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Abstract. Renormalization has been successful in explaining universal scaling phenomena in
systems near criticality. In the best understood cases, some nondegeneracy property is involved
that propagates under “coarse-graining”. This includes ferromagnetism in statistical mechanic,
the negative Schwarzian derivative for maps on an interval, or the twist condition for maps
on a cylinder. But similar phenomena have been observed during the breakup of shearless
invariant tori in the nontwist standard map. This suggests that renormalization arguments
should apply here as well. Our goal was to investigate this question by numerically implementing
a renormalization transformation. This turned out to be more challenging than expected.
We describe some partial result, problems that were encountered, and a new approach to the
renormalization of Hamiltonians. Similar ideas may be useful in other renormalization-related
problems. We are not assuming that the reader is familiar with the breakup of invariant tori or
renormalization. The necessary concepts will be introduced as needed.

1. Introduction

Critical phenomena in low-dimensional dynamical systems typically involve sequences of
bifurcations that accumulate, marking a transition to a new type of asymptotic behavior.
This involves asymptotic scaling, both in phase space and parameter space. Another
common observation is universality: The asymptotic scaling seems independent of the
system being considered, within a large “universality class” of systems. The method of
renormalization aims to explain such universality.

Some degree of universality seems natural: cascades of bifurcations of a given type
are special enough that the number of ways to produce them should be limited. A
renormalization-based argument is roughly the following.

In the case of parameterized families of maps, the construction of long orbits of a
given type involves applying a transformation R to a map. R involves compositions and
can be viewed as “coarse-graining” in time. What one ends up observing for such orbits,
in a fixed family of maps, depends partly on the family, and partly on the transformation
R. The universal properties are those that can be attributed to R and are independent of
the family.

For maps with constraints, R may act on generating functions. For flows, R may act
on vector fields, or on Hamiltonians in the case of Hamiltonian flows. For simplicity, we
restrict to a real analytic setting in all cases.

A classic example of such a “renormalization transformation” R will be described
at the beginning of Section 2. The main ideas are simple, and they can be applied to
other settings by analogy. No prior knowledge of renormalization is necessary to follow the
arguments presented in this paper.

We started by considering symplectic maps on the cylinder T × R, where T = R/Z.
Near an invariant circle with irrational rotation number α, such a map G is conjugate to a
small perturbation of Ψ : [ xw ] 7→ [ x+ψ(w)

w ] that agrees with Ψ on the invariant circle w = w̄
with rotation number ψ(w̄) = α. The corresponding circle for G is said to have twist if
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ψ′(w̄) 6= 0. At the opposite extreme, if ψ has a local minimum or maximum at w̄, then
the circle is said to be shearless.

Twist represents a monotonicity or nondegeneracy property. Such properties seem
conducive to critical phenomena. But they may not always be necessary. The observations
that prompted the work described here are numerical studies on the breakup of shearless
invariant tori for the standard nontwist map. We refer to [9,14] for a description and
references. The data suggest that renormalization should apply here as well.

A technical problem in the shearless case is that common types of generating functions
cannot be used. And less common types interfere with reversibility. Another problem is
that the asymptotic behavior is quite complex: The relevant orbit of R seems to be a
period of length 12, as opposed to a fixed point in the twist case. This makes numerical
investigations difficult and slow. We were aware of this risk but found it worth a try.

Our first goal was to find a suitable transformation R that can be studied numerically.
We started with symplectic maps, since the Hamiltonian approach is much more involved.
The next goal was to find a “critical” approximate orbit for R. Subsequent steps would
depend on our findings.

In parallel to this, we also computed long shearless obits for the standard nontwist map
at high precision. The hope was that accurate numerics will help in finding a convenient
version of R for maps. This hope did not quite materialize. But the data revealed the
existence of rotation in the asymptotic scaling, about a point known as the indicator
point. This observation seems to be new. A possible source of rotating asymptotics could
be infinitely nested meanders at the point of breakup.

Our maps-based approach is described in Section 2. The chosen transformation R is of
a standard type for problems that involve irrational rotations. As a specific map in the twist
(shearless) case we discuss the (nontwist) standard map. In the chosen coordinates, both
maps have simple reversibility properties. Unfortunately, an implementation of R in terms
of generating functions causes problems in the shearless case. After having considered
various alternatives, we reluctantly decided to renormalize Hamiltonians instead.

The Hamiltonians considered here are functions on Ω = T2×R2. They define a Hamil-
tonian flow on Ω in the usual way. Restricting the flow to a surface of fixed energy, and
then considering the first-return map to a suitable transversal section, yields a symplectic
map of the type described above. So the notion of twist and shearlessness are relevant for
Hamiltonians as well. For a discussion of shearless KAM tori we refer to [22].

Our renormalization of Hamiltonians H : Ω → R involves a re-normalization group
that is infinite dimensional. This makes it technically much more complex. The approach
is described in Section 3. Our findings are based on extensive numerical experiments.
We started with the transformation R that was introduced in [8] and used successfully in
a computer-assisted proof [15,23]. But it is Newton-based and thus involves inverting a
linear operator at each step. In numerical experiments, the inversion fails quite frequently.
This was “solved” in [13] by skipped re-normalization steps that caused problems. Here,
we avoid the invertibility problem by using a procedure that normalizes H via a flow
Ḣ = {φ,H} for a time-dependent Hamiltonian φ that depends on H.

A temporary highlight of our analysis was the construction of an approximate period
12 for this version of R. But we also found an undesired eigenvalue. This led us to
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implement some improvements to R. After that, the period 12 vanished and turned into
near-period 12 that involved an extra rotation. This came as a surprise. But this rotation
may be related to the above-mentioned rotation that we observed in the asymptotic scaling
of the nontwist standard map near the indicator point.

