We construct a rigorous renormalization scheme for two degree-of-freedom analytic Hamiltonians, associated with Diophantine frequency vectors. We prove the existence of an attracting, integrable limit set of the renormalization. As an application of this renormalization scheme, we give a proof of a KAM theorem. We construct analytic invariant tori with Diophantine frequency vectors for near-integrable Hamiltonians in the domain of attraction of this limit set.

1. INTRODUCTION AND SUMMARY OF THE RESULTS

Half a century ago, Kolmogorov [24] stated a theorem concerning the persistence of quasi-periodic motion (invariant tori) with sufficiently incommensurate frequency vectors in the phase space of a (non-degenerate) integrable Hamiltonian system under small analytic perturbations. Several years later, a detailed proof of the theorem was given by Arnol’d [1] and the requirement of analyticity was weakened by Moser [34]. It was the beginning of a series of rigorous results and methods that are collectively referred to as KAM theory (see also [26]).

Almost at the same time, the simple and novel idea of renormalization originated in theoretical physics. It was introduced first in quantum field theory by Stueckelberg and Peterman [38] and later in statistical mechanics by Kadanoff [17]. In the theory of dynamical systems, renormalization group techniques were first introduced by Feigenbaum [7, 8] and Coullet and Tresser [5] in studying the universality of period-doubling sequences in one-parameter families of one-dimensional maps. Since then, renormalization group ideas have been widely applied in investigation of a variety of dynamical phenomena. In discrete-time dynamical systems those include self-similarity of period-doubling bifurcations in two and higher-dimensional mappings, bifurcations in circle maps and bifurcations of invariant KAM curves in area-preserving maps [9, 16, 18, 19, 25, 29–33, 35–37].

In the framework of the breakup of invariant tori in Hamiltonian flows, renormalization group ideas were first introduced by Escande and Dovel [6]. Some related ideas concerning the renormalization of Hamiltonian flows, due to MacKay and others, can be found in [14, 33]. A rigorous renormalization scheme for analytic Hamiltonians, associated to frequency vectors of a specific type, was formulated by Koch [20, 21]. References such as [10, 11, 27] contain some later related work.

Here, we construct a rigorous renormalization scheme for analytic Hamiltonian functions of two degree-of-freedom systems which applies to the problem of stability of invariant tori with Diophantine frequency vectors. The renormalization scheme is an extension of Koch’s renormalization, from quadratic irrational to a set of full Lebesgue measure Diophantine frequency ratios, in the case of two degree-of-freedom Hamiltonians. Recently, such a generalization was done by Lopes-Dias for vector fields on a torus of dimension two [28]. It is also related to the approximate renormalization schemes of MacKay [31] and Chandre and Moussa [3] in the framework of the break-up of invariant tori in Hamiltonian systems (see also [4]).

Further, we apply our renormalization scheme to give a proof of a KAM theorem. We construct analytic invariant tori with Diophantine frequency vectors for near-integrable Hamiltonians. A similar method has been used in [23] to prove the existence of non-differentiable invariant tori with golden mean winding number for Hamiltonians attracted to the critical fixed point of the renormalization [22]. A different method for construction of invariant tori, based on the analogy with quantum field theory and the summation of the (generically divergent) Lindstedt series, was used by Gallavotti et al [12, 13] and Bricmont et al [2]. A related result for discrete-time systems, concerning the existence of invariant graphs for pairs of commuting maps, for Diophantine rotation numbers, has been obtained by Haydn [16].
We define a sequence of renormalization operators \(\mathcal{R}_n \), \(n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\} \), between Banach spaces of analytic two degree-of-freedom Hamiltonians. The Hamiltonians are functions on complex neighborhoods of \(\mathbb{T}^2 \) and \(0 \) is the zero vector in \(\mathbb{R}^2 \).

We call these neighborhoods the phase space. We refer to the coordinates of this space, \(q \) and \(p \), as angles and momenta, respectively.

Each of the Banach spaces, indexed by \(n \), contains an integrable Hamiltonian \(H^0 \) with an invariant torus of a given frequency \(\omega_n \in \mathbb{R}^2 \setminus \{0\} \) at \(p = 0 \) and frequencies of nearby tori twisted in the direction of \(\Omega_n \in \mathbb{R}^2 \). The vectors \(\omega_n \) and \(\Omega_n \) are uniquely determined given a pair of vectors \((\omega, \Omega) = (\omega_0, \Omega_0) \). The domain of the \(n^{th} \)-step renormalization operator \(\mathcal{R}_n \) will be restricted to a small neighborhood of the integrable Hamiltonian \(H^0_0 \), keeping the analysis within the scope of classical KAM theory. The \(n^{th} \)-step renormalization operator \(\mathcal{R}_n \) is a function from that neighborhood into another that maps a Hamiltonian \(H_n \), close to \(H^0_0 \), into \(H_{n+1} = \mathcal{R}_n(H_n) \), close to \(H^0_0 \). On the winding ratio \(\alpha_n = \omega_{n+1}/\omega_n \), \(\omega_n \neq 0 \), of the frequency vector \(\omega_n = (\omega_n, \omega_{n+1})^* \), the operator \(\mathcal{R}_n \) acts as a shift of its continued fraction expansion. The renormalization of a Hamiltonian \(H_0 \) consists of successive application of the operators \(\mathcal{R}_n \), \(n \in \mathbb{N}_0 \). Given a Hamiltonian \(H_0 \), we call the sequence of Hamiltonians \(H_n \), \(n \in \mathbb{N}_0 \), consisting of \(H_0 \) and its images \(H_{n+1} = \mathcal{R}_n \circ \cdots \circ \mathcal{R}_0(H_0) \), the orbit of the Hamiltonian \(H_0 \).

Renormalization techniques in dynamical systems are designed to study systems on progressively smaller spatial scales and longer time scales. The renormalization scheme for Hamiltonians is essentially a transformation of classical Hamiltonian functions generated by a scaling of the phase space, modulo a set of transformations that preserve the topological characteristics of the orbits of the Hamiltonian flows. This set includes canonical transformations homotopic to the identity, scaling of the momenta, time and energy. The \(n^{th} \)-step renormalization operator basically consists of time-rescaling, composed with a nonlinear diffeomorphism homotopic to the identity, and a linear scaling of the (lifted) phase space.

The linear scaling transformation is intended to enlarge a region around the orbits of the integrable Hamiltonian flow while keeping the periodicity of the angle coordinates. It is a composition of a linear scaling of the momentum space and a linear canonical transformation of the phase space generated by a point transformation in \(GL(2, \mathbb{Z}) \).

The growth of the Fourier modes of the Hamiltonian in the direction of the dominant flow is prevented by eliminating these modes in each step. This is achieved by a nonlinear canonical transformation homotopic to the identity. The process of elimination (of “irrelevant” modes of a Hamiltonian) and rescaling (of the Fourier lattice) is similar in spirit to block spin transformations in statistical mechanics - a standard tool in the theory of critical phenomena. Additionally, time-rescaling, a nonlinear scaling of the momenta and a translation in momentum space are included. The latter transformation prevents the renormalization operators from having an expanding eigendirection. These transformations are also homotopic to the identity and do not change the winding number of the orbits of the Hamiltonian flow.

Main results: The results of this paper concerning the constructed renormalization scheme for analytic Hamiltonians and its applications are:

(i) The \(n^{th} \)-step renormalization operator \(\mathcal{R}_n \), \(n \in \mathbb{N}_0 \), is a well-defined analytic map on an open ball of analytic Hamiltonians around \(H^0_0 \) for a generic frequency vector \(\omega_n \in \mathbb{R}^2 \setminus \{0\} \) (Theorem 4.4).

(ii) For a set of Diophantine frequency vectors \(\omega_0 \) of full Lebesgue measure, the renormalization orbits of all Hamiltonians in a neighborhood of an integrable Hamiltonian \(H^0_0 \) associated to \(\omega_0 \), approach the orbit of the integrable Hamiltonian \(H^0_0 \) (Theorem 7.2).

(iii) Every Hamiltonian \(H_0 \) sufficiently close to such a \(H^0_0 \) has an invariant torus on which the motion is conjugate to a linear flow of Diophantine frequency vector \(\omega_0 \) (Theorem 9.5).

(iv) The invariant torus is an analytic function (Theorem 10.4).

The above-mentioned set of Diophantine frequency vectors for which the convergence result has been obtained and invariant tori have been constructed contains those with Diophantine exponent \(\beta < (\sqrt{161} - 11)/10 \). Though this set is not optimal, it is of full Lebesgue measure.
We believe that this is not a restriction of the renormalization method and that the set can be extended to other Diophantine frequency vectors.

The paper is organized as follows. In the next section, we define the Banach spaces of Hamiltonians that will be renormalized. In section 3, we describe the performed scaling of the phase space. Section 4 contains the construction of the \(n \)-th-step renormalization operator. The existence of a canonical transformation that eliminates the non-resonant modes of a near-integrable Hamiltonian is proved in section 5. In section 6, we recall the definition of Diophantine frequency vectors and obtain some bounds that will be used in section 7 to prove the convergence of the renormalization dynamics to an integrable limit set for \(\omega \) satisfying a Diophantine condition. The remaining sections contain an application of the previously constructed renormalization scheme. Section 8 contains the definition of invariant tori. In section 9, we construct the invariant tori with Diophantine frequency vectors for near-integrable Hamiltonians. Finally, in section 10, we prove that the constructed invariant tori can be extended to analytic functions.

