I(χ)(N0) ∼= C lp≤k(OL, E).

Since I la(χ)(N0) is a G+(1)-stable subspace of I la(χ), we may use the isomorphism (4.1)
to transfer the action of G+(1) on I la(χ)(N0) to an action of G+(1) on C la(OL, E). A
computation shows that if f ∈ C la(OL, E) and g =

(
a b
c d

)
∈ G+(1), then we have, for any

z ∈ OL,
(4.3)

(gf)(z) =


0 if

b+ dz

a+ cz
/∈ OL(∏r

i=1 σi

(
a+ cz

det(g)

)ki)
θ1(a+ cz)θ2

(
det(g)

a+ cz

)
f

(
b+ dz

a+ cz

)
if
b+ dz

a+ cz
∈ OL.

As I(χ)(N0) is a G+(1)-stable subspace of I la(χ)(N0), in light of (4.2), C lp≤k(OL, E) is a
G+(1)-stable subspace of C la(OL, E) for the action defined in (4.3).

We also need to define an action of G0(1) on A , which we now explain. Let g =
(
a b
c d

)
be

an element of G0(1). By the definition of G0(1) ⊆ GL2(OL), each of a, b, c, d is in OL and
c ∈ $LOL, so a, d ∈ O×L . Thus, for 1 ≤ i ≤ r, the series

σi(b) + σi(d)Xi

σi(a) + σi(c)Xi

=
σi(b) + σi(d)Xi

σi(a)

∞∑
m=0

(−1)m
(
σi(c)

σi(a)

)m
Xm
i

is an element of A of norm 1. Therefore, there is a unique continuous E-algebra endomor-
phism νg : A → A with νg(Xi) = (σi(b) + σi(d)Xi)/(σi(a) + σi(c)Xi) for 1 ≤ i ≤ r, and the
operator norm of νg is at most 1. A (slightly messy but straightforward) computation shows
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that νg1g2 = νg1 ◦ νg2 , and it follows that in fact each νg is an isometry of A . We now define
the G0(1)-action on A by

(4.4) g(F (X1, . . . , Xr)) =

( r∏
i=1

(
σi(a) + σi(c)Xi

σi(det(g))

)ki)
θ2(det(g))νg(F (X1, . . . , Xr)).

Because the factor multiplying νg(F (X1, . . . , Xr)) in (4.4) is of Gauss norm 1 (since det(g)
is a unit in OL, θ2(det(g)) ∈ O×E ), this G0(1)-action on A is unitary. Moreover, the factor
ensures that A k is a G0(1)-stable subspace of A for this action.

Comparing the formulas above, we find that, if g ∈ G0(1) ⊆ G+(1), F ∈ A , and z ∈ OL,
then

(4.5) g(F (z)) =
θ1(a+ cz)

θ2(a+ cz)
((gF )(z)),

where on the left-hand side g acts on C la(OL, E) via (4.3), and on the right-hand side
g acts on A via (4.4) (recall that for F ∈ A , the notation F (z) indicates the function
z 7→ F (σ1(z), . . . , σr(z)) on OL, and note that if g ∈ G0(1), then (b+ dz)/(a+ cz) ∈ OL for
any z ∈ OL).

We now follow Emerton in relating the actions just defined to the notion of an α-tempered
linear map (Definition 2.4), where α = θ1($L). In preparation, we introduce the subset B′

of B defined by

B′ =

{(
$n
L −w

0 1

)
: n ∈ Z≥0, w ∈ OL

}
.

This is a submonoid of B+ = N0T
+ (see §1 for the notation) since we can write, for any

n ≥ 0 and w ∈ OL, (
$n
L −w

0 1

)
=

(
1 −w
0 1

)(
$n
L 0

0 1

)
.

Lemma 4.2. Any element b ∈ B+ may be written as zb′t with z ∈ Z(G), b′ ∈ B′, and
t ∈ T0.