2. Renormalization of maps
In Subsection 2.1 we will introduce a renormalization transformation R for (pairs of)
symplectic maps on T × R. Subsection 2.2 then specializes to shearless maps. But first,
let us describe how renormalization relates to universality.

Among the best known universal phenomena in dynamics is the period-doubling cas-
cade in one-parameter families of quadratic-like maps on an interval [4,19]. To simplify
the description, consider the family of maps gs : [−1, 1] → [−1, 1] for 0 < s < 1, defined
by gs(x) = 1− sx2. The observation is that there exists an infinite sequence of parameter
values 0 < s0 < s1 < s2 < . . . < 1 with the following property. As s is increased past sn,
a stable periodic orbit of length 2n turns unstable but gives rise to a nearby stable period

2n+1. The bifurcations accumulate with an asymptotic ratio δ = limn

( sn−1−sn
sn−sn+1

)1/n
. The

same is observed for nearby families; and remarkably, the asymptotic ratio is always the
same: δ = 4.669 . . ..

In this case, universality is due to the (nontrivial) fact that the composition operator
g 7→ g2 for equivalence classes of even functions has a real analytic fixed point. To be
more precise, a representative g∗ in this class is a fixed point of a transformation R of
the form R(g) = Λ−1

g g2Λg. In fact, it is possible to choose the change of coordinates Λg
linear, with Λg(x) = g(1)x. Then R can be proved to be hyperbolic near g∗, in a space
A of even real-analytic functions; with DG(g∗) having no spectrum outside the open unit
disk, except for simple eigenvalue δ = 4.669 . . ..

The universality class in this case includes all one-parameter families s 7→ gs of maps
in A that cross the stable manifold of R for g∗ transversally. Say the crossing point is
at s = s∞. Then, under iteration by R and proper parameter rescaling, about s∞ with
asymptotic ratio δ, the family converges to a universal family, namely the unstable manifold
for R at g∗. As far as universality is concerned, this explains the relevant phenomena. A
more detailed description can be found in [19] and many other reviews.

Observe that the transformation R consists of two parts: a composition g 7→ g2,
followed by a re-normalization via a change of coordinates Λg. The composition part
represents the arithmetic map n 7→ 2n on the set of positive integers.

The transformation R defined below admits an analogous decomposition. The com-
position part represents the Gauss map α 7→ α−1−bα−1c, where bα−1c denotes the integer
part of α−1. In this context, α is a rotation number in the interval (0, 1).

2.1. Rotation numbers

For concreteness, let us first consider the well-known Chirikov standard map. Modulo a
trivial conjugacy, the standard map is G = ΦΨΦ, where Ψ and Φ are given by[

x
w

]
Ψ7−−→

[
y
z

]
=

[
x+ ψ(w)

w

]
,

[
x
w

]
Φ7−→
[
y
z

]
=

[
x

w − ϕ(x)

]
, (2.1)
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with ψ(w) = w and ϕ(x) = b
2 sin(2πx).

In the trivial case b = 0, where G = Ψ, the cylinder T × R is foliated by invariant
circles. On the circle T× {w} we have a rotation y = x+w with rotation number α = w.
And G satisfies the so-called twist condition ∂y

∂w 6= 0. By standard results in KAM theory,
most of these invariant circles persist for values b 6= 0 close to zero, with the closeness
condition depending on the arithmetic properties of α.

For the purpose of renormalization, a map G on T×R will be regarded as a map on
R × R that commutes with the translation F◦ defined below. For reference later on, we
note that F◦ = E2, where[

x
w

]
E7−−→

[
x− 1/2
−w

]
,

[
x
w

]
F◦7−−→

[
x− 1
w

]
. (2.2)

The objects of interest here are periodic and quasiperiodic orbits of G. A point ζ ∈ R2 is
periodic with rotation number p/q, if F p◦G

qζ = ζ. For an irrational number α between 0
and 1, if pn/qn → α and F pn◦ Gqnζ → ζ, then ζ is said to have rotation number α. These
definitions extend readily to other pairs of commuting maps (F,G).

The composed maps F pnGqn play a role similar to the composed maps g2n in the
period-doubling scenario. Scaled versions of these maps can be generated by starting with
a commuting pair P = (F,G) and then iterating the following transformation R.

R(P ) = P̃ , P̃ =
(
Λ−1
P F̂ΛP , Λ−1

P ĜΛP

)
, F̂ = G , Ĝ = FGc , (2.3)

where c = bα−1c. Here ΛP (x,w) = (−αx, a(w)), where a is some affine function that can
be chosen to depend on P , say via some normalization condition. We note that, if ζ has
rotation number α for P , then ζ̃ = Λ−1

P ζ has rotation number α̃ = α−1 − c for P̃ = R(P ).
Here, α 7→ α̃ is the Gauss map.

For simplicity, we restrict now to the inverse golden mean α, defined as the solution
of α−1−1 = α in (0, 1). Then we can use c = 1 in the definition (2.3) at each step of R. In
this case, the numerator pn in the n-th continued fractions approximant pn/qn of α is the
n-th Fibonacci number, and qn = pn+1. For completeness, we note that the pair (F◦, G◦)
with G◦ : [ xw ] 7→ [ x+αw ] is a fixed point of R, with a(w) = µω and arbitrary µ 6= 0.

As mentioned above, if b is sufficiently close to 0, then the standard map G = ΦΨΦ
given by (2.1) has a smooth invariant circle with rotation number α. As has been described
in many studies, this circle breaks up as b passes some critical value. This happens via a
cascade of bifurcations of pn/qn orbits; but the details are not really relevant here. The
conjecture was that this breakup is universal and governed by a fixed point P∗ of the
transformation R. For a numerical study and other supporting evidence we refer to [2].