2. THE SPACES OF HAMILTONIANS

Let us start by defining the spaces of Hamiltonians that we will consider. Given \(n \in \mathbb{N}_0 \), let \(\omega_n, \Omega_n \in \mathbb{R}^2 \setminus \{0\} \) be two vectors not parallel to each other. We introduce the normalized vector \(\hat{\omega}_n = \omega_n / \|\omega_n\| \). Here and in what follows \(\| \cdot \| \) denotes \(\ell^2 \)-norm of a vector. Define \(\omega_n' \) and \(\Omega_n' \) in \(\mathbb{R}^2 \), by the following relations: \(\omega_n' \cdot \Omega_n = 0 \), \(\omega_n' \cdot \hat{\omega}_n = 1 \), \(\Omega_n' \cdot \hat{\omega}_n = 0 \), and \(\Omega_n' \cdot \Omega_n = 1 \).

Definition 2.1 Given a pair of positive numbers \(\rho = (\rho_1, \rho_2) \), define

\[
\mathcal{D}_{n,1}(\rho_1) = \{ q \in \mathbb{C}^2 : |\text{Im} \omega_n' \cdot q| < \rho_1, |\text{Im} \Omega_n' \cdot q| < \rho_1 \}, \\
\mathcal{D}_{n,2}(\rho_2) = \{ p \in \mathbb{C}^2 : |\hat{\omega}_n \cdot p| < \rho_2, |\Omega_n \cdot p| < \rho_2 \},
\]

and let \(\mathcal{D}_n(\rho) = \mathcal{D}_{n,1}(\rho_1) \times \mathcal{D}_{n,2}(\rho_2) \).

The Hamiltonians are analytic functions \(H_n : \mathcal{D}_n(\rho) \to \mathbb{C} \), 2\(\pi \)-periodic in both \(q \)-variables. These functions can be expanded in Fourier-Taylor series

\[
H_n(q,p) = \sum_{(\nu,k) \in I} (H_n)_{\nu,k}(\hat{\omega}_n \cdot p)^{k_1}(\Omega_n \cdot p)^{k_2} e^{i\nu \cdot \cdot},
\]

where \(k = (k_1, k_2) \) and \(I = \mathbb{Z}^2 \times \mathbb{N}_0^2 \). We will refer to each term in this sum as a mode of the Hamiltonian \(H_n \).

Definition 2.2 Given \(\rho > 0 \), componentwise, define \(\mathcal{A}_n(\rho) \) to be the Banach space of functions \(H_n \) that are analytic on \(\mathcal{D}_n(\rho) \), extend continuously to the boundary of \(\mathcal{D}_n(\rho) \), and have finite norm

\[
\| H_n \|_{n,\rho} = \sum_{(\nu,k) \in I} |(H_n)_{\nu,k}| \rho_2^{\|k\|} e^{\rho_1(|\omega_n \cdot \nu| + |\Omega_n \cdot \nu|)}.
\]

Let us also define the projection operators \(\mathbb{P}^k_n \) on \(\mathcal{A}_n(\rho) \) by

\[
\mathbb{P}^k_n H_n = (H_n)_{0,k}(\hat{\omega}_n \cdot p)^{k_1}(\Omega_n \cdot p)^{k_2},
\]

and let \(E = \sum_{k \in \mathbb{N}_0^2} \mathbb{P}^k_n \) be the projection operator onto the subspace of \(q \)-independent Hamiltonians. Define the functionals \(p^k_n : \mathcal{A}_n(\rho) \to \mathbb{C} \), by \(p^k_n H_n = (H_n)_{0,k} \).

The analysis of this paper is focused on Hamiltonians of the form \(H_n = H^0_n + h_n \), where

\[
H^0_n = \omega_n \cdot p + \frac{1}{2}(\Omega_n \cdot p)^2,
\]
is an integrable Hamiltonian and \(h_n \in \mathcal{A}_n(\rho) \) is a perturbation. The integrable Hamiltonians \(H^0_n \) are degenerate, in the sense that they do not satisfy Kolmogorov’s non-degeneracy condition, but they do have a twist in the \(\Omega_n \) direction, i.e. they satisfy

\[
\det \left[\frac{\partial^2 H^0_n}{\partial p \partial p} \right] = 0, \quad \left| \frac{\partial^2 H^0_n}{\partial (\Omega_n \cdot p)^2} \right| = 1 \neq 0.
\]

Hamiltonians satisfying this weaker (than Kolmogorov’s original) non-degeneracy condition have been included in the improved versions of the KAM theory.

The sequence of renormalization transformations is associated to the sequence of vector pairs \((\omega_n, \Omega_n)\), \(n \in \mathbb{N}_n \). This sequence has been constructed from a pair of vectors \((\omega, \Omega) \in \mathbb{R}^2 \setminus \{0\} \). We assume that \(\omega \in \mathbb{R}^2 \) is of the form \(\omega = \ell(1, \alpha)^* \), where \(\ell \in \mathbb{R}^+ \) and \(\alpha > 1 \) is an irrational number. Here “*” stands for “transpose”.

The unique continued fraction expansion \([15]\) of such an irrational \(\alpha \in \mathbb{R} \) is given by

\[
\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ldots}}
\]

where \(a_n \in \mathbb{Z}^+, n \geq 0 \), are called partial quotients. We also write \(\alpha = [a_0, a_1, \ldots] \). The vectors \(\omega_n \) are constructed from the continued fraction expansion of the winding ratio \(\alpha \) of the frequency vector \(\omega \). We define \(\omega_n = \ell(1, a_n^*) \), where \(a_n = [a_n, a_{n+1}, \ldots] \).

We choose a vector \(\Omega \in \mathbb{R}^2 \) which is suitable in the sense of the following Definition.

Definition 2.3 \(\Omega \in \mathbb{R}^2 \) will be called suitable if it is of the form \(\Omega = (\Omega^1, \Omega^2)^* \), with \(|\Omega^1| \geq |\Omega^2| \geq 0\), \(\Omega^1 \Omega^2 \leq 0 \) and \(|\Omega| = 1\).

Notice that a suitable vector \(\Omega \) can not be arbitrary close to the direction of \(\omega \). The smaller (positive) angle between these vectors is larger than \(\pi/4 \) and smaller than \(3\pi/4 \).

3. SCALING OF THE PHASE SPACE

The renormalization scheme for \(d \) degree-of-freedom Hamiltonians introduced by Koch is associated to a frequency vector \(\omega \) whose components span an algebraic number field of degree \(d \in \mathbb{N} \). For two degree-of-freedom systems, that scheme can be applied to Hamiltonians associated to a frequency vector with a quadratic irrational slope. In that case, one can find a hyperbolic matrix \(T \in \text{GL}(2, \mathbb{Z}) \) with determinant \(\pm 1 \), for which \(\omega \) is an expanding eigenvector (Lemma 4.1 in [20]). That matrix is then used to perform linear scaling of the phase space at each renormalization step.

In order to construct a renormalization scheme which applies to a larger set of frequency vectors, we use a different linear scaling transformation at each step. We generate the \(n^{th} \)-step scaling transformation of the phase space using the matrix \(T_n \in \text{GL}(2, \mathbb{Z}) \) defined by

\[
T_n = \begin{bmatrix} 0 & 1 \\ 1 & a_n \end{bmatrix}.
\]

More precisely, at the \(n^{th} \) renormalization step, the scaling of the (lifted) phase space is performed with a linear map \(T_n^{-1} \) on \(\mathbb{C}^2 \times \mathbb{C}^2 \), defined by \(T_n(q, p) = (T_n q, \mu_n T_n^{-1} p) \), where \(\mu_n = a_n^{-1} ||T_n^{-1} \Omega_n||^{-2} \) is a positive number. This map generates the transformation of Hamiltonians \(H_n \mapsto H_n \circ T_n \). Notice that the vectors \(\omega_n \) could also be defined recursively using this matrix, via \(\omega_{n+1} = a_{n+1}^{-1} T_n^{-1} \omega_n \), given \(\omega = \omega_0 \). Similarly, given a suitable vector \(\Omega = \Omega_0 \), the vectors \(\Omega_n \) are defined recursively by \(\Omega_n = T_n^{-1} \Omega_{n-1} / ||T_n^{-1} \Omega_n|| \), for \(n \in \mathbb{N} \).

Thus, under this scaling, the integrable Hamiltonian \(H^0_n \) is mapped into \(a_n^{-1} \mu_n H_{n+1}^0 \), \(n \in \mathbb{N}_n \). A time rescaling, then, normalizes the latter to \(H^0_{n+1} \).

The matrix \(T_n \) has the following properties. If \(\alpha > 1 \), then, for all \(n \geq 0 \), \(a_n \geq 1 \) and \(T_n \) is a hyperbolic matrix with \(\det(T_n) = -1 \) and eigenvalues \(\lambda_n \) and \(-1/\lambda_n \), where

\[
\lambda_n = \frac{a_n + \sqrt{a_n^2 + 4}}{2}.
\]
The expanding and contracting eigendirections corresponding to these eigenvalues are given by \((1, \lambda_n)^\ast\) and \((1, -1/\lambda_n)^\ast\), respectively. The expanding eigenvector is close to \(\omega_n\), in the sense that the absolute value of the angle between it and \(\omega_n\) is smaller than \(\pi/4\).

