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Abstract. We consider the equation −∆u = wu3 on a square domain in R
2, with Dirichlet

boundary conditions, where w is a given positive function that is invariant under all (Euclidean)
symmetries of the square. This equation is shown to have a solution u, with Morse index 2,
that is neither symmetric nor antisymmetric with respect to any nontrivial symmetry of the
square. Part of our proof is computer-assisted. An analogous result is proved for index 1.

1. Introduction

It is a well known phenomenon that symmetric equations can have non-symmetric solu-
tions. However, “simple” solutions often tend to be symmetric, even in cases where the
notion of simplicity is not manifestly related to symmetry. A case in point is the boundary
value problem

−∆u(z) = f(z, u(z)), ∀z ∈ Ω , u(z) = 0, ∀z ∈ ∂Ω , (1.1)

on a bounded open domain Ω ⊂ R
n that is symmetric with respect to some codimension

1 hyperplane. If Ω is convex in the direction orthogonal to this plane, and if some mono-
tonicity properties are satisfied, which include the case where f does not depend explicitly
on z, then any positive solution u of the equation (1.1) is necessarily symmetric as well.
This is a classical result by Gidas, Ni, and Nirenberg [1]. Subsequent extensions include,
among other things, classes of solutions that are not necessarily positive [5,7,9,11,12].

We consider the same equation (1.1) but focus on a different class of “simple” solutions,
proposed first in [5], namely solutions with fixed Morse index. Recall that solutions of
equation (1.1) are critical points of the functional J on H1

0 (Ω),

J(u) =

∫

Ω

[

1
2

∣

∣∇u(z)
∣

∣

2
− F (z, u(z))

]

d2z , ∂uF = f , (1.2)

assuming that F satisfies some growth and regularity conditions; and the Morse index of
a critical point u is the number of descending directions of J at u.

The question considered in this paper is motivated by the symmetry results in [11],
which cover domains (balls and annuli) and nonlinearities f that are radially symmetric.
We refer to [11] for the precise assumptions and results. Roughly speaking, ∂uf is assumed
to be convex in u, but f need not be monotone in |z|. Then any solution u of Morse index
≤ n has an axial symmetry. Given this result, it is natural to ask whether there is an
analogue for domains that only have discrete symmetries, such as regular polytopes.

We will give a partial answer by constructing counterexamples with index 1 and 2, in
n = 2 dimensions. We start with the easier case: a non-symmetric index-1 solution. Let
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Ω be a bounded Lipschitz domain in R
2 with only finitely many (Euclidean) symmetries.

A function u on Ω is said to have symmetry σ if u ◦ σ = u.

Theorem 1.1. There exists a C∞ function w ≥ 0 on Ω, possessing all symmetries of Ω,
such that (1.1) with f = wu3 admits a positive solution u ∈ H1

0 (Ω), with index 1, that has
no nontrivial symmetry of Ω.

This theorem can be proved by standard variational methods; see Section 2.

In what follows, the domain Ω is fixed to be the square Ω = (0, π)2. Our main goal is
to prove an analogous result for index 2, using computer-assisted methods. Such a result
seems currently outside the scope of other known methods. Similar techniques should
apply to a variety of other semilinear elliptic problems, as long as the domain and other
quantities involved take a relatively simple form.

When considering solutions u with multiple extrema, the natural question is whether
|u| is symmetric; u itself may be antisymmetric with respect to some of the reflections
that leave Ω invariant. There is numerical evidence that this is indeed the case for low-
index solutions, at least for some standard nonlinearities that do not depend explicitly on
the variable z [2,3,4,6,8]. But it is not clear whether this holds more generally. While
symmetry results have been proved in many situations, antisymmetry results are available
only in some special cases [10], as far as we know.

Our analysis in the index-2 case uses a nonlinearity f = wCu
3, with

wC(x, y) =C1

(

41
32

cos(x) cos(y)
[

cos(2y)− cos(2x)
]

)2

+ (1− C1)

+ C2

[

sin(x) sin(y)
]8

,

(1.3)

and 0 ≤ Ck ≤ 1. These functions wC possess all the symmetries of the square Ω, and they
are nonnegative.