A proof for the existence of this fixed point was given in [21], using computer-assisted
methods. The proof also yields highly accurate rigorous bounds on the critical scalings.
Numerical computations carried out in connection with [23] also yield values for other
critical exponents, such as the expanding eigenvalue of DR(P∗). They are consistent with
other known data, leaving no doubt that renormalization fulfills its promise in the shearless
case.
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Remark 1. Our goal here was to start a similar renormalization analysis in the shearless
case, if only numerically. Based on numerical findings in [13,14], we expected that R has
a periodic orbit of length 6 or 12.

2.2. Shearless maps

We note that twist and shearless invariant tori can appear in the same dynamical system.
Shearless tori play an important role in plasma physics [9]. They appear to be extremely
stable, sometimes separating two seemingly chaotic regions in phase space.

A shearless analogue of Chirikov’s standard map is the standard nontwist map. Up
to a trivial conjugacy, this map is again of the form G = ΦΨΦ, with Ψ and Φ as in (2.1).
But instead of ψ(w) = w we now have ψ(w) = a − aw2, where a is an extra parameter.
The twist of G : [ xw ] 7→ [ yz ] is given by ∂y

∂w = 2a(ϕ(x)− w), so the twist condition ∂y
∂w 6= 0

is violated along the curve w = ϕ(x).

Both the standard twist map and the standard nontwist map are reversible with
respect to the involution S1 = diag(−1, 1). That is, S1GS1 = G−1. This can be seen easily
from (2.1): Both Ψ and Φ are reversible, so the product G = ΦΨΦ, being palindromic, is
reversible as well.

Reversibility has played an important role in the renormalization analysis of various
types of dynamical systems. A nontrivial task at the beginning of such an analysis is to
find a suitable orbit under R, say a fixed point or a periodic orbit. If there is evidence
that the phenomenon under investigation is exhibited in families of reversible maps, then
the restriction to reversible maps greatly simplifies the problem of finding an orbit for R.
In this case, the scaling ΛP in (2.3) should be chosen to preserve reversibility.

A distinguishing feature of the standard nontwist map G = ΦΨΦ is that the function
ψ(x) = a − ax2 that appears in (2.1) is even. As a result, Ψ commutes with the map E
defined in (2.2). Since Φ commutes with E as well, so does G. So the standard nontwist
map is reversible not only with respect to S1, but with respect to S1E as well. This second
type of reversibility is qualitatively different: S1 is orientation-reversing and has a fixed
line (x = 0), while S1E is orientation-preserving and only has a single fixed point. The
fixed point ζ◦ = [ 1/4

0 ] of S1E is known as the “indicator point” for G.
The extra parameter a plays an important role for the standard nontwist map. In

fact, the breakup of shearless golden tori is a codimension 2 phenomenon, meaning that it
is generic only in two-parameter families. A detailed bifurcation analysis is carried out in
[6,14]. In a nutshell, they determine periodic orbits with rotation number pk/qk that start
on a symmetry line like x = 0, for a close to the expected bifurcation point. Typically,
there are two values of b, or none, where such an orbit exists. If there exists two, then
varying (a, b) leads to a bifurcation point, where the two merge into a single orbit. This is
the “shearless” orbit. After the bifurcation, the orbit disappears. The resulting sequence
k 7→ (ak, bk) of bifurcation points is observed to accumulate at a critical point (a∞, b∞).
A transformation like (2.3) is discussed in [7,12,14] as a possible renormalization scheme.
Assuming that the standard nontwist family accumulates at a two-dimensional invariant
manifold under proper rescaling, the observed sequence of residues at the above-mentioned
obits suggest that R has a periodic orbit of length 12.
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Approximate values of various “universal” scaling quantities, based on measurements
on specific families (typically the standard nontwist family) are given in several papers,
including [6]. They tend to be quite imprecise. One reason is that it takes at least 12
Fibonacci-magnification steps (one step is the analogue of R) between two measurements
before they are expected to compare. Given how quickly the sequence k 7→ p12k grows,
more than one or two comparisons are not practical. And k = 2 can hardly be considered
near-asymptotic. In [14] they find asymptotic scaling about a S1-symmetry point (0, w∗)
with w∗ = −0.222621076 . . .. The comparison of scaled orbits in Figure 2.26 of [14] makes
it look very likely that the critical shearless circle is asymptotically self-similar about this
point. The x-scaling factor per magnification step seems to be close to α, and the w-scaling
factor is found to be near 0.603.

The data given in [13] are inaccurate as well. But the scope of [13] includes universal-
ity: The numerical data describe a map R on an infinite-dimensional space, and not just
orbits of a single two-parameter family.

To improve some data for the standard nontwist family, we considered computing
shearless pn/qn orbits without having to follow lengthy sequences of bifurcations. Here,
we used that, if the shearless orbit is unique, then it has to pass thorough the indicator
point ζ◦ = [ 1/4

0 ]. See also [10]. For large n, a pn/qn orbit passing through ζ◦ represents an
approximation of the shearless golden circle. So we computed these orbits, for n ranging
from 24 to 48, in increments of 3. To find the parameter values (an, bn) we started with
a guess (a, b). Then a Nelder-Mead algorithm was used to adjust (a, b) until the error
‖F pnGqnζ − ζ‖ was around 10−25. For n = 48 this took several month; but computers
are patient. After that, a Newton method was used to reduce the error to 10−150 or
less. All this was done at high precision, with up to 211 binary digits. Based on these
computations, the expected accumulation values are a∞ = 0.686049108000003860 . . . and
b∞ = 0.742493549155193278 . . .