The map \(\omega_n \mapsto \omega_{n+1}\) is related with the Gauss map of the fractional part of \(\alpha_n\). Given \(\alpha \in \mathbb{R}\), let \([\alpha]\) be the integer part of \(\alpha\), i.e. \([\alpha] = \max\{k \in \mathbb{Z}: k \leq \alpha\}\). Also, let \{\(\alpha\)\} = \(\alpha - [\alpha]\) be the fractional part of \(\alpha\).

For \(x > 0\), the Gauss map is defined as

\[
G : x \mapsto \left\{ \frac{1}{x} \right\}.
\]

If we define \(x_n = \alpha_n - a_n\), for \(n \geq 0\), we obtain \(x_{n+1} = G(x_n)\). Thus, the shift \([a_n, a_{n+1}, \ldots] \mapsto [a_{n+1}, a_{n+2}, \ldots]\) of the continued fraction expansion of \(\alpha_n\) corresponds to the Gauss map of its fractional part \(x_n\).

The transformation \(\alpha_n \mapsto \alpha_{n+1} = (\alpha_n - a_n)^{-1}\) is a special case of a modular transformation,

\[
\alpha \mapsto \frac{T_{2,1} + \alpha T_{2,2}}{T_{1,1} + \alpha T_{1,2}},
\]

generated by the action of an integer matrix \(T = (T_{ij}) \in GL(2, \mathbb{Z})\) of determinant \(\pm 1\). Numbers related by such a transformation are called equivalent. Two numbers are equivalent if and only if they have the same tail in their continued fraction expansions (Theorem 175 in [15]). The matrix \(T_n\) generates an equivalence relation between \(\alpha_{n+1}\) and \(\alpha_n\).

The linear coordinate change \(T_n^{-1}\), maps the orbit of \(H_n^0\) with rotation number \(\alpha_n\) into the orbit of \(H_{n+1}^0\) with the rotation number \(\alpha_{n+1}\). We have made the particular choice of \(T_n\) in order to provide the desired “scale change” in the sense explained below.

Let us consider the sequence of periodic orbits approximating an invariant torus with frequency ratio \(\alpha\). Recursively, define the sequence of convergent matrices associated to \(\alpha\),

\[
P_n = \begin{bmatrix} q_{n-1} & p_{n-1} \\ q_n & p_n \end{bmatrix},
\]

for \(n \geq 0\), via \(P_n = T_n P_{n-1}\), with \(P_{-1}\) being the identity matrix in \(GL(2, \mathbb{Z})\). Thus, \(q_n\) and \(p_n\) are determined by the following recursion relations

\[
q_n = a_n q_{n-1} + q_{n-2},
\]

\[
p_n = a_n p_{n-1} + p_{n-2},
\]

and \(q_{-2} = 1, p_{-2} = 0, q_{-1} = 0, p_{-1} = 1\). The convergent matrices define a sequence of convergents \(p_n/q_n = [a_0, \ldots, a_n]\) that approaches \(\alpha\) as \(n \to \infty\).

The values of \(q_n\) and \(p_n\) are associated to \(\alpha\). In the following, we will stress this fact by writing explicitly \(q_n(\alpha)\) and \(p_n(\alpha)\). Consider the sequence of periodic orbits of frequency ratios \(\frac{p_n(\alpha_{n+1})}{q_n(\alpha_{n+1})}\). The matrix \(T_n\) produces the following “scale change”

\[
\left(\begin{array}{cc} -a_n & 1 \\ 1 & 0 \end{array} \right) \begin{bmatrix} q_n(\alpha) \\ p_n(\alpha) \end{bmatrix} = \begin{bmatrix} q_{n-1}(\alpha_{n+1}) \\ p_{n-1}(\alpha_{n+1}) \end{bmatrix},
\]

motivating its use. A periodic orbit labelled by \(k\) that approximates an invariant torus with frequency ratio \(\alpha_n\) of \(H_n^0\) is mapped into a periodic orbit labelled by \(k-1\) that approximates an invariant torus with frequency ratio \(\alpha_{n+1}\) of \(H_{n+1}^0\).

The composition \(H_n \circ T_n\) represents a singular operator, as the matrix \(T_n\) has an expanding eigendirection. The composition is, however, harmless when the domain of the operator is restricted to Hamiltonians which contain only the modes for which \(\|k\|\) is large or \(\nu\) is almost perpendicular to \(\omega\). These modes are called resonant. These are the modes that produce small denominators in KAM theory.

Definition 3.1 Given \(\sigma, \kappa > 0\) and vectors \(\omega_n, \Omega_n \in \mathbb{R}^2\), we define the non-resonant index set,

\[
I^{-}_\sigma = \{ (\nu, k) \in I : |\omega_n \cdot \nu| > \sigma |\Omega_n \cdot \nu|, \ |\omega_n \cdot \nu| > \kappa \|k\| \}.
\]
The resonant index set is defined as its complement, $I_n^+ = \mathbb{I} \setminus I_n^-$. The corresponding projection operators on $\mathcal{A}_n(\rho)$, I_n^+, and I_n^-, are defined by setting

$$
(H_n)_{\nu,k}(\hat{\omega}_n \cdot p)^{k_1}(\omega_n \cdot p)^{k_2}e^{i\nu \cdot r}.
$$

Hamiltonians consisting only of resonant modes, will be called resonant. On the space of resonant Hamiltonians, the map $H_n \mapsto H_n \circ \mathcal{T}_n$ is analyticity improving.

Proposition 3.2 Let $0 < \rho' < \rho$ with $3\rho' > 2\rho$, componentwise. If σ and κ are sufficiently small constants, then every Hamiltonian $H_n \in I_n^{\sigma} \mathcal{A}_n(\rho')$, $n \in \mathbb{N}_0$, has an analytic extension to $\mathcal{T}_n \mathcal{D}_n+1(\rho)$. The linear map from $I_n^{\sigma} \mathcal{A}_n(\rho')$ to $\mathcal{A}_n+1(\rho)$, given by $H_n \mapsto H_n \circ \mathcal{T}_n$, is compact.

Proof: As

$$
H_n \circ \mathcal{T}_n(q,p) = \sum_{(\nu,k) \in I_n^+} (H_n)_{\nu,k}(\mu_n T_n^{-1} \hat{\omega}_n \cdot p)^{k_1} (\mu_n T_n^{-1} \omega_n \cdot p)^{k_2} e^{i\nu \cdot r} T^* r,
$$

one can obtain

$$
\|H_n \circ \mathcal{T}_n\|_{n+1,\rho} = \sum_{(\nu,k) \in I_n^+} |(H_n)_{\nu,k}| \left(\frac{\mu_n \|\hat{\omega}_n\| \omega_n \|\hat{\omega}_n\| \rho_2}{\alpha_{n+1} \|\omega_n\| \rho_2} \right)^{k_1} \left(\frac{\mu_n \|T_n^{-1} \omega_n\| \rho_2}{\rho_2} \right)^{k_2} e^{\rho_1} \left(\frac{\|\omega_n\| \rho_2 \|\omega_n\| \rho_2}{\alpha_{n+1} \|\omega_n\| \rho_2} \right)
$$

provided that all of the modes contract. The terms with ν obeying the inequality $|\omega_n \cdot \nu| \leq \sigma|\Omega_n \cdot \nu|$ contract for sufficiently small σ satisfying the second part of the double inequality

$$
\frac{\sigma \alpha_{n+1}}{\|\omega_n\|} + \frac{1}{\|T_n^{-1} \Omega_n\|} \leq \frac{\sigma}{\ell} + \frac{2}{3} < \frac{\rho_1'}{\rho_1}.
$$

(19)

Given $\sigma > 0$, the first part is satisfied for any $n \in \mathbb{N}_0$. The other conditions are trivially satisfied as $\mu_n \|T_n^{-1} \omega_n\| \leq 2/3$.

The modes indexed by (ν,k) satisfying $|\omega_n \cdot \nu| \leq \kappa \|k\|$ also contract if κ satisfies the second part of the double inequality

$$
\mu_n \|T_n^{-1} \omega_n\| e^{\left(\frac{\|\omega_n\|}{\|T_n^{-1} \Omega_n\|} \right)} \leq \frac{2}{3} e^{\kappa \rho_1 / \ell} < \frac{\rho_2'}{\rho_2}.
$$

(20)

Given $\kappa > 0$, the first part is satisfied for any $n \in \mathbb{N}_0$.

These estimates show that $H_n \circ \mathcal{T}_n$ is analytic in $\mathcal{D}_n+1(\rho)$. Now, given $\sigma, \kappa > 0$ satisfying the second parts of the double inequalities (19) and (20), one can find $r > \rho$ satisfying $3\rho' > 2\rho$, componentwise, such that $H_n \circ \mathcal{T}_n$ is also analytic and bounded in $\mathcal{D}_n+1(\rho)$. The assertion now follows from the fact that the inclusion map from $\mathcal{A}_n+1(\rho)$ to $\mathcal{A}_n+1(\rho)$ is compact.