Theorem 1.2. Let f = wCu
3 with C1 = 97

128
and C2 = 145

256
. Then the equation (1.1)

admits a real analytic solution, that has Morse index 2 and is neither symmetric nor
antisymmetric with respect to any nontrivial symmetry of the square.

Our proof of this theorem is computer-assisted. To be more precise, we first refor-
mulate (1.1) as a fixed point problem G(u) = u and show that the Morse index of u is
related to the spectrum of the derivative DG(u). This is done in Section 3. In Section 4,
we reduce the proof of Theorem 1.2 to a set of sufficient conditions on G and DG, near an
approximate fixed point u0 . Section 5 describes how these conditions (inequalities) can
be, and have been, verified with the aid of a computer.

The computation of the approximate solution u0 is described in Section 6. The graphs
of u0 and of wC are shown in Figure 1.
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Figure 1. Weight wC and solution u, for C1 = 97

128
and C2 = 145

256
.

2. Proof of Theorem 1.1

To simplify notation, we writeH1
0 = H1

0 (Ω) and Lp = Lp(Ω). Given a nontrivial continuous
function w ≥ 0 on Ω, the functional (1.2) can be written as

J(u) =
1

2
‖u‖2

H
− F (u) , ‖u‖2

H
=

∫

Ω

|∇u|2 , F (u) =
1

4

∫

Ω

wu4 .

We start by maximizing F on the unit sphere S = {u ∈ H1
0 : ‖u‖H = 1}. Notice that F is

well defined and continuous on L4. Since S is a compact subset of L4, we can find a sequence
(un) in S, that converges strongly in L4 and weakly in H1

0 , such that limn F (un) = supS F .
The limit u cannot be zero, since supS F > 0. Furthermore, ‖u‖ ≤ 1. In fact, we must
have ‖u‖H = 1, otherwise ‖u‖−1

H
u ∈ S satisfies F

(

‖u‖−1
H

u
)

= ‖u‖−4
H

F (u) > F (u).
Let u ∈ S be any point where maxS F is achieved. Then v = τu is a critical point of J

for some Lagrange multiplier τ > 0. Thus −∆v = wv3, implying e.g. that u is continuous.
We may assume that u ≥ 0, since F (|u|) ≥ F (u), and |u| ∈ S. The latter follows from the
fact that

∣

∣∇|u|
∣

∣ = |∇u| a.e. [14, Theorem 6.17]. Given that the function u is continuous
and vanishes on ∂Ω, it has a maximum at some point z1 ∈ Ω. Since u is harmonic outside
the support D of w, we must have z1 ∈ D, and u(z) < u(z1) for all z ∈ Ω \D.

Next, we pick a particular weight w. Let σ1, σ2, . . . , σn be the symmetries of Ω, with
σ1 the identity. We may assume that n ≥ 2. Let w1 be a nontrivial nonnegative C∞

function on Ω, such that the functions wj = w1 ◦ σj have mutually disjoint supports
Dj = supp(wj), where 1 ≤ j ≤ n. Define w = w1 + w2 + . . .+ wn .

Assume for contradiction that u◦σ = u for some nontrivial symmetry σ of Ω. Without
loss of generality, we may assume that z1 ∈ D1 and σ = σ2 . Then u takes its maximum
value M at the distinct points z1 ∈ D1 and z2 = σ(z1) ∈ D2 .

The goal is to modify u near z1 and z2 in such a way that F increases, while the
norm stays the same. To this end, choose c < M such that B = {z ∈ Ω : u(z) > c}



4 GIANNI ARIOLI and HANS KOCH

is disconnected, with one connected component B1 containing z1 , and another connected
component B2 containing z2 . Then we cut u at level c in B1 and add in B2 a symmetric
copy of the cut-out piece. More specifically, let u′ = u − v1 + v2 , where vj(z) = u(z) − c
for all z ∈ Bj , and vj(z) = 0 for all z 6∈ Bj . Using again [14, Theorem 6.17], together
with the fact that v2 = v1 ◦ σ has the same norm as v1 , we obtain