Figure 1. shearless orbits through ζ◦ for rotation numbers p24
q24

, p36
q36

, and p48
q48

.

Figure 1 shows parts of three pn/qn orbits through the indicator point ζ◦ =
(

1
4 , 0
)
,

computed for n = 24, 36, 48. Clearly the same general pattern repeats, but the scaling
looks much less simple than what we see near (0, w∗). In particular, self-similar scaling
repeats at best after 24 steps. We determined a scaling matrix for three repeating patters
via least squares fit. The average dilation is roughly 0.609 per step. But there is also
a rotation involved: The amount of rotation over 12 steps seems to be roughly 0.386π
modulo π.
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This behavior is not what we expected, based on the approximate period 6 that was
found in [13]. Some additional evidence for a rotation is described in Subsection 3.5. Our
sequence of parameter n 7→ (an, bn) shows no discernible pattern, except that it seems to
converge; presumably to the same limit (a∞, b∞) as the (different) sequence found in [14]
via bifurcations and orbit re-connections. This raises the question of how the behavior near
the indicator point contributes to the breakup of shearless golden circles. One possibility
might be an infinite nesting of meanders. Such a nesting could involve a change in angle
between one level and the next.

2.3. Renormalization of shearless maps

The standard way of implementing renormalization for (exact) symplectic maps is by
working with generating functions. This takes care of the nonlinear constraint det(DG) =
1. Still, to get an idea of what to expect, we started with a brute force approach, using maps
onR2 whose components are represented as independent Taylor series in two variables. The
idea was to iterate the transformation (2.3) a few times, starting with the standard nontwist
pair (F◦, G). This attempt failed rather badly, despite the use of high Taylor degrees and
high precision arithmetic. The explicit translations by −1 and α are unmanageably large.
A milder version of this problem appears when working with generating functions. In this
case, it helps to implement R3 directly.

So it was back to generating functions. For twist maps G[ xw ] 7→ [ yz ], the generating
function g = g(x, y) has been used successfully in [3,15]. But for shearless maps such as the
standard nontwist map, only g = g(x, z) or g = g(w, y) are potentially usable. We have
also considered using the so-called primitive function p = p(x,w), but without success.
The issue with using one of g = g(x, z) or g = g(w, y) for G is that G−1 involves the
other. So reversibility is a nontrivial condition, and not just a symmetry of the generating
function. One can also try to use both g = g(x, z) and g = g(w, y), with one determined
from the other by reversibility. But then there is no guarantee that, after renormalization,
both describe the same map. Other seemingly useful ideas turned out to have serious
issues as well.

It seemed time to abandon for now the transformation (2.3) for shearless maps. What
made this decision particularly hard was our impression that the reversibility of the stan-
dard nontwist map G with respect to S1E should play an important role. After a transla-
tion by −ζ◦ that puts the indicator point at the origin, the standard nontwist map is still
of the form (2.1), but with ϕ(x) = b

2 cos(2πx) in place of ϕ(x) = b
2 sin(2πx). Furthermore,

the translated standard nontwist map is reversible with respect to −I. So any linear scaling
preserves reversibility, including rotations. Unfortunately, we did not find a good way to
exploit reversibility with respect to −I.

3. Renormalizing Hamiltonians
An alternative to renormalizing symplectic maps is to renormalize Hamiltonians. Formally,
the two procedures can be related [11]. In any case, Hamiltonian flows yield symplectic
first-return maps to properly chosen sections.

Consider a flow on Ω = T2 × R2 generated by a Hamiltonian H : Ω → R. Using
angular variables q ∈ T2, and conjugate action variables p ∈ R2 defined near the origin,
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the flow generated by H is given by q̇ = ∇pH and ṗ = −∇qH. A function G on Ω evolves
via the Poisson bracket

Ġ = {G,H} def
= (∇qG) · ∇pH − (∇pG) · ∇pH . (3.1)

Recall that the renormalization transformation (2.3) for pairs consists of two parts:
a composition P 7→ P̂ , and a re-normalization P̂ 7→ P̃ . The powers in F̂ = F 0G1 and
Ĝ = F 1Gc are precisely the entries of the matrix T given below. In abbreviated notation,
the composition part is P̂ = PT . For Hamiltonians, the composition part is of the form

Ĥ = H ◦ T , T (q, p) =
(
Tq, T−1p

)
, T =

[
0 1
1 c

]
. (3.2)

So the Hamiltonian analogue of the fixed point equation PT ' P is the fixed point equation
H ◦ T ' H. Both equations seem “natural” and of general interest.

To make the equation H ◦ T ' H more concrete, we need to consider dynamic equiv-
alences between Hamiltonians. One of them is a momentum scaling Σµ defined by

(ΣµH)(q, p) = µ−1H(q, µp) , µ 6= 0 . (3.3)

It preserves the Poisson bracket (3.1) in the sense that {ΣµG,ΣµH} = Σµ{G,H}. A much
larger class of equivalences are changes of variables H 7→ H ◦ U with U symplectic and
homotopic to the identity. They preserve the Poisson bracket as well. A third type of
equivalence is a time scaling H 7→ τH, which “only” preserves orbits. Combining the
composition H 7→ Ĥ with a re-normalization Ĥ → H̃ yields a transformation

R(H) = H̃ , H̃ = H ′ ◦ UH′ , H ′ = τΣµĤ , Ĥ = H ◦ T . (3.4)

Here τ and µ can depend on H. Our choices will be described below.
For completeness, let us mention that R admits a family of trivial orbits. They can

be used to prove KAM-type theorems via renormalization [8,17]. In a perturbative setting,
R can be extended from Hamiltonians to more general vector fields [18,20].