4. n^{th}-STEP RENORMALIZATION OPERATOR

We will restrict the domain of the n^{th}-step renormalization operator to resonant Hamiltonians. The composition of a resonant Hamiltonian with \mathcal{T}_n produces, in general, non-resonant
modes. In the n^{th} renormalization step, we completely eliminate these modes such that the renormalized Hamiltonians are also resonant. We also include a translation in the variable $\Omega_{n+1} \cdot p$, to prevent the n^{th}-step renormalization operator from having an expanding eigendirection. The existence of the non-zero quadratic (in the components of p) part of the integrable Hamiltonian H^0_n is essential for the construction of such a transformation. Finally, we perform an additional, nonlinear, scaling of the action (momentum) variables and time, in order to fix the coefficients of the $(\omega_{n+1} \cdot p)$ and $(\Omega_{n+1} \cdot p)^2$ modes of the renormalized Hamiltonians to 1 and 1/2, respectively.

Definition 4.1 The n^{th}-step renormalization operator R_n is defined (formally) on an open ball in $I^+_n A_n(p')$, with $p' > 0$, componentwise, by the following action on a Hamiltonian $H_n \in I^+_n A_n(p')$,

$$R_n(H_n) = \frac{\theta_n}{\mu_n} (H_n \circ \Lambda_n - \rho^{(0,0)}_{n+1} H_n \circ \Lambda_n),$$

where $\Lambda_n = T_n \circ V_{H^0_n} \circ U_{H^0_n} \circ S_{H^1_n}$, H^0_n is essentially that part of H_n which is fixed by applying τ_n to H_n. The transformation $V_{H^0_n} : \mathcal{D}_{n+1}(\theta_n) \to \mathcal{D}_{n+1}(\rho)$, where $3/2 \rho > \rho > \theta_n > \rho'$, componentwise, represents the translation $V_{H^0_n}(q,p) = (q,p - \theta_n \cdot \Omega'_{n+1})$, with $\theta_n \in \mathbb{C}$ determined by the equation

$$\rho^{(0,1)}_{n+1} H^0_n = 0.$$

The map $U_{H^0_n} : \mathcal{D}_{n+1}(\rho) \to \mathcal{D}_{n+1}(\theta_n)$ is a canonical transformation that satisfies $\rho^{(0,2)}_{n+1} U_{H^0_n} = 0$. The transformation $S_{H^1_n} : \mathcal{D}_{n+1}(\rho) \to \mathcal{D}_{n+1}(\rho)$ represents a scaling $S_{H^1_n}(q,p) = (q, z_{H_{n+1}} \cdot p)$ of the action variables. The scaling parameters θ_n and μ_n take the values $\theta_n = \rho \cdot \tau_n$ and $\mu_n = \rho \cdot \zeta_{H_{n+1}}$. The parameters $\zeta_{H_{n+1}} \cdot \tau_n \in \mathbb{C}$ are determined such that $\rho^{(0,2)}_{n+1} H^0_n = 1/2$ and $\rho^{(1,0)}_{n+1} H^0_n = 1$, where $H^0_n = R_n(H_n)$.

In the following, we show that the translations and scalings included in the n^{th}-step renormalization operator are well-defined on a sufficiently small open ball around H^0_n. Notice first that $H^0_n = H^0_n = H^{(0,0)}_{n+1} = R_n(H^0_n)$. For $n \in \mathbb{N}$, $b > 0$ and $\rho > 0$, componentwise, define $B_{n,b}(\rho)$ to be the open ball of radius b in $A_n(\rho)$, centered at H^0_n. Define also $B^+_{n,b}(\rho)$ to be the open ball in $I^+_n A_n(\rho)$ of radius b, centered at H^0_n.

Proposition 4.2 Given $\rho_2 > \rho_1 > 0$ and $\rho_1 > 0$, the following holds for a sufficiently small constant $b > 0$. For every Hamiltonian $H_n \in B_{n+1,b}(\rho)$, $n \in \mathbb{N}$, there exists $v_{H^0_n} \in \mathbb{C}$, such that the translation map $V_{H^0_n} : \mathcal{D}_{n+1}(\theta_n) \to \mathcal{D}_{n+1}(\theta_n)$, is well-defined by $V_{H^0_n}(q,p) = (q,p - \theta_n \cdot \Omega'_{n+1})$, where $\rho^{(0,1)}_{n+1} H^0_n = 0$. The derivative of the map $V_{H^0_n} : A_{n+1}(\rho) \to A_{n+1}(\rho)$, defined by $V_{H^0_n}(H_n) = H^0_n \circ V_{H^0_n}$, at H^0_n, is the linear map $D \mathcal{V}_{H^0_n}(H^0_n) = 1 - \rho^{(0,1)}_{n+1}$.

Proof: Define the function $F : A_{n+1}(\rho) \times \mathbb{C} \to \mathbb{C}$, by setting $F(H_n, v) = \rho^{(0,1)}_{n+1} H^0_n \circ v$, where $V(q,p) = (q,p - \theta_n \cdot \Omega'_{n+1})$. The implicit equation $F(H^0_n, v) = 0$ has a unique solution $v = v_{H^0_n} = 0$. Moreover, $D F(H^0_n, v)|_{v=0} = -1 \neq 0$. We can use this fact to solve the implicit equation, $F(H^0_n, v) = 0$, for a given Hamiltonian H_n in a ball $B_{n+1,b}(\rho)$ of sufficiently small, n-independent radius $b > 0$.

The problem of the existence of a solution $v = v_{H^0_n}$ of the implicit equation $F(H^0_n, v) = 0$, for a given Hamiltonian $H_{n+1} \in B_{n+1,b}(b)$, is equivalent to the problem of the existence of a fixed point of the function $G_{H_{n+1}} : v \mapsto v + F(H^0_n, v)$. Notice that $|G_{H_{n+1}}(0)| = |(h_{n+1})_{0,0,1)}| < b/\rho_2$. We will show that, given $\lambda > 1$, for sufficiently small $b > 0$, $G_{H_{n+1}}$ is a contraction on a ball of radius $\lambda b/\rho_2$.

Let $|v| \leq \lambda b/\rho_2$, $\lambda > 1$. The norms of $G_{H_{n+1}}(v)$ and $G'_{H_{n+1}}(v)$ can be bounded by

$$|G_{H_{n+1}}(v)| = \sum_{k=1}^{\infty} |(h_{n+1})_{0,0,1)}|_{v^k}^{|k^2-1|} < \frac{b}{\rho_2(1 - \lambda b/\rho_2)^2} = \tilde{b}.$$
and
\[|G_{H_{n+1}}(v)| = |1 + D_2 F(H_{n+1}, v)| \leq \sum_{k_2=2}^{\infty} |(h_{n+1})_0(0, k_2)| k_2(k_2 - 1)|v|^{k_2 - 2} < \frac{2b}{\rho^2(1 - \lambda b/\rho^2)^3}, \]
respectively. If \(b > 0 \) is sufficiently small, then
\[\lambda b/\rho^2 < \rho_2 - \rho_2, \quad \frac{1}{(1 - \lambda b/\rho_2)^2} < \lambda \quad \text{and} \quad \frac{2b}{\rho^2(1 - \lambda b/\rho^2)^3} < 1 - \frac{1}{\lambda} < 1. \] (22)

These bounds show that for sufficiently small \(b > 0 \), \(G_{H_{n+1}} \) is a contraction on a closed ball of radius \(b \), and thus, has a unique fixed point in that ball. As the bounds (22) are independent of \(n \), so is \(b \). The first of the bounds (22) shows that the translation map is well-defined from \(D_{n+1}(\varrho) \) to \(D_{n+1}(\rho) \) and that \(H_{n+1} \circ V_{H_{n+1}} \) belongs to \(A_{n+1}(\varrho) \). \(\square \)

The map \(H_{n+1}'' \mapsto H_{n+1}'' \circ U_{H_{n+1}''} \) is well-defined on a sufficiently small ball centered at \(H_{n+1}'' \).

Theorem 5.6, proved in the next section, guarantees that given \(\varrho > \eta' > 0 \), componentwise, for every Hamiltonian \(H_{n+1}'' \in A_{n+1}(\varrho) \), sufficiently close to \(H_{n+1}'' \), there exists a canonical map \(U_{H_{n+1}''} : D_{n+1}(\rho') \to D_{n+1}(\rho) \), that satisfies the equation \(\Gamma_{n+1}''(H_{n+1}'' \circ U_{H_{n+1}''}) = 0 \).