‖u′‖H = ‖u0 + 2v2‖H = ‖u0‖H + 2‖v2‖H

= ‖u0‖H + ‖v1‖H + ‖v2‖H = ‖u0 + v1 + v2‖H = ‖u‖H = 1,
(2.1)

where u0 = u− v1 − v2 . Thus, u
′ belongs to S. And F (u′) > F (u), since

[

u(z)− v1(z)
]4

+
[

u(σ(z)) + v1(σ(z))
]4

>
[

u(z)
]4

+
[

u(σ(z))
]4

, (2.2)

for all z ∈ B1 . This contradicts the fact that F (u) = maxS F . Thus, u cannot have a
nontrivial symmetry of Ω.

Consider now the function J : R× S → R defined by J (t, v) = J(tv) = 1
2
t2 − t4F (v).

When restricted to R×{u}, it has a maximum at some value t = τ > 0. And the restriction
of J to {τ} × S has a minimum at (τ, u). Consequently, τu is a critical point of J , with
Morse index 1. This completes the proof of Theorem 1.1.

The remaining part of this paper is devoted to the proof of Theorem 1.2.

3. The fixed point equation and Morse index

Solutions of the equation (1.1) can be obtained as fixed points of the map G,

G(u) = (−∆)−1f(. , u) . (3.1)

In this section we relate the Morse index of a solution u to the spectral properties of the
derivative of G at u. For simplicity, we assume that f(z, u) is a polynomial in u with
coefficients in L∞(Ω). Then the functional (1.2) is of class C∞ on H1

0 (Ω), and its second
derivative is given by the quadratic form

Qu(v) =

∫

Ω

(

|∇v|2 −Wuv
2
)

, (3.2)

where Wu(z) = (∂uf)(z, u(z)). The Morse index of u is the number of negative directions
of Qu . The derivative of G at u is given by

DG(u)v = (−∆)−1(Wuv) . (3.3)

Define vm(x) = sin(mx) for positive integers m. The functions vm × vn are the
eigenfunctions of the Dirichlet Laplacean on Ω, and they constitute an orthogonal basis
for H1

0 = H1
0 (Ω), with the standard inner product on this space (see below). Thus, every

function h in H1
0 has a convergent sine series expansion

h =
∑

m,n∈K

hm,n vm× vn , (3.4)
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where K is the set of all positive integers. Modulo a constant factor, the standard inner
product on H1

0 is given by

〈g, h〉H
def
= π−2

∫

Ω

(

∇g
)

(z) ·
(

∇h
)

(z) d2z =
∑

m,n∈K

(

m2 + n2
)

gm,nhm,n . (3.5)

And the inverse Dirichlet Laplacean takes the following simple form

−∆−1h =
∑

m,n∈K

(

m2 + n2
)−1

hm,n vm× vn . (3.6)

Proposition 3.1. Assume that Wu is of class C1. Then DG(u) is a compact positive
self-adjoint operator on H1

0 (Ω). Its eigenvalues are strictly positive, if Wu > 0 almost
everywhere on Ω. If u solves equation (1.1), then the Morse index of u agrees with the
number of eigenvalues of DG(u) that are larger than 1.

Proof. The compactness of DG(u) follows from the fact that −∆−1 is compact and
h 7→ Wuh bounded. The identity

〈g,DG(u)h〉H = π−2

∫

Ω

g(z)Wu(z)h(z) d
2z (3.7)

shows that DG(u) is self-adjoint and positive. Furthermore, if Wu > 0 almost everywhere,
then 〈h,DG(u)h〉H is positive, unless h = 0. Denote by λ1 ≥ λ2 ≥ . . . ≥ 0 the eigenvalues
of DG(u). The corresponding eigenvectors u1, u2, . . . can be chosen to be an orthonormal
basis for H1

0 . Then

Qu(v) =
〈

v, [I−DG(u)]v
〉

H
=

∑

n

(1− λn)
∣

∣〈v, un〉H
∣

∣

2
. (3.8)

This shows that the number of negative directions for Qu agrees with the number of
eigenvectors un for which 1− λn < 0. QED

Our aim is to solve the fixed point equation G(u) = u on a space Ao that is much
smaller than H1

0 . The following proposition will be used to recover properties of DG(u) :
H1

0 → H1
0 from properties of DG(u) : Ao → Ao.