In what follows, we restrict to c = 1 in (3.2). This singles out the inverse golden mean
α as rotation number. The eigenvalues of T are α−1 and −α, with eigenvectors ω and Ω,
respectively, where

T =

[
0 1
1 1

]
, ω =

[
α
1

]
, Ω =

[
−1
α

]
. (3.5)

To further simplify the analysis, we restrict to Hamiltonians of the form

H(q, p) = ω · p+ h
(
q,Ω · p

)
, h(q, z) =

∑
ν,k

hν,k cos(ν · q)zk , (3.6)

where the sum ranges over frequencies ν ∈ Z2 and powers k ∈ N. In fact, due to parity,
we can restrict to ν2 ≥ 0. This ansatz was used already in [5]. Pick ω′ ∈ R2 parallel to ω,
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satisfying ω′ · ω = 1. Then the variable ω′ · q is in essence time, since it evolves linearly
with velocity 1.

The choice of having the term ω · p in (3.6) with a fixed coefficient 1 is part of a nor-
malization condition. For Hamiltonians of the form (3.6), this normalization is preserved
under R if we choose τ = α−1. So this choice will be fixed from now on. In the shearless
case, we require that h include a nonzero term h0,3z

3. Then the scaling µ in the definition
(3.4) is determined by the normalization condition h0,3 = 1

2 .
This leaves us with a choice for the canonical change of variables UH′ . This part is

both nontrivial and important. To be more specific, let us try to define R on a space A of
analytic Hamiltonians (3.6) with finite norm

‖h‖ =
∑
ν,k

|hν,k|eρ0|ω·ν| cosh(ρ1Ω · ν)ρk2 , (3.7)

with ρ0, ρ1, ρ2 > 0 fixed. (Later on, we also consider the choice ρ0 = 0.) To simplify the
description, let us include in A constant multiples of the linear Hamiltonian (q, p) 7→ ω · p.
If H belongs to A then H is analytic in a strip | Imω′ · q| < ρ0. But in general, H ′ =
α−1Σµ(H ◦ T ) is analytic only in the narrower strip | Imω′ · q| < αρ0.

This can regarded as a normalization issue: We should restrict R to a subspace
Ar of Hamiltonians H that are “normalized”, in the sense that H ′ = α−1Σµ(H ◦ T )
belongs to A, whenever H ∈ Ar. Then the domain of R can be defined as the set of all
normalized Hamiltonians for which there exists a canonical change of variables UH′ such
that R(H) = H ′◦UH′ is again normalized. Of course we want this domain to be nontrivial.

This highlights an important difference between the renormalization of maps and
flows. For maps, the re-normalization step P̂ 7→ P̃ can be chosen within a finite-parameter
group of similarity transformations. But for flows, this group is infinite dimensional. One
source of this difference can be seen if we associate to a flow its first-return map to some
transversal section. All variations in the first-return time drop out in this process. They
corresponds roughly to the nonresonant modes described in Section 3.2.

Remark 2. The above-mentioned needs can be met in a perturbative setting [8,17], as
well as for near-critical twist Hamiltonians [15]. But the construction of UH′ involves a
Nash-Moser type iteration. This is what makes the Hamiltonian approach quite involved.

To be more specific, the canonical transformation UH′ will be obtained as a compo-
sition of infinitely many exact symplectic coordinates changes U : (q, p) 7→ (q′, p′). When
close to the identity, such a change of coordinates can be defined implicitly by a generating
function φ = φ(q, p′), via q′ = q+∇pφ(q, p′) and p′ = p−∇qφ(q, p′). Here ∇q and ∇p denote
the gradients with respect to the first and second argument, respectively. It is convenient
to work with ψ = ∂xφ instead of φ. Here x = ω′ · q and ∂x = ω ·∇q. We restrict to changes
of coordinates where φ and ψ depend on p′ only via z′ = ω · p′. Let Ω′ ∈ R2 be parallel
to Ω, satisfying Ω′ · Ω = 1. Define y = Ω′ · q and ∂y = Ω · ∇q, as well as z = Ω · p and
∂z = Ω′ · ∇p. Then the composition of H with U = Uψ is given by

(H ◦ Uψ)(q, p) = H(q′, p′) = ω · p′ + h(q′, z′)

= ω · p− ψ(q, p′) + h
(
q +Dzψ(q, z′)Ω, z −Dyψ(q, z′)

)
,

(3.8)
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where Dy = ∂−1
x ∂y and Dz = ∂−1

x ∂z.

In the remaining part of this Section, we restrict to the shearless case.

3.1. Shearless Hamiltonians

The formulation (3.8) in terms of ψ = ∂xφ is particularly useful when symmetries are
involved. To give an example that is relevant here, let θ be one of the three vectors in
Θ = {(1, 0), (0, 1), (1, 1)}. A Hamiltonian H with Fourier-Taylor coefficients hν,k is said to
be θ-reversible if hν,k = 0 unless θ · ν + k is odd. If both H and ψ is θ-reversible, then so
is H ◦ Uψ. We will come back to this property below.

The renormalization of near-critical shearless Hamiltonians was first considered in [13].
See also [16]. To simplify notation, let use introduce the coordinate functions q(q, p) = q
and p(q, p) = p. A trivial orbit for R is given by the pair of Hamiltonians

K± = ω · p± 1
2z

3 , z = Ω · p , (3.9)

in the sense that R(K±) = K∓. This holds for the choice µ = α2 and U = I. The coefficient
± 1

2 of z3 represents an arbitrary normalization. K± has an invariant torus T2 × {p} for
each p. The torus at p = 0 is shearless: it has a rotation number α that is maximal for
H− and minimal for H+.