Proposition 4.3 Let \(\rho_2' > \rho_2 > 0 \) and \(\rho_1' = \rho_1 > 0 \). For sufficiently small constant \(b > 0 \) and for every Hamiltonian \(H_{n+1} \in B_{n+1}(b) \), \(n \in \mathbb{N} \), there exist \(z_{H_{n+1}}, \tau_{H_{n+1}} \in C \) such that the map \(\mathcal{S}_{H_{n+1}} : H_{n+1} \mapsto (\tau_{H_{n+1}} z_{H_{n+1}})(H_{n+1} \circ S_{H_{n+1}} - B_{n+1}^0)H_{n+1} \circ S_{H_{n+1}} \) with \(S_{H_{n+1}}(q, p) = (q, z_{H_{n+1}}, p) \), is well-defined from \(A_{n+1}(\varrho) \) to \(A_{n+1}(\rho') \), and satisfies \(\mathcal{S}_{H_{n+1}}(0, 0) = 1/2 \) and \(\mathcal{S}_{H_{n+1}}(H_{n+1}) = 1 \). The map \(\mathcal{S}_{H_{n+1}} \) maps \(D_{n+1}(\varrho) \) into \(D_{n+1}(\rho') \). The derivative of the map \(\mathcal{S}_{H_{n+1}} \) at the point \(H_{n+1}'' \) is given by \(D\mathcal{S}_{H_{n+1}}(H_{n+1}''(0\rho_1')) = 1 - \rho_1''/\rho_1' - \rho_1'/\rho_1 + \rho_1''/\rho_1 + \rho_1'\).

Proof: Let \(H_{n+1} \in B_{n+1}(b) \). For sufficiently small \(b > 0 \), the scaling parameters \(\tau_{H_{n+1}} \) and \(z_{H_{n+1}} \) that satisfy the equations \(\rho_2''/\rho_1 = 1/2 \) and \(\rho_1''/\rho_1 = 1 \), are given by \(\tau_{H_{n+1}} = 1/(1 + (h_{n+1})_{0, (0, 0)}) \) and \(z_{H_{n+1}} = (1 + (h_{n+1})_{0, (0, 0)})/(1 + (h_{n+1})_{0, (0, 2)}) \). We have the bound
\[|z_{H_{n+1}} - 1| = \frac{1}{1 - 2(h_{n+1})_0(0, 0)} \leq \frac{1 + \rho_2'}{1 - 2(\rho_1' - \rho_2')}, \]
where the last inequality is satisfied for sufficiently small \(n \)-independent constant \(b > 0 \). The scaling map is well-defined from \(D_{n+1}(\rho') \) to \(D_{n+1}(\varrho) \) and the resulting Hamiltonian belongs to \(A_{n+1}(\rho') \). \(\square \)

We can now show that the \(n \)-th step renormalization operator is well-defined on an open ball around \(H_{n}^{0} \).

Theorem 4.4 Given \(\rho_1' > 0 \), for sufficiently small \(\sigma, \kappa > 0 \) and \(\rho_2' > 0 \) satisfying \(3\rho_2'/2 < \sigma < \ell/3 \), there exists a constant \(C' > 0 \), such that the \(n \)-th step renormalization operator \(R_n \) is a well-defined analytic map from an open ball \(B_{n, \varrho}(\zeta_n) \), of radius \(\zeta_n = C'/(\alpha_n\alpha_{n+1})^2 \), into \(B_{n+1, \varrho}(\zeta_{n+1}) \). Also,
\[\|R_n(H_{n}^{0} + b_n) - H_{n+1}''\|_{n+1, \rho'} \leq \kappa_n^{1-1} ||\zeta_n||_{n, \rho'} \]
and
\[\|R_n(H_{n}^{0} + b_n) - H_{n+1}'' - D\mathcal{S}_{H_{n}^{0}}(H_{n}^{0})h_n\|_{n+1, \rho'} \leq \kappa_n(\zeta_n - ||h_n||_{n, \rho'})^{-1} ||\zeta_n||_{n, \rho'}. \] (23)

Proof: Let \(3\rho_2'/2 > 3\rho_2'/(2 + 9\rho_2'/2(s)) > \rho > \eta > \rho' > \rho' \), componentwise. The bound (18) implies that there exists a constant \(b_1 > 0 \), such that \((\theta_n/\mu_n)(B_n^{\rho})_{n, \zeta'}(\zeta_n) \cap T_n \subset B_n(0, \rho)(b_1 C') \), where \(\zeta_n = C'/(\alpha_n\alpha_{n+1})^2 \) and \(C' > 0 \). Propagation 4.2 guarantees that for sufficiently small \(C' > 0 \),
\[\{H_{n+1}'' : H_{n+1}'' = H_{n+1}'' \circ U_{H_{n+1}''}, H_{n+1}'' \in B_{n+1, \varrho}(b_1 C') \} \subset B_{n+1, \varrho}(b_1 b_2 C'), \]
with \(b_2 > 0 \). If \(C' > 0 \) is chosen sufficiently small, there exists (by Theorem 5.6) a canonical transformation \(U_{H_{n+1}''} \) for Hamiltonians \(H_{n+1}'' \) in a neighborhood of \(H_{n+1}'' \) containing \(B_{n+1, \varrho}(b_1 b_2 C') \), that satisfies the equation \(\Gamma_{n+1}''(H_{n+1}'' \circ U_{H_{n+1}''}) = 0 \). Furthermore,
\[\{\tilde{H}_{n+1} : \tilde{H}_{n+1} = H_{n+1}'' \circ U_{\tilde{H}_{n+1}''}, H_{n+1}'' \in B_{n+1, \varrho}(b_1 b_2 C') \} \subset B_{n+1, \varrho}(b_1 b_2 b_3 C'), \]
where \(b_3 \) > 0 is a constant (dependent on \(\sigma, \kappa \) and \(\phi \)). Finally, Proposition 4.3 guarantees that for sufficiently small \(C' > 0 \),

\[
\{ \mathcal{G}_{H_{n+1}}(\tilde{H}_{n+1}) : \tilde{H}_{n+1} \in B_{n+1,\rho'}^+(b_1 b_2 b_3 C') \} \subset B_{n+1,\rho'}^+(b_1 b_2 b_3 b_4 C'),
\]

with \(b_4 \) > 0. This shows that for sufficiently small \(C' > 0 \), the \(n^{th} \)-step renormalization operator is well-defined from \(B_{n,\rho}^+(\zeta_n) \) to \(\mathbb{I}_{n+1}^+ A_{n+1}(\rho') \). As the composition of analytic maps, it is an analytic map itself.

Define the map \(g : z \mapsto \mathcal{R}_n(H_n^0 + z h_n) - H_{n+1}^0 \), where \(h_n \in \mathbb{I}_n^+ A_n(\rho') \) is given such that \(H_n = H_n^0 + h_n \in B_{n,\rho}^+(\zeta_n) \). This map is analytic from an open ball in \(\mathbb{C} \), of radius \(\zeta_n/\|h_n\|_{n,\rho'} > 1 \), into \(\mathbb{I}_{n+1}^+ A_{n+1}(\rho') \). As \(g(0) = 0 \), we have, by the maximum principle, the bound

\[
\|g(1)\|_{n+1,\rho'} \leq \sup_{\|h_n\|_{n,\rho'} = \zeta_n} \|\mathcal{R}_n(H_n^0 + h_n) - H_{n+1}^0\|_{n+1,\rho'} \frac{\|h_n\|_{n,\rho'}}{\zeta_n}.
\]

From the construction of the renormalization operator, \(\sup_{\|h_n\|_{n,\rho'} = \zeta_n} \|\mathcal{R}_n(H_n^0 + h_n) - H_{n+1}^0\|_{n+1,\rho'} \) can be bounded by a constant \(b_1 b_2 b_3 b_4 C' \), less than or equal to 1, if \(C' > 0 \) is sufficiently small. Then, we have \(\|\mathcal{R}_n(H_n^0 + h_n) - H_{n+1}^0\|_{n+1,\rho'} \leq \|\|h_n\|_{n,\rho'}/\zeta_n. \) Cauchy’s formula gives an estimate on the norm of the second-order remainder of the Taylor expansion of \(\mathcal{R}_n \) about \(H_n^0 \),

\[
F_{n}^2 = \|g(1) - g(0) - g'(0)\|_{n+1,\rho'} \leq \frac{1}{2\pi} \int_{|z|=\zeta_n/\|h_n\|_{n,\rho'}} \frac{\|g(z)\|_{n+1,\rho'}|dz}{|z^2(z-1)|} \leq \frac{\|h_n\|_{n,\rho'}^2}{\zeta_n(\zeta_n - \|h_n\|_{n,\rho'})},
\]

for sufficiently small \(C' > 0 \). This provides the second desired bound.

\[\square\]

Remark 4.5 The renormalization operator \(\mathcal{R}_n \) is actually analyticity improving and can be defined from an open ball in \(\mathbb{I}_n^+ A_n(\rho') \) into \(\mathbb{I}_n^+ A_n(\rho') \), with \(\rho' > \rho'' \), componentwise. The loss of analyticity in the transformations close to the identity can be reduced by restricting the domain of the renormalization operator to a smaller ball.

Remark 4.6 The \(n^{th} \)-step renormalization operator is well-defined on a space of resonant Hamiltonians. For a given \(n \in \mathbb{N} \), this is not a restriction as, by construction, the renormalized Hamiltonians are always resonant. In order to apply the \(0^{th} \)-step renormalization operator to Hamiltonians containing non-resonant modes also, one can include a pre-renormalization step consisting of a canonical transformation that eliminates the non-resonant modes of a Hamiltonian.