Proof. As b ∈ B+ = N0T
+, we may write

b =

(
1 w
0 1

)(
a 0
0 d

)
=

(
a wd
0 d

)
with w ∈ OL and ad−1 ∈ OL. Then

b =

(
d 0
0 d

)(
$

ord(a)−ord(d)
L w

0 1

)(
ad−1$

ord(d)−ord(a)
L 0

0 1

)
is a decomposition of b of the form zb′t ∈ Z(G)B′T0. �

Lemma 4.3. Let C denote either C la(OL, E) or C lp≤k(OL, E), with AC denoting A in the
former case and A k in the latter case. If U is an E-Banach space and ϕ ∈ L(C , U), then ϕ
is θ1($L)-tempered if and only if there exists a positive constant C such that

‖ϕ(b(F (z)))‖U ≤ C‖F‖A
for all F ∈ AC and b ∈ B+ (where ‖ · ‖U is any choice of norm on U defining its topology).
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Proof. Given F ∈ AC , Equation (4.3) gives(
$n
L −w

0 1

)
F (z) = θ1($L)nF ((z − w)/$n

L).

It then follows from Definition 2.4 that ϕ is θ1($L)-tempered if and only if there is a constant
C > 0 such that ‖ϕ(b′(F (z)))‖U ≤ C‖F‖A for all F ∈ AC and b′ ∈ B′. If the condition
in the statement of the lemma holds, then certainly this condition holds, since B′ ⊆ B+.
Conversely, suppose ‖ϕ(b′(F (z)))‖U ≤ C‖F‖A for all F ∈ AC and b′ ∈ B′, and let b ∈ B+.
In accordance with Lemma 4.2, we may write b = z′b′t with z′ ∈ Z(G), b′ ∈ B′, and
t =

(
a 0
0 d

)
with a, d ∈ O×L . Noting that the action of Z(G) ⊆ G+(1) on C la(OL, E) is given

by the character χ (because this is the character by which Z(G) acts on I la(χ)(N0)), which
is assumed unitary, we have

‖ϕ(b(F (z)))‖U = ‖ϕ(z′b′t(F (z)))‖U
= ‖χ(z′)ϕ(b′t(F (z)))‖U

=

∥∥∥∥χ(z′)
θ1(a)

θ2(a)
ϕ(b′((tF )(z)))

∥∥∥∥
U

= ‖ϕ(b′((tF )(z)))‖U ≤ C‖tF‖A = ‖F‖A .

(We have used (4.5) in going from the second to the third line and the unitarity of the action
of G0(1) on A in the final equality.) Thus the condition in the statement of the lemma
holds. �

Remark 4.4. The preceding proof is the only point where the unitarity of the central character
χ|Z(G) is used. However, if this hypothesis fails to hold, one could not really hope to learn
much about unitary completions of I la(χ) from I(χ) anyway, because unitarity of χ|Z(G)

is an obvious necessary condition for the unique irreducible constituent of I(χ) to admit a
non-zero G-equivariant map into a unitary Banach representation of G.

Lemma 4.5. In the notation of Lemma 4.3, if U admits a unitary action of B+, then
LB+(C , U) ⊆ L(C , U)θ1($L).

Proof. Let ‖ · ‖U be a B+-invariant norm on U and let ϕ ∈ LB+(C , U). By the definition of
the topology on C la(OL, E) (see the discussion following Remark 2.2) and the continuity of
ϕ, the restriction of ϕ to the image of the map F 7→ F (z) : AC → C la(OL, E) is bounded,
i.e., there is a constant C > 0 such that ‖ϕ(F (z))‖U ≤ C‖F‖A for all F ∈ AC . Therefore,
if b ∈ B+ and F ∈ AC , we have

‖ϕ(b(F (z)))‖U = ‖bϕ(F (z))‖U = ‖ϕ(F (z))‖U ≤ C‖F‖A ,

where the first equality follows from the assumed B+-equivariance of ϕ and the second
follows from the B+-invariance of ‖ · ‖U . Thus the condition in Lemma 4.3 holds, so ϕ is
θ1($L)-tempered. �

We may now complete the proof of Theorem 3.1. Thus we assume that U is a unitary
E-Banach space representation of G with ‖ · ‖U a G-invariant norm defining the topology of
U . Recall that our goal was to show that, for some integer s ≥ 1, the restriction map

LG+(s)(I
la(χ)(N0), U)→ LG+(s)(I(χ)(N0), U)
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is an isomorphism. Using the G+(1)-equivariant isomorphisms (4.1) and (4.2), it is equivalent
to prove that

(4.6) LG+(s)(C
la(OL, E), U)→ LG+(s)(C

lp≤k(OL, E), U)

is an isomorphism for some s ≥ 1. We will show that it is enough to take s equal to the
conductor exponent of the restrictions of θ1, θ2 to O×L , i.e., we assume that θ1, θ2 are trivial
when restricted to 1 + $s

LOL. (There is some such s because the θi are smooth.) Now,
by Lemma 4.5 (and the fact that B+ ⊆ G+(s), so that G+(s)-equivariant maps are also
B+-equivariant), we have

(4.7) LG+(s)(C
la(OL, E), U) ⊆ L(C la(OL, E), U)θ1($L)

and

(4.8) LG+(s)(C
lp≤k(OL, E), U) ⊆ L(C lp≤k(OL, E), U)θ1($L).

As we are assuming that ord(θ1($L)) < ki+1 for all i, Lemma 2.6 implies that the restriction
map

(4.9) L(C la(OL, E), U)θ1($L) → L(C lp≤k(OL, E), U)θ1($L)

is an isomorphism. Thus, in light of the inclusions (4.7) and (4.8), and the injectivity of
(4.9), we conclude that (4.6) is injective. (We have not yet used the assumption on s.)

To prove the surjectivity of (4.6), fix ϕ0 ∈ LG+(s)(C
lp≤k(OL, E), U). Because of the in-

clusion (4.8) and the surjectivity of (4.9), there is an element ϕ ∈ L(C la(OL, E), U) that
is θ1($L)-tempered and restricts to ϕ0 on C lp≤k(OL, E). It remains to prove that ϕ is
G+(s)-equivariant. To do this, we consider, for a fixed g ∈ G+(s), the continuous linear map

ϕ′ : f 7→ g−1ϕ(gf) : C la(OL, E)→ U .

Since ϕ0 is G+(s)-equivariant, the restriction of ϕ′ to C lp≤k(OL, E) coincides with that of ϕ,
so if ϕ′ can be shown to be tempered, the injectivity of (4.9) will give ϕ′ = ϕ, proving the
desired equivariance.

We will show that ϕ′ satisfies the condition in Lemma 4.5. Because ϕ is θ1($L)-tempered,
ϕ satisfies this condition, i.e., there is a constant C > 0 such that ‖ϕ(b(F (z)))‖U ≤ C‖F‖A
for all b ∈ B+ and F ∈ A . If b ∈ B+, then gb ∈ G+(s) = B+N(s), so we may write gb = b1n̄
for some b1 ∈ B+ and n̄ =

(
1 0
w 1

)
∈ N(s) (so w ∈ $s

LOL). Then, using the G-invariance
of ‖ · ‖U , Equation (4.5), the assumption that θ1 and θ2 are trivial on 1 + $s

LOL, and the
N(s)-invariance of ‖ · ‖A , we find that

‖ϕ′(b(F (z)))‖U = ‖g−1ϕ(gb(F (z)))‖U
= ‖ϕ(b1n̄(F (z)))‖U

=

∥∥∥∥θ1(1 + wz)

θ2(1 + wz)
ϕ(b1((n̄F )(z)))

∥∥∥∥
U

= ‖ϕ(b1((n̄F )(z)))‖U ≤ C‖n̄F‖A = C‖F‖A

for any F ∈ A . Thus, by Lemma 4.5, ϕ′ is tempered, as desired.
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