A nontrivial approximate period 12 for R was found in [13]. We describe here a
modified version, where all Hamiltonians are even in the torus variable q. Each Hamiltonian
H on this orbit is Θ-reversible, meaning θ-reversible for some θ ∈ Θ. Notice that, if H is
θ-reversible, then H ′ = α−1Σµ(H ◦ T ) is θ′-reversible, with θ′ = T−1θ. So the change of
coordinates H ′ 7→ H ′ ◦ UH′ that is part of R, is defined in terms of generating functions ψ
that are θ′-reversible as well. This way, R maps θ-reversible Hamiltonians to θ′-reversible
Hamiltonians, with θ′ = T−1θ. Notice that T−1 permutes the set Θ modulo 2. So any
periodic orbit for R that consists of Θ-reversible Hamiltonians must have a length that is
a multiple of 6.

A map G is said to be reversible with respect to an involution J , if JGJ = G−1.
The analogue property for a Hamiltonian is much simpler, namely HJ = −H. This is
our main reason for considering flows now instead of maps. Setting Jθ = VθS2, where
Vθ = (q + πθ,p) and S2 = diag(1,−1), reversibility of H with respect to Jθ agrees with
θ-reversibility.

Another interesting numerical observation in [13] was that the Hamiltonians on the
approximate orbit of length 12 satisfy R6(H) = H◦Vθ′ , with θ′ = T−1θ, if H is θ-reversible.
So the approximate period 12 is in effect an approximate period 6. Without this symmetry,
or without reversibility, every period 12 for R would yield three distinct periods 12, via
translations Vθ with θ ∈ Θ. Here, we are using that R6 commutes with each translation
Vθ. (A related fact is that T 6 is congruent to the 2× 2 identity matrix modulo 2.) Similar
uniqueness-promoting features can be found in other renormalization schemes.

Based on this observation, our goal was to find a fixed point of the transformation R6

defined (after fixing some θ′ ∈ Θ) by

R6(H) = R6(H) ◦ Vθ′ . (3.10)



Renormalization of shearless tori 11

3.2. Resonant normalization

Using the Fourier-Taylor representation (3.6), we define a projection Pr on A by setting

Prh =
∑
ν,k

%ν,k hν,k cos(ν · q)zk , h ∈ A , (3.11)

where %ν,k = 1 if max
{
σ|Ω · ν| , κk

}
≥ |ω · ν|, and %ν,k = 0 otherwise. Here σ and κ

are fixed positive constants. The subspace Ar = PrA will be referred to as the “resonant”
subspace ofA. The “nonresonant” subspace is defined asAn = PnA via the complementary
projection Pn = I− Pr.

Recall from (3.4) that R(H) = H ′ ◦ UH′ , with H ′ = α−1Σµ(H ◦ T ). Assuming that
0 < µ < α, a simple computation shows that the map H 7→ H ′, when restricted to the
resonant subspace, is bounded and analyticity improving. So the domain of R is in essence
the set of all resonant Hamiltonians H, with the property that H ′ ◦ UH′ is again resonant,
for some canonical change of variables UH′ .

In reference [8] and later work, the change of variables UH′ is constructed iteratively:
If Hj is resonant up to an error of size ε, then we can determine a generating function ψj
of order ε, such that

Hj+1
def
= Hj ◦ Uψj (3.12)

is resonant up to an error of order roughly ε2. This is essentially Newton’s method. If
this works, starting with H0 = H ′, then UH′ = Uψ0

◦ Uψ1
◦ Uψ2

◦ . . . is a solution to our
normalization problem. Otherwise, if H ′ is too far from being resonant, one can try to
determine an initial ψ0 by nonperturbative means, such that H1 = H ′ ◦Uψ0 is sufficiently
close to being resonant. Then the problem for j ≥ 1 is again perturbative. Fortunately,
this worked in [15] for near-critical twist Hamiltonians.

In summary, R(H) is obtained from H by first computing H0 = α−1(ΣµH) ◦ T and
then eliminating the nonresonant part of H0 by a sequence of coordinate changes (3.12).

Concerning the perturbative steps, we see from (3.8) that H ◦ Uψ is resonant to first
order precisely if

Pn[I + D(h)]ψ = Pnh , D(h)
def
= [∂zh]Dy − [∂yh]Dz . (3.13)

Given h, this is a linear equation for ψ. Restricting to ψ ∈ An, we can take advantage of
the fact that Dy and Dz are continuous on An, with operator norms bounded by σ−1 and
κ−1ρ−1

2 . Still, if ∂zh or ∂yh is not close to zero in A, then there is no guarantee that the
equation (3.13) can be solved.

3.3. Initial numerical experiments

The transformation R has been implemented numerically. A function h ∈ A is represented
as a cosine series

∑
ν hν cos(ν · q) with coefficients hν that are Taylor series

∑
k hν,kz

k.
Sine series are represented analogously. At the precision that we refer to as L-W-D, the
frequencies ν ∈ Z2 are restricted to a lattice “parallelogram” of length roughly 2L in the
direction ω and width roughly 2W in the direction Ω. A function d on this parallelogram
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defines the projection Pn by specifying the maximum value d(ν) of k for which %ν,k = 1 in
(3.11). For the basic operations like sums, products, derivatives, compositions we use in
essence the programs developed in [15] for a computer-assisted proof; but here we simply
truncate series instead of carrying out error estimates.