Proposition 3.2. Let H be a Hilbert space. Let X be a Banach space that is continuously
and densely embedded in H. Let L be a self-adjoint bounded linear operator on H, that
leaves X invariant and defines a compact linear operator LX on X. Then every eigenvector
of L for a nonzero eigenvalue belongs to X.

Proof. Let λ be a nonzero eigenvalue of L. Denote by P the spectral projection for LX ,
associated with all eigenvalues of modulus ≥ |λ|. Since L is self-adjoint and P has finite
rank, P defines an orthogonal projection on H that commutes with L.
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Consider the self-adjoint operator T = L(I− P) on H. Assume for contradiction that
T has an eigenvalue λ. Let y be a normalized eigenvector for this eigenvalue. Pick x ∈ X
such that 〈x, y〉H = a > 0. Then ‖Tnx‖H ≥ a|λ|n for all n. This, together with the
embedding inequality ‖.‖H ≤ C‖.‖X on X, implies that the operator LX(I− P) on X has
a spectral radius ≥ |λ|. This is impossible by the definition of P. Thus, every eigenvector
of L with eigenvalue λ belongs to PH ⊂ X. QED

Before defining the space Ao mentioned earlier, we note that the sine series (3.4)
extends a function h ∈ H1

0 to a function on R
2. Denoting the extension again by h, and

using the notation h = h(x, y), the function h is 2π-periodic in both variables x and y.
Furthermore, −h(−x, y) = h(x, y) = −h(x,−y) for all x, y ∈ R. A function h with this
property will be called an odd function. Similarly, a function h : R2 → R that satisfies
h(−x, y) = h(x, y) = h(x,−y) for all x, y ∈ R will be called even.

Since we will need to estimate both odd and even functions, we consider Fourier series
(3.4) with K = Z, where vm(x) = cos(mx) for integers m ≤ 0. If the series (3.4) for h
has only finitely many nonvanishing terms, the function h will be referred to as a Fourier
polynomial. Given ρ > 0, we define A to be the completion of the vector space of Fourier
polynomials h with respect to the norm

‖h‖ =
∑

m,n

|hm,n|e
ρ|m|+ρ|n| . (3.9)

This space A is a Banach algebra, that is, ‖gh‖ ≤ ‖g‖‖h‖, for all g, h ∈ A. The odd and
even subspaces of A will be denoted by Ao and Ae, respectively. Clearly, H1

0 contains Ao

as a dense subspace.

Proposition 3.3. Assume that Wu belongs to Ae and is positive on Ω. Then all eigen-
vectors of DG(u) : H1

0 → H1
0 belong to Ao , and the restriction of DG(u) to Ao defines a

compact linear operator on Ao .

Proof. By using the Banach algebra property of A, and the representation (3.6) for
(−∆)−1, we see that DG(u) defines a compact linear operator on Ao. Clearly, there exists
C > 0 such that 〈u, u〉H ≤ C‖u‖2, for all u ∈ Ao. The assertion concerning the eigenvectors
of DG(u) : H1

0 → H1
0 now follows from Proposition 3.1, and from Proposition 3.2, using

X = Ao and H = H1
0 . QED

4. Estimates used to prove Theorem 1.2

Consider now the fixed point problem for G, in the case where

G(u) = (−∆)−1
[

wu3
]

, (4.1)

with w some fixed but arbitrary positive function in Ae . Since A is a Banach algebra,
and ∆−1 : Ao → Ao is compact, the equation (4.1) defines a compact C∞ map G on Ao.
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Notice also that DG(u) has a “Nehari eigenvalue” 3 at any fixed point u 6= 0 of G, with
eigenvector u, due to the fact that G is homogeneous of degree 3.