5. ELIMINATION OF NON-RESONANT MODES

In this section, we construct a canonical transformation that eliminates non-resonant modes of a near-integrable Hamiltonian. The whole construction is associated to a single renormalization step. The index of the renormalization step will be suppressed in this section, in order to simplify the notation. For the construction of the canonical transformation, we follow an approach as in reference [21]. Our Hamiltonians are, however, assumed to be close to an integrable Hamiltonian that contains a term quadratic in momenta. Technically, in the present scheme, one also needs to assure that the elimination of non-resonant modes is possible at each renormalization step. In that context, we emphasize that the constants that appear in this section will be chosen independently of the renormalization step.

We begin by making a canonical change of coordinates \((q,p) \rightarrow (x,y) \) with \(x_1 = \omega' \cdot q \), \(x_2 = \Omega' \cdot q \), \(y_1 = \omega \cdot p \) and \(y_2 = \Omega \cdot p \). We will simplify the notation further, by writing \(H(x,y) \) instead of \(H(q(x,y), p(x,y)) \). Moreover, some of the symbols in this section will have different meaning than in other sections. The use of those symbols should be restricted to this section.
In the new coordinates, the Fourier-Taylor series and the norm of a function \(H \in A(\rho) \), analytic on
\[
D(\rho) = \{ x \in \mathbb{C}^2 : |\text{Im} x_1| < \rho_1, |\text{Im} x_2| < \rho_1 \} \times \{ y \in \mathbb{C}^2 : |y_1| < \rho_2, |y_2| < \rho_2 \},
\]
where \(\rho = (\rho_1, \rho_2) > 0 \), componentwise, are given by
\[
H(x, y) = \sum_{(v, k) \in I} H_{v, k} y_1^k y_2^k e^{iv \cdot x}, \quad \|H\|_\rho = \sum_{(v, k) \in I} |H_{v, k}| \rho_1^k \rho_2^k e^{\rho_1(|v_1|+|v_2|)}.
\]
Here \(I = \mathbb{M}^2 \times \mathbb{N}_0^2 \), where \(\mathbb{M}^2 = \{(\omega \cdot \nu, \Omega \cdot \nu) \in \mathbb{R}^2 : \nu \in \mathbb{Z}^2 \} \subset \mathbb{R}^2 \) is a set bijective to \(\mathbb{Z}^2 \) that can be determined from the vectors \(\omega \) and \(\Omega \).

The non-resonant index set is defined as
\[
\Gamma^- = \{ (v, k) \in I : |v_1| > \frac{\sigma}{\|\omega\|} |v_2|, |v_1| > \frac{\kappa}{\|\omega\|} |k| \}.
\]
The resonant index set is its complement \(\Gamma^+ = I \setminus \Gamma^- \).

We state without proof the following technical Proposition. In what follows, the norm of the functions \(X = (X_1, X_2) \in A^2(\rho) \) is defined as \(\|X\|_\rho = \max\{\|X_1\|_\rho, \|X_2\|_\rho\} \). We denote by \(\partial_x H \), for \(i = 1, 2 \), the partial derivatives of \(H(x, y) \) with respect to \(x_1 \) and \(x_2 \), and for \(i = 3, 4 \), the partial derivatives of the same function with respect to \(y_1 \) and \(y_2 \), respectively.

Proposition 5.1 Let \(\rho = (\rho_1, \rho_2) \) and \(\delta = (\delta_1, \delta_2) \) be given pairs of positive numbers and let \(0 < \delta < \rho \), componentwise. If \(f, g, h \in A(\rho) \), and \(X, Y \in A^2(\rho) \) satisfy \(\|X\|_\rho \leq \delta_1 \) and \(\|Y\|_\rho \leq \delta_2 \), and \(U : (x, y) \mapsto (x + X, y + Y) \) is a given change of variables, then

(i) \(|f(x, y)| \leq \|f\|_\rho, \forall (x, y) \in D(\rho) \),

(ii) \(fg \in A(\rho) \) and \(\|fg\|_\rho \leq \|f\|_\rho \|g\|_\rho \),

(iii) \(\|\partial_x h\|_{\rho - (\delta_1, 0)} \leq \delta_1^{-1} \|h\|_\rho \) for \(i = 1, 2 \),

(iv) \(\|\partial_x h\|_{\rho - (0, \delta_2)} \leq \delta_2^{-1} \|h\|_\rho \) for \(j = 3, 4 \),

(v) \(\|h \circ U\|_\rho \leq \|h\|_{\rho + \delta} \).

Given a Hamiltonian \(H \), close to \(H^0 \), our goal is to construct a canonical transformation \(U_H \), that satisfies the equation \(\Gamma^- \circ U_H = 0 \). Such a transformation is close to the identity as the Hamiltonian \(H \) is close to integrable. We would like to perform first a canonical transformation \(U : (x, y) \mapsto (x', y') \), generated by a function \(\phi \) as
\[
x' = x + \nabla_y \phi(x, y), \quad y' = y - \nabla_x \phi(x, y'),
\]
where \(\nabla_x = (\partial_1, \partial_2) \) and \(\nabla_y = (\partial_3, \partial_4) \), which satisfies the linearized version of the above equation, i.e. \(\nabla \cdot (H + \{H, \phi\}) = 0 \). Here, \(\{H, \phi\} \) denotes the Poisson bracket of the functions \(H \) and \(\phi \), defined by \(\{H, \phi\} = \nabla_x H \cdot \nabla_y \phi - \nabla_x \phi \cdot \nabla_y H \).

We introduce \(\psi = \partial_1 \phi \) and define the operators \(D_1 = \partial_1 \partial_1^{-1} \), for \(i = 1, 2, 3, 4 \), on \(\Gamma^- A(\rho) \), \(\rho > 0 \), componentwise.

Proposition 5.2 \(D_2, D_3 \) and \(D_4 \) are bounded linear operators on \(\Gamma^- A(\rho) \), with operator norms satisfying
\[
\|D_2\| \leq \frac{\|\omega\|}{\kappa}, \quad \|D_3\| \leq \frac{\|\omega\|}{\kappa \rho_2}, \quad \|D_4\| \leq \frac{\|\omega\|}{\kappa \rho_2^2}.
\]

Proof: Consider first the action of the operators \(D_2, D_3 \) and \(D_4 \) on \(H_{v, k}(x, y) = y_1^{k_1} y_2^{k_2} e^{iv \cdot x} \) with \((v, k) \) belonging to \(\Gamma^- \). We find that
\[
\|D_2 H_{v, k}\|_\rho \leq \frac{\|\omega\|}{\kappa \rho_2} \|H_{v, k}\|_\rho, \quad \|D_3 H_{v, k}\|_\rho \leq \frac{\|\omega\|}{\kappa \rho_2} \|H_{v, k}\|_\rho, \quad \|D_4 H_{v, k}\|_\rho \leq \frac{\|\omega\|}{\kappa \rho_2^2} \|H_{v, k}\|_\rho.
\]
These bounds extend by linearity to the whole \(\Gamma^- A(\rho) \). \(\square \)
Let \(H = H^0 + h \), where \(H^0 = \|\omega\| y_1 + y_2^2/2 \) and \(h \in A(g) \), with \(g > \eta > 0 \), componentwise. On \(\Gamma \mathcal{A}(g-\eta) \), define the operator \(L(h) \) by the following action on an arbitrary \(\psi \in \Gamma \mathcal{A}(g-\eta) \),

\[
L(h)\psi = \frac{1}{\|\omega\|} (-y_3 D_2 \psi + \partial_1 h D_3 \psi + \partial_2 h D_4 \psi - \partial_3 h D_1 \psi - \partial_4 h D_2 \psi). \quad (30)
\]

Using the bounds obtained in Proposition 5.1 and Proposition 5.2, we find that

\[
\|L(h)\psi\|_{e-\eta} \leq \left(\frac{g_2 - \eta_2}{\sigma} + \left(\frac{2}{\kappa \eta_1} (g_2 - \eta_2) + \frac{1}{\|\omega\| \eta_2} \right) \|h\|_e \right) \|\psi\|_{e-\eta}. \quad (31)
\]

As \(\|\omega\| \geq 2 \ell \), if \(g_2 - \eta_2 < \sigma \) and \(\|h\|_e \) is sufficiently small, then \(\|L(h)\psi\|_{e-\eta} \leq A \|\psi\|_{e-\eta} \) for every \(\psi \in \Gamma \mathcal{A}(g-\eta) \) and some positive constant \(A < 1 \). Therefore, the operator norm \(\|L(h)\| \leq A < 1 \).

This enables us to solve the equation \(\Gamma \{ (H + \{H, \phi\}) \} = 0 \) for the generating function of the canonical transformation \(U \).

Proposition 5.3 Let \(H \) belong to \(\mathcal{A}(g) \), where \(g > \eta > 0 \), componentwise, and \(g_2 - \eta_2 < \sigma \). If \(\|h\|_e \) is sufficiently small such that, by the inequality (31), \(L(h) \) is an operator on \(\Gamma \mathcal{A}(g-\eta) \) bounded in norm by a positive constant \(A < 1 \), then the equation

\[
\Gamma \{ (H + \{H, \phi\}) \} = 0, \quad \Gamma \phi = 0,
\]

has a unique solution \(\phi \), such that \(\psi = \partial_1 \phi \) belongs to \(\Gamma \mathcal{A}(g-\eta) \), and satisfies

\[
\|\psi\|_{e-\eta} \leq (1 - A)^{-1} \frac{\|L^{-1} H\|_{e-\eta}}{\|\omega\|}, \quad \|\{H, \phi\}\|_{e-\eta} \leq (1 - A)^{-1} \|L^{-1} H\|_{e-\eta}. \quad (32)
\]

Proof: Let \(L^\pm = \Gamma L(h) \Gamma^{-1} \). Equation (32) can now be written in the form \(\Gamma \{ -L \} \psi = \Gamma \{ h / \|\omega\| \} \psi \). The assumptions guarantee that the operator norms of \(L^\pm \) satisfy \(\|L^\pm\| \leq A < 1 \).