As a first experiment, we tried to renormalize the Hamiltonians adapted from [13].
The step H 7→ H0 = α−1Σµ(H ◦T ) is trivial. But H0 is far from resonant, so the approach
sketched after (3.12) is not even close to being applicable. Our first solution to this problem
was to eliminate only a small fraction ε0 of PnH0, by using Uε0ψ0 instead of Uψ0 . Here ψ0

is determined as described above. Presumably, the nonresonant part of H1 = H0 ◦Uε0ψ0 is
smaller than that of H0. Then the process can be repeated by eliminating only a fraction
εj of PnHj via Uεjψj for j = 1, 2, . . .. Extensive experimentation and fine-tuning eventually
resulted in a successful numerical computation of R(H).

The main issue was to invert the operator I +PnD(h)Pn that appears in (3.13), on the
nonresonant subspace An. We had already increased σ and κ way beyond the values used
in [13], to 1.625 and 2.250, respectively. Still the spectral radius of PnD(h)Pn was often
larger than 1. This does not necessarily mean that I + PnD(h)Pn cannot be inverted. But
nothing like this had happened in the renormalization analysis of twist Hamiltonians. It
may not happen here either, once we are close to a periodic orbit of R. But there is no
way of knowing, if we can barely compute Rn(H) for n = 1.

Some effort was spent analyzing other two-parameter families of Hamiltonians. For
simple Hamiltonians, critical parameter values were found by numerically integrating the
orbit passing through the indicator point and searching for a critical golden torus. This
strategy can be useful for finding an attracting set for R. But the non-invertibility problem
for I + PnD(h)Pn did not improve and remained the main difficulty.

3.4. A normalization flow

An observation concerning the first experiment described above is that the effort of solving
(3.13) exactly seems largely wasted, if only εψ is used afterwards. So maybe there is no
need to invert the operator I + PnD(h)Pn exactly. Also, an evolution via a large number
of steps Uεjψj close to the identity, starts to resemble a time-dependent flow.

An infinitesimal change of coordinates with ψdt yields a change ḣdt with

ḣ = −[I + D(h)]ψ . (3.14)

This describes an evolution Ḣ = {φ,H} of H under the flow given by a time-dependent
Hamiltonian φ = ∂−1

x ψ. In some way, we are trying to minimize a function like

EH(Ψ) = 1
2‖Pn(H ◦ UΨ)‖2 (3.15)

by a procedure that resembles a gradient flow. Assume that the norm in (3.15) is given
by an inner product, and that the projection Pn is orthogonal. Then the gradient flow for
EH at Ψ = 0 yields a rate of change Ψ̇ = ψ, with

ψ = τ
[
I + D(h)∗

]
Pnh . (3.16)
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Here τ > 0 is a suitable constant that defines a time scale. Concerning possible improve-
ments, we note that the scalar τ could be replaced by a suitable positive operator.

A crucial aspect of the flow defined via (3.14) and (3.16) is that does not involve
inverting any operator! After implementing this “normalization flow” numerically, the
logical next step was to try finding a point near the stable manifold of the expected
attractor for R. We started with a two-parameter family of Hamiltonians Ha,x = H0,0 +
aH2 + xH1 and tried to determine the values of (a, x) for which n 7→ Rn(Ha,x) neither
diverges nor approaches a trivial orbit, after some controllable number of steps. This was
repeated many times, using R6(Ha,x) as a new starting point H0,0 for the next family
Ha,x = H0,0 + aH2 + xH1. The hope was that the resulting quasi-orbit ends up being
shadowed by a true orbit. The Hamiltonians H1 and H2 were rough guesses for the two
expanding eigenvectors of DR12 at a fixed point. The values of a were chosen by hand,
while for a fixed value of a, the parameter x was adjusted by a golden section algorithm
that minimizes a suitable penalty function. The penalty included the inverse number of
successful iterations, the norm of the nonresonant part PnH after each normalization step,
and various measures for the amount of effort that was involved.

As a result of these changes and extensive iteration, we finally found an approximate
period 2 for the transformation R6 given by (3.10). In fact, both points on that period
were rough fixed points of R6. Strangely, DR6(H) had an eigenvalue “near −1” in a sense
described below. Fortunately, the eigenvalue was not near 1. At some later point, this
helped us find a numerical fixed point of R6 via a Newton method. Getting to this point
was not easy, but the result was a Hamiltonian H0 that differed from R6(H0) by an an
error 10−12 in norm. Of course this is purely numerical, and for a degree-truncated version
of R6. Still, small numerical errors in such computations indicate that the approach is
basically sound.

The above-mentioned Hamiltonian H0 is θ-reversible with θ = (0, 1). Its 16 leading
coefficients are shown in Table 1. Additional data can be found in [25].

ν1 ν2 k hν,k
2 3 2 −2.96211204830463497E + 00

0 1 0 8.70097437356090711E − 01

0 0 3 5.00000000000000000E − 01

1 1 2 −2.97870505130652936E − 01

3 4 3 −2.58446973495392146E − 01

0 1 2 2.36034099941285126E − 01

1 3 2 1.20306399275013194E − 01

0 0 1 −8.92647025112508078E − 02

2 4 3 −8.02494834569980432E − 02

0 2 1 −7.41203812831851134E − 02

2 2 3 6.43466790625083266E − 02

2 1 0 6.12173500512698560E − 02

1 0 1 −5.76400738354366048E − 02

1 2 3 4.81657160846837909E − 02

2 3 4 −3.10186284729477973E − 02

1 1 4 2.20086515859728277E − 02
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Table 1. Leading 16 coefficients of an approximate fixed point H0 of R6.