Let u0 ∈ Ao be fixed, and let A be a linear isomorphism of Ao. If u ∈ Ao, then
u0 +Au is a fixed point of G if and only if u is a fixed point of N , where

N (h) = G(u0 +Ah)− u0 + (I−A)h , h ∈ Ao . (4.2)

Furthermore, if DG(u0) does not have an eigenvalue 1, and if we choose A sufficiently close
to [I−DG(u0)]

−1, then N is a contraction near the origin. The equation (3.6) shows that
DG(u0) can be approximated by finite rank operators. This motivates the following.

Let p be an invertible map from N = {1, 2, . . .} onto N×N. For every positive integer
k, define vk = vm× vn , with (m,n) = p(k). Furthermore, denote by hk the coefficient of
vk in the expansion (3.4) of a function h ∈ Ao. Then, to any real N × N matrix M , we
can associate a linear operator M̂ on Ao, by setting

M̂h =

N
∑

k,j=1

Mk,jhjvk , h ∈ Ao . (4.3)

From now on, we fix w to be the function wC defined in (1.3), for the parameter values
described in Theorem 1.2. In addition, we fix the space A by choosing ρ = ln(1+ 2−60) in
the equation (3.9).

Given r > 0 and g ∈ Ao, define Br(g) = {h ∈ Ao : ‖h− g‖ ≤ r}.

Lemma 4.1. There exists an odd Fourier polynomial u0 , a real square matrix M , and
real numbers δ, ε,K > 0, satisfying ε +Kδ < δ, such that the following holds. M has no
eigenvalue 1, and the map N , defined by (4.2), with A = I− M̂ , satisfies

‖N (0)‖ ≤ ε , ‖DN (h)‖ ≤ K , ∀h ∈ Bδ(0) . (4.4)

The proof of this lemma is computer-assisted and will be described in Section 5.
By the contraction mapping principle, the given bounds imply that N has a unique

fixed point h∗ in the ball Bδ(0). In what follows, u∗ = u0+Ah∗ denotes the corresponding
fixed point of G. Notice that u∗ belongs to Br(u0), if r ≥ ‖A‖δ.

The following lemma shows that u∗ is not symmetric or antisymmetric with respect
to any symmetry of the square. Let E = {(π/4, π/2), (π/2, π/4), (3π/4, π/2), (π/2, 3π/4)}.
Clearly, each nontrivial symmetry of Ω acts as a nontrivial permutation on E.

Lemma 4.2. There exists r ≥ ‖A‖δ, such that for every u ∈ Br(u0), the function z 7→
|u(z)| takes 4 distinct values on E.

The proof of this lemma is computer-assisted and will be described in Section 5.
Recall that, by Proposition 3.1, all eigenvalues of DG(u) are positive. Our next goal

is to prove that all but two eigenvalues of DG(u∗) are smaller than 1. To this end, we
approximate DG(u∗) numerically by an operator T̂ associated with an N ×N matrix T .
In what follows, T ∗ denotes the adjoint of T with respect to the inner product on R

N

induced by (3.5).
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Lemma 4.3. With A, δ, r, u0 as in Lemma 4.1 and Lemma 4.2, there exists a square matrix
T = T ∗ with eigenvalues µ1 > µ2 > 1 > µ3 > . . . > 0, such that

∥

∥

∥

[

DG(u)− T̂
](

T̂ − I
)−1

∥

∥

∥
< 1 , ∀u ∈ Br(u0) . (4.5)

The proof of this lemma is computer-assisted and will be described in Section 5.
Combining the last three lemmas we arrive at the following.

Proof of Theorem 1.2. By Lemma 4.1 and the contraction mapping principle, the
map N defined by (4.2) has a unique fixed point h∗ in Bδ(0). If r > ‖A‖δ then the
corresponding fixed point u∗ = u0 + Ah of G belongs to the ball Br(u0). Clearly, u∗ is a
real analytic solution of (1.1). Furthermore, u∗ is not symmetric or antisymmetric with
respect to any symmetry of the square Ω, as Lemma 4.2 shows.