Equation (32) can then be solved by inverting the operator \(I - L^\pm \) by means of a Neumann series. The solution \(\psi \) satisfies the first of the bounds (33). As \(\{H, \phi\} = (L(h) - \Gamma) \psi / \|\omega\| = L^\pm \psi / \Gamma - \Gamma h \), using this bound one obtains the second one. \(\square \)

The next Proposition shows that the function \(\phi \) generates an explicit canonical transformation.

Proposition 5.4 Let \(0 < \delta' = 2\sigma^{-1} \epsilon^3 < \epsilon_2 = \delta'_2 < \eta_2 - \delta_2 \) and \(\sigma < 2 \ell \). Let also \(\delta'' = (0, \delta_2') \). Define \(B \) to be the closed ball of radius \(\delta''_2 / 2 \) in \(A(g-\eta-\delta') \) centered at zero. If \(\psi \in \Gamma \mathcal{A}(g-\eta) \) satisfies \(\|\psi\|_{e-\eta} \leq \epsilon^3 / \|\omega\| \), the equation

\[
K(g) = g, \quad K(g) = \nabla_x \psi(x, y - g), \quad g = g(x, y) = y - y', \quad (34)
\]

has a unique solution \(g \in B^2 = B \times B \) and \(\|g\|_{e-\eta-\delta'} \leq \sigma^{-1} \|\omega\| \|\psi\|_{e-\eta} \).

Proof: By assumption, for every \(g \in B^2 \), \(\|g\|_{e-\eta-\delta'} \leq \delta''_2 / 2 \). Using the bounds obtained in Proposition 5.1 and Proposition 5.2, we find that for every \(g, g' \in B^2 \), there exists \(g'' \in B^2 \), such that

\[
\|K(g)\|_{e-\eta-\delta'} \leq \|\nabla_x \psi\|_{e-\eta} \leq \max \{1, \sigma^{-1} \|\omega\| \} \|\psi\|_{e-\eta} \leq \sigma^{-1} \|\omega\| \|\psi\|_{e-\eta} \leq \sigma^{-1} \epsilon^3 \quad (35)
\]

and

\[
\|K(g') - K(g)\|_{e-\eta-\delta'} \leq \|\nabla_x K(g'')\|_{e-\eta-\delta'} \|g' - g\|_{e-\eta-\delta'} \leq \|\nabla_x \nabla_x \psi(x, y')\|_{e-\eta-\delta'} \|\psi\|_{e-\eta-\delta'} \leq 2\delta''_2 \|\nabla_x \psi\|_{e-\eta} \|g' - g\|_{e-\eta-\delta'} \leq 2\delta''_2 \sigma^{-1} \|\omega\| \|\psi\|_{e-\eta} \|g' - g\|_{e-\eta-\delta'} \leq 2\delta''_2 \sigma^{-1} \epsilon^3 \|g' - g\|_{e-\eta-\delta'}.
\]
As, by assumption, $2\delta_2^{-1}\sigma^{-1}e^3 < 1$, these inequalities show that K is a contraction on B^2, and thus has a unique fixed point $g \in B^2$. The inequality (35) provides the desired bound on the norm of g.

Proposition 5.5 Let $\eta > 2\delta > 0$, $\eta > 0$ and $\delta' = (\delta_1', \delta_2') = \varepsilon r > 0$, componentwise, with $\delta_1' = \sigma^2\delta_1' / [\kappa(\eta - \eta_2)]$. Also let $0 < \delta''_2 = 2\sigma^{-1}e^3 < \delta''_2 = \varepsilon r_2 < \eta_2 < \sigma < 2\ell$. Assume further that $H \in \mathcal{A}(\eta - \eta)$ satisfies $\|H - H^0\|_{\eta - \eta} < b$ and that $b > 0$ is small enough such that the linear operator $L(H - H^0)$ is bounded on $\mathcal{F}_n \mathcal{A}(\eta - \eta)$ by $\|L(H - H^0)\| \leq A < A' < 1$. If $\|\Gamma H\|_{\eta - \eta} \leq (1 - A')\varepsilon^3$, the canonical transformation U exists and maps $\mathcal{D}(\eta - \eta - 2\delta')$ into $\mathcal{D}(\eta - \eta)$. The function $H \circ U$ belongs to $\mathcal{A}(\eta - \eta - 2\delta')$ and $L(H \circ U - H^0)$ is a bounded operator on $\mathcal{F}_n \mathcal{A}(\eta - \eta - 2\delta')$. They satisfy the bounds

\[
\begin{align*}
\|\Gamma (H \circ U)\|_{\eta - \eta - 2\delta} & \leq C_2(\varepsilon)\varepsilon^4, \\
\|H \circ U - H\|_{\eta - \eta - 2\delta} & \leq (1 + \varepsilon C_2(\varepsilon))\varepsilon^3 = \Delta b, \\
\|L(H \circ U - H^0)\| & \leq \|L(H - H^0)\| + C_3(1 + \varepsilon C_1(\varepsilon))\varepsilon^2 = A + \Delta A(\varepsilon),
\end{align*}
\]

where

\[
C_n(\varepsilon) = \frac{\sigma n r_2 + \varepsilon_2 n r_2 + \frac{1}{2}(n r_2)^2 + \|h\|_{\eta - \eta}}{\sigma n r_2(\sigma n r_2 - \varepsilon^2)},
\]

for $n = 1, 2$, and

\[
C_3(\varepsilon) = \frac{2(\eta - \eta_2)}{\sigma r_2(\eta_2 - \eta_2 - 2r_2\varepsilon)} + \frac{1}{\sigma r_2} + \frac{1}{1.5r_2}.
\]

Proof: Our assumptions guarantee that there exists a canonical transformation U with a generating function ϕ that solves the linear equation (32). More specifically, if $b > 0$ has been chosen sufficiently small, then there exists $\psi \in \mathcal{A}(\eta - \eta)$ satisfying $\|\psi\|_{\eta - \eta} < \varepsilon^3 |\omega|$ and $g \in B^2$ of norm $\|g\|_{\eta - \eta - 2\delta} < \sigma^{-1}|\omega||\psi|_{\eta - \eta}$ that solves the equation (34).

Define the following one parameter ($s \in \mathbb{C}$) family

\[
F(s) = -s(\|\omega\|\psi(x, y - s g) + y_2 D_2\psi(x, y - s g)) + \frac{1}{2}s^2(D_2\psi(x, y - s g))^2
\]

\[
+ h(x + s \nabla_x \phi(x, y - s g), y - s \nabla_x \phi(x, y - s g)),
\]

passing through $F(0) = H - H^0$ and $F(1) = H \circ U - H^0$, with $F'(0) = \{H, \phi\}$. Assuming that $|s| \leq s_0 = \sigma^{-3}\delta_2'$, where $n \in \{1, 2\}$, and using the Proposition 5.1 and Proposition 5.2, we obtain the following bounds,

\[
\begin{align*}
\|s g\|_{\eta - \eta - 2\delta} & \leq s_0\sigma^{-1}|\omega||\psi|_{\eta - \eta} < n\delta_2', \\
\|s \nabla_x \phi(x, y - s g)\|_{\eta - \eta - 2\delta} & \leq s_0\sigma^{-1}|\omega||\psi|_{\eta - \eta} < n\delta_2', \\
\|s \nabla_y \phi(x, y - s g)\|_{\eta - \eta - 2\delta} & \leq s_0[s_0(2\eta - \eta_2)]^{-1}|\omega||\psi|_{\eta - \eta} < n\delta_2' .
\end{align*}
\]

(37)

These bounds, together with Proposition 5.1, imply that $F(s)$ belongs to $\mathcal{A}(\eta - \eta - n\delta')$, whenever $|s| \leq s_0$. In fact, this is true on an open neighborhood of the disc $|s| \leq s_0$, as the inequalities (37) are strict due to $A < A'$. Now, we have

\[
\|H \circ U - H - \{H, \phi\}\|_{\eta - \eta - n\delta'} = \|F(1) - F(0) - F'(0)\|_{\eta - \eta - n\delta'}
\]

\[
\leq \left\| \frac{1}{2\pi i} \int_{|s| = s_0} \frac{ds}{s^2(s - 1)} F(s) \right\|_{\eta - \eta - n\delta'}
\]

\[
\leq \frac{1}{s_0(s_0 - 1)}(s_0\|\omega||\psi|_{\eta - \eta} + s_0\varepsilon_2\sigma^{-1}|\omega||\psi|_{\eta - \eta} + \frac{1}{2}s_0\sigma^{-2}|\omega|^2|\psi|_{\eta - \eta}^2 + \|h||\psi|_{\eta - \eta})
\]

\[
\leq \frac{\sigma n\delta_2' + \varepsilon_2 n\delta_2' + \frac{1}{2}(n\delta_2')^2 + \|h||\psi|_{\eta - \eta}}{\sigma \varepsilon^{-3}n\delta_2'(\sigma \varepsilon^{-3}n\delta_2' - 1)} = C_n(\varepsilon)\varepsilon^4 .
\]
As \(\Gamma^-(H \circ U) = \Gamma^-(H \circ U - H - \{H, \phi\}) \), the first of the inequalities (36) immediately follows from this estimate for \(n = 2 \). From Proposition 5.3 and the inequality

\[\|H \circ U - H\|_{\varrho - \eta - 2\delta'} \leq \|H \circ U - H - \{H, \phi\}\|_{\varrho - \eta - 2\delta} + \|\{H, \phi\}\|_{\varrho - \eta - 2\delta}, \]

we find that \(\|H \circ U - H\|_{\varrho - \eta - 2\delta} \leq (1 - A)^{-1}\|H\|_{\varrho - \eta} + C_2(\epsilon)\epsilon^4 \). This implies the second inequality in (36). The fact that the map \(U \) takes \(D(\varrho - \eta - 2\delta') \) into \(D(\varrho - \eta) \) follows from the bounds (37) and Proposition 5.1.