Numerically, the two largest eigenvalues λ1 and λ2 for DR6(H0) satisfy λ
1/6
1 ≈ 2.6184

and λ
1/6
2 ≈ 1.6106. For the average scaling µ̄ = (µ0µ1 · · ·µ5)1/6 per renormalization step

we find µ̄ ≈ 0.3695. All these values agree quite nicely with earlier estimates based on
bifurcation sequences for the standard nontwist map; see [9,14] and references therein.
These computations were carried out at degrees 11-5-9.

3.5. Numerical Improvements

Unfortunately, DR6(H0) has another non-contracting eigenvalue λ3. It is negative, with
|λ3|1/6 ≈ 1.0680. Our guess was that we overlooked some symmetry, and that λ3 ap-
proximates an eigenvalue −1 for the un-truncated system. But we found no good reason
why such an eigenvalue should exist. It seemed time to try finding an approximate fixed
point of R6 at higher degrees. This was done using a continuous homotopy between the
restriction of R to degrees 11-5-9 and the restriction of R to degrees 13-6-9. But all
attempts kept failing at about 2/3 into the homotopy. Returning to 11-5-9, our next goal
was to improve on the choice of the generating function ψ.

The plain gradient flow may be too crude. Consider the projections of (3.14) and
(3.16) onto the nonresonant subspace An. The projected equation (3.14) is Aψ = −Pnḣ,
with A = I + PnD(h)Pn. And (3.16) is ψ = B0Pnh, with B0 = τA∗. We note that, for
matrices, B0 = τA∗ is a standard choice for an approximate inverse of A. Better inverses
B1, B2, . . . can be obtained via the recursion Bk+1 = Bk(2I − Pk) with Pk = ABk. This
is in fact Newton’s method for finding the inverse of a matrix. For details see [1]. Under
a simple condition on τ , the sequence k 7→ Bk converges to the inverse of A, if it exists.
Otherwise, the sequence k 7→ Pk converges to the orthogonal projection onto the range of
A. In either case, nothing diverges, and useful information is being gained.

Replacing B0 in (3.16) by Bk yields Pnḣ = −PkPnh. This represents a safe and more
stable alternative to our original attempt at inverting A. We have tested it numerically for
k = 1, 2, 3. Somewhat unexpectedly, the results were similar to those obtained for k = 0.
(As it turned out later, there was an error in our implementation of Bk for k > 0.)

In addition to the above, we also implemented a number of improvements to our
numerical integration of (3.14). This included keeping the change of variables uniformly
small. Less emphasis was put on having Pnh exactly zero at the end.

In this context, we should mention that we used ρ0 = 0 in the norm (3.7) that
defines the space A. This makes the scaling H 7→ H ′ = α−1Σµ(H ◦ T ) nonsingular on
A. It does not make coordinate changes obsolete, but it eliminates the need to normalize
Pn(H ′ ◦ UH′) = 0 exactly. This is somewhat at odds with the concept of “normalization”.
We will comment on this below.

To summarize our latest findings: We saw no more periodic orbits after the above-
mentioned improvements. The attractor still behaves like a near-period 12, but the pre-
vious eigenvalues λ2 and λ3 have turned into an expanding complex-conjugate pair. This
was unexpected, but it seems consistent with the observation of asymptotic rotation for
the nontwist standard map near the indicator point.
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4. Concluding remarks

It seems possible that the renormalization transformation (2.3) for commuting maps has
indeed a period 12, if one scales about a point w = w∗ on the symmetry line x = 0. Scaling
about the indicator point ζ◦ =

(
1
2 , 0
)

seems more interesting, since it focuses on a feature
that is specific to the shearless case. But any asymptotic scaling about his point cannot be
too simple. Based on our computation of shearless pn/qn orbits, periodicity with a period
shorter than 24 seems unlikely in this case. And scaling appears to involve a rotation.
Independently of all this, our main reason for not pursuing this approach was that we did
not find a satisfactory representation of R with reversible pairs.

One may wonder if the different asymptotics found near (0, w∗) and near ζ◦ are com-
patible with the general picture of renormalization. We believe that they are, since the
associated renormalization transformations zoom in on different parts of the orbit. Some-
thing analogous occurs in the renormalization of skew-product maps: a period 3 and a
period 6, both describing the same system [24]. The situation is less clear for the renor-
malization of Hamiltonians, since it is more “global”. No part of T2 is being scaled off
to infinity while one zooms in on another part. It is unclear what kind of R-orbit for
Hamiltonians could describe the two distinct behaviors that are observed for maps near
(0, w∗) and near ζ◦.

In hindsight, our expectation that the transformation (3.4) for Hamiltonians should
have an orbit of period 6 or 12 seems unrealistic. However, it has led to the development of
a more robust re-normalization procedure: a flow on a space of Hamiltonians that converts
a given Hamiltonian to a resonant normal form. What is puzzling is that the breakup of
shearless tori in Hamiltonian flows no longer looks like a codimension 2 phenomenon. We
have no good explanation for this.

One may wonder why this was not seen earlier in [13]. A possible reason may be
that skipped normalization steps resulted in some frequencies becoming too large and
then getting eliminated simply by truncation. Truncation can turn a potentially relevant
eigenvalue into a contracting eigenvalue.

Our normalization flow is based on a notion of “resonant” that is somewhat ad-hoc.
(Less so than it may seem, as it works fine in the twist setting.) It seems worth trying to
find/use a normalization that is more intrinsic.

Numerically, significant further progress may require significantly faster computer
hardware. This certainly applies to the renormalization of Hamiltonians. For commuting
pairs, what could change the situation is a suitable representation that takes advantage of
all symmetries and constraints, including reversibility.
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