Consider the operators Ls = sDG(u∗) + (1− s)T̂ , for 0 ≤ s ≤ 1, with T̂ as described
in Lemma 4.3. They all have the following properties. Ls is compact, symmetric with
respect to the inner product (3.5), and positive, in the sense that 〈h,Lsh〉H ≥ 0 for all
h ∈ Ao. Furthermore, Ls − I has a bounded inverse,

(Ls − I)−1 = (T̂ − I)−1(I+ sV )−1 , V =
[

DG(u∗)− T̂
]

(T̂ − I)−1 , (4.6)

since ‖V ‖ < 1 by Lemma 4.3. In other words, Ls has no eigenvalue 1. Since the positive
eigenvalues of Ls vary continuously with s, this implies that the operators T̂ = L0 and
DG(u∗) = L1 have the same number of eigenvalues (counting multiplicities) in the interval
[1,∞) and its interior. By Lemma 4.3, this number is 2. This, together with Proposi-
tion 3.1, Proposition 3.3, and Proposition 3.2 with X = Ao and H = H1

0 , implies that u∗

has Morse index 2. This completes the proof of Theorem 1.2. QED

5. The computer-assisted part

What remains to be proved are the Lemmas 3.1, 3.2, and 3.3. Given the Fourier polyno-
mial u0 and the matrices M and T (obtained from purely numerical computations), this
task is clearly a sequence of trivial estimates, assuming that there are no fundamental
obstructions. The sequence is finite, since ∆−1 can be approximated to arbitrary accu-
racy by finite rank operators. But the steps are much too numerous to be carried out by
hand, so we enlist the help of a computer. For the types of operations needed here, the
techniques are quite standard by now. Thus, we will restrict our description mainly to the
problem-specific parts.

As with any lengthy task, proper organization is crucial. We start by associating to
a space X a collection std(X) of subsets of X, that are representable on the computer.
These sets will be referred to as “standard sets” for X. A “bound” on an element s ∈ X
is then a set S ∈ std(X) containing s. Each collection std(X) corresponds to a data type
in our programs. Unless stated otherwise, std(X × Y ) is taken to be the collection of all
sets S × T with S ∈ std(X) and T ∈ std(Y ).

Our standard sets for R are associated with a type Ball, which consists of pairs
S=(S.C,S.R), where S.C is a representable number (Rep) and S.R a nonnegative repre-
sentable number (Radius). The standard set defined by a Ball S is the interval B(S) =
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{s ∈ R : |s − S.C| ≤ S.R}. Our standard sets for Ao are represented by a type Fourier2

consisting of a triple F=(F.T,F.C,F.E), where F.T is a record identifying the space Ao,
F.C is an array(0..K,0..K) of Ball, and F.E is an array(0..2*K,0..2*K) of Radius.
The corresponding set B(F) in std(Ao) is the set of all function u = p+ h ∈ Ao,

p =

K
∑

m,n=1

pm,n vm× vn , h =

2K
∑

m,n=1

hm,n , hm,n =
∑

i≥m,j≥n

hm,n
i,j vi× vj , (5.1)

with pM,N ∈ B(F.C(M, N)) and ‖hM,N‖ ≤ F.E(M, N), for all M,N ≥ 1. The type Fourier2 is
also used to define our standard sets for the space Ae, and for some other subspaces of A.
In our programs, the “maximal degree” K is either 100 or 125.

For the representable numbers, we choose a data type (renamed to Rep) for which
elementary operations are available with controlled rounding. This makes it possible to
implement a bound Sum on the function (s, t) 7→ s + t on R × R, as well as bounds on
other elementary functions on R or R

n, including things like the matrix product or the
Gram-Schmidt orthogonalization map.

Here, a bound on a map f : X → Y is a map F : DF → std(Y ), with domain
DF ⊂ std(X), such that f(s) ∈ F (S) whenever s ∈ S ∈ DF . Such bounds are implemented
as procedures or functions in our programs. This can be done hierarchically. Using e.g. the
Sum for the type Ball, it is straightforward to implement a bound Sum on the map (g, h) 7→
g + h from Ao × Ao to Ao. Similarly for maps like u 7→ ‖u‖ or −∆−1. Implementing a
bound on the product (g, h) 7→ gh is a bit more tedious, but straightforward.

A bound on ‖N (0)‖ is now obtained by composing the basic bounds mentioned above.
In order to estimate ‖DN (h)‖, as required for a proof of Lemma 4.1, we use the following
fact. If L is a continuous linear operator on Ao, then

‖L‖ = sup
k

‖Lek‖ , ek = ‖vk‖
−1

vk , (5.2)

where v1,v2, . . . are the functions described before equation (4.3). This explicit expression
for ‖L‖ is our main reason for working with a weighted ℓ1 norm. For the operator L =
DN (h), it is easy to determine k0 , given c > 0, such that ‖Lek‖ ≤ c whenever k ≥ k0 .
Thus, estimating the norm of DN (h) reduces to a finite computation. Choosing δ > 0 to
be a representable number, this estimate can be carried out simultaneously for all functions
h ∈ Bδ(0), since Bδ(0) belongs to std(Ao).

The same approach is used to estimate the operator norm in equation (4.5). The
N ×N matrix T is taken to be of the form

T = UMU∗ , M = diag(µ1, µ2, . . . , µN) , (5.3)

where µ1, µ2, . . . , µN are positive numerical approximations for the largest N eigenvalues of
DG(u∗), and where U is an orthogonal N×N matrix. To be more precise, U is orthogonal
for the inner product on R

N induced by (3.5), and U∗ is the corresponding adjoint matrix,
so that U∗ is the inverse of U . This ensures not only that T = T ∗, but it also makes it
easy to compute the inverse of T̂ − I. The size N used in our programs is 250.
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Verifying the claim in Lemma 4.2 is comparatively simple. All we need is a bound on
the evaluation function (z, u) 7→ |u(z)| on R

2 × Ao. For the “higher order” part h in the
decomposition u = p+ h, we use the fact that |h(z)| ≤ ‖h‖, for all z ∈ R

2.

For a precise and complete description of all definitions and estimates, we refer to the
source code and input data of our computer programs [18]. The source code is written
in Ada2005 [15]. For the type Rep we use a MPFR floating point type, with 128 or 256
mantissa bits, depending on the program. MPFR is an open source multiple-precision
floating-point library that supports controlled rounding [17]. Our programs were run
successfully on a standard desktop machine, using a public version of the gcc/gnat compiler
[16].

6. Some numerical results

Our approximate solution u0 was obtained by starting with a symmetric solution for C1 =
C2 = 0, where wC = 1, and following solution branches where either C1 or C2 is fixed.
The symmetry breaking occurs in two steps, as we will now describe.

Consider first C2 = 0. In this case, and for C1 > 0, the weight function wC looks
similar to the function shown in Figure 1, except that the center peak is missing: wC has
a local minimum at the center of Ω. The other peaks increase as C1 increases.

For C1 ≥ 0, we find a branch (referred to as “branch 1”) of solutions that are symmetric
with respect to the diagonal x = y and antisymmetric with respect to the diagonal x+y =
π. At a value C1 ≈ 0.66, we observe a pitchfork bifurcation. As C1 is increased past this
value, the Morse index on branch 1 changes from 2 to 3.

On the intersecting branch (called “branch 2”), for C1 & 0.66, the solutions no longer
have the two reflection symmetries mentioned above, but they are still antisymmetric with
respect to the composition of these symmetries: a rotation by π about the center of Ω.
The Morse index is 2, and no bifurcation is observed up to C1 = 0.85.
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Figure 2. Starting point and bifurcation point on branch 1.
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Now we fix C1 = 97
128

= 0.7578125 and start increasing C2 . This causes the weight wC

to develop a peak in the center. The goal is to make it favorable for the solution u to have
a nonzero value at the center of Ω. And the other 8 peaks of wC should make it difficult
to achieve this goal while keeping a rotation symmetry.

The resulting “branch 3” is observed to undergo a pitchfork bifurcation at a value
C2 ≈ 0.095, where the Morse index changes from 2 to 3. (It appears that there is an-
other bifurcation later, where the solutions become symmetric with respect to x = y and
antisymmetric with respect to x+ y = π.)
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Figure 3. Two points on branch 3.

On the intersecting branch (called “branch 4”), for C2 & 0.095, the solutions are
neither symmetric or antisymmetric with respect to any of the symmetries of the square.
Along this branch, the third largest eigenvalue first decreases from 1 down to about 0.857,
and then it increases again (reaching 1 around C2 = 1.22). The minimum is reached near
the value of C2 used in Theorem 1.2.
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Figure 3. Two points on branch 4.

The “basic” procedure that was used to follow a branch is to gradually change pa-
rameter values, and using a Newton-type map N associated with G, to find an accurate
fixed point at each step. Near a bifurcation point u, where DG(u) has an eigenvalue close
to 1, we compute the corresponding eigenvector h. The new branch is found by starting
with v = u + εh and adjusting the parameter to minimize the norm of G(w) − w, where
w = N k(v) for some appropriate k. Then the map u 7→ w is iterated until the eigenvalues
of DG(u) are far enough from 1 for the basic branch-following procedure to work. This
approach can of course be improved, but that was not our goal here.

The equation (1.1) for the disk, with nonlinearities that depend explicitly on z, is
being investigated in [13]. Other numerical studies on related equations can be found in
the references [2,3,4,6,8].

Acknowledgments. The authors would like to thank Filomena Pacella for introducing
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References

[1] B. Gidas, W.-M. Ni, L. Nirenberg, Symmetry and related properties via the maximum prin-

ciple, Commun. Math. Phys. 68, 209-243 (1979).
[2] G. Chen, J. Zhou, W.-M. Ni, Algorithms and visualization for solutions of nonlinear elliptic

equations, Int. J. Bifurcat. Chaos 10, 1565-1612 (2000).
[3] J.M. Neuberger, W. Swift, Newton’s method and Morse index for semilinear PDEs, Int. J.

Bifurcat. Chaos, 11, 801-820 (2001).
[4] D. Costa, Z. Ding, J.M. Neuberger, A numerical investigation of sign-changing solutions to

superlinear elliptic equations on symmetric domains, J. Comp. Appl. Math.,131, 299–319
(2001).

[5] F. Pacella, Symmetry Results for Solutions of Semilinear Elliptic Equations with Convex

Nonlinearities, J. Funct. Anal., 192, 271–282 (2002).
[6] B. Breuer, P.J. McKenna, M. Plum, Multiple solutions for a semilinear boundary value prob-

lem: a computational multiplicity proof, J. Diff. Equations 195, 243-269 (2003).
[7] D. Smets, M. Willem, Partial symmetry and asymptotic behaviour for some elliptic varia-

tional problems, Calc. Var. Part. Diff. Eq. 18, 57-75 (2003).
[8] J. Horák, Constrained mountain pass algorithm for the numerical solution of semilinear el-

liptic problems, Numer. Math. 98, 251-276 (2004).
[9] T. Bartsch, T. Weth, M. Willem, Partial symmetry of least energy nodal solutions to some

variational problems, J. Anal. Math. 96, 1–18 (2005).
[10] J. Wei, M. Winter, Symmetry of Nodal Solutions for Singularly Perturbed Elliptic Problems

on a Ball, Indiana Univ. Math. J. 54, 707-742 (2005),
[11] F. Pacella, T. Weth, Symmetry of solutions to semilinear elliptic equations via Morse index,

Proc. Amer. Math. Soc. 135, 1753-1762 (2007).
[12] F. Gladiali, F. Pacella and T. Weth, Symmetry and nonexistence of low Morse index solutions

in unbounded domains, J. Math. Pure Appl., 93, 136–558 (2010).
[13] G. Arioli, H. Koch, work in progress.
[14] E.H. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics 14, American Mathematical

Society, 1997.



Non-symmetric low-index solutions 13

[15] Ada Reference Manual, ISO/IEC 8652:201z Ed. 3,
available e.g. at http://www.adaic.org/standards/05rm/html/RM-TTL.html.

[16] A free-software compiler for the Ada programming language, which is part of the GNU
Compiler Collection; see http://gcc.gnu.org/.

[17 The MPFR library for multiple-precision floating-point computations with correct rounding;
see http://www.mpfr.org/.

[18] Ada files and data are included with the preprint mp arc 10-141.