From the definition of the operator \(L(h) \), one can find that

\[\|L(H \circ U - H^0)\| \leq \|L(H - H^0)\| + \left(\frac{2}{\kappa_1^2(\varrho - \eta - 2\delta')^2} + \frac{1}{\kappa_2^2} \right) \|H \circ U - H\|_{\varrho - \eta - \delta}. \]

Using the inequality \(\|H \circ U - H\|_{\varrho - \eta - \delta} \leq (1 + C_1(\epsilon))\epsilon^3 \), which can be obtained analogously to the second bound in (36), one can obtain the last desired inequality.

Theorem 5.6 Let \(\varrho > \varrho' > 0 \), componentwise, \(\varrho_2 < \sigma < 2\ell \) and \(0 < A < 1 \). Let \(B \) be an open set of Hamiltonians \(H \in \mathcal{A}(\varrho) \), for which \(\|H - H^0\|_{\varrho} < b \) and \(\|\|H\|_{\varrho} < (1 - A')\epsilon^3 \).

If \(b > 0 \) and \(\epsilon > 0 \) are sufficiently small, then for every Hamiltonian \(H \in B \) there exists an analytic canonical transformation \(U^2 : D(\varrho - \eta - 2\epsilon) \to D(\varrho - \eta) \) that solves the equation \(\Gamma^-(H \circ U) = 0 \).

The map \(H \mapsto H \circ U \) is analytic from \(B \) to \(\Gamma^+(\varrho') \), and

\[\|H \circ U - H\|_{\varrho'} \leq \epsilon^3 + O(\epsilon^4). \]

Proof: Let \(\varrho > \varrho - \eta > \varrho' > 0 \) and \(r > 0 \), componentwise, with \(r_1 = \sigma r_2/\kappa(\varrho_2 - \eta_2) \). For sufficiently small \(b > 0 \), the norm of the operator \(L(H - H^0) : \mathcal{A}(\varrho - \eta) \to \mathcal{A}(\varrho - \eta) \) is bounded by a positive constant \(A < A' < 1 \).

By Proposition 5.5, there exists a canonical transformation \(U : \mathcal{D}(\varrho - \eta - 2\epsilon r) \to \mathcal{D}(\varrho - \eta) \) such that \(\|H \circ U\|_{\varrho - \eta - 2\epsilon r} \leq C_2(\epsilon)\epsilon^4 \). We would like to iterate the map \(H \mapsto H \circ U \), indefinitely. Introducing \(f(\epsilon) = [\varrho C_2(\epsilon)/(1 - A')]^{1/3} \), \(\epsilon \), we obtain \(\|H \circ U\|_{\varrho - \eta - 2\epsilon r} \leq (1 - A')f(\epsilon)^3 \). Let \(\epsilon_i = f(\epsilon) \), for \(i \in \mathbb{N}_0 \). For sufficiently small \(\epsilon \), the sum \(\sum_{i=0}^{\infty} \epsilon_i r \) converges to a limit \(\Delta = O(\epsilon) \). The sum \(\sum_{i=0}^{\infty} \varrho A(\epsilon_i) \) converge to \(\Delta \) and \(\Delta = O(\epsilon^2) \), respectively. Thus, for sufficiently small \(\epsilon \) the map \((H, \epsilon, \varrho - \eta) \mapsto (H \circ U, f(\epsilon), \varrho - \eta - \delta) \) can be iterated indefinitely and the iterations converge to a limit \((H \circ U, 0, \varrho - \eta - \delta) \).

For sufficiently small \(\epsilon, \varrho - \eta - \delta > \varrho' \), componentwise.

As \(\epsilon_i \) are summable, the sequence of canonical transformations \(U \) generates a uniformly convergent sequence on \(\mathcal{D}(\varrho - \eta - \delta) \). The analyticity of the map \(H \mapsto H \circ U \) follows from uniform convergence of our iteration scheme. The desired bound can be obtained from the second inequality in (36) and its iterations.

Let \(\hat{H}_n \) be the Hamiltonian vector field generated by \(H_n \), i.e. \(\hat{H}_n = (\mathcal{N}H_n) \cdot \nabla \), where \(\mathcal{N}(q, p) = (q, -p) \) and \(\nabla = (\nabla_q, \nabla_p) \).

The derivative of the map \(\hat{N}_{H_n} : H_n \mapsto H_n \circ U_{H_n} \) at a resonant Hamiltonian \(H_n^+ \) is given by \(D\hat{N}_{H_n}(H_n^+) = \hat{H}_n^+ - T_{H_n}^+ \hat{H}_n^+ (\hat{I}_{H_n^+} - 1) - 1 \hat{I}_n \).

Let \(K_n = \omega_n \cdot p \) and let \(E_{H_n} = K_n^0 + f_n \), where \(f_n = \frac{1}{2}(\Omega_n \cdot p)^2 + \mathcal{E}_n \). The derivative of the map \(\hat{N}_{H_n} \) at a q-independent Hamiltonian \(\mathcal{E}_{H_n} \) is

\[D\hat{N}_{H_n}(\mathcal{E}_{H_n}) = \hat{K}_n^0 - T_{H_n}^+ \hat{K}_n^0 (\hat{I}_{K_n^0} - 1)^{-1} - 1 \hat{I}_n. \]

The norm of the operator \(\hat{f}_n \hat{K}_n^0 : \mathcal{A}_n(\varrho) \to \mathcal{A}_n(\varrho') \) satisfies the bound

\[\|\hat{f}_n \hat{K}_n^0\| \leq \frac{\varrho_2}{\sigma} + \frac{1}{\|\omega_n\|} \sum_{k \in \mathbb{N}_0} \|h_n\|_{0,k} \left(k_1 + k_2 \frac{\|\omega_n\|}{\sigma} \right) \frac{\varrho_2}{\sigma^2}, \]

and thus

\[\|\hat{f}_n \hat{K}_n^0\| \leq \frac{\varrho_2}{\sigma} + \frac{1}{\|\omega_n\|} \left(1 + \frac{\varrho_2}{\varrho_2'} \right) \frac{\varrho_2}{\sigma^2} \left(1 - \varrho_2'/\varrho_2 \right)^2. \]
As \(\varphi_2 < \sigma \), if \(\|Eh_n\|_{n,\varnothing} \) is sufficiently small, then \(\|\hat{f}_nR_n^{-1}1_n\| < 1 \) and thus the operator \((1 + \sum_n \hat{f}_nK_n^{-1}1_n)\) in (39) can be inverted by means of a Neumann series. If \(\varphi_2 < \sigma/2 \) and \(\|Eh_n\|_{n,\varnothing} \) is sufficiently small, then the operator norm \(\|D\Lambda_n(Eh_n)\| \) can be bounded by 1.

6. DIOPHANTINE FREQUENCY VECTORS AND SOME BOUNDS

Recall that the \(n^{\text{th}} \)-step renormalization operator is associated to the pair of vectors \((\omega_n,\Omega_n)\) generated from a pair \((\omega,\Omega)\). We assume that \(\omega \in \mathbb{R}^2 \) is of the form \(\omega = \ell(1,\alpha)^* \), where \(\alpha > 1 \) and \(\ell \in \mathbb{R}^+ \). For the vectors \(\omega = \ell(1,\alpha)^* \) with \(\alpha < 1 \), a canonical transformation of the phase space can be performed, generated by a matrix from \(GL(2,\mathbb{Z}) \), such that the “new” vector \(\omega \) is of the desired form. Thus, without loss of generality we can assume that \(\alpha > 1 \) and, consequently, for any \(n \in \mathbb{N}_0 \), \(\omega_n = \ell(1,\alpha_n)^* \) with \(\alpha_n > 1 \).

The vectors \((1,\alpha_n)^* = (-1)^n(p_{n-1} - \alpha q_{n-1})^{-1}p_{n-1}(1,\alpha)^* \) can be obtained using the convergent matrices (12). Therefore, we have

\[
\alpha = \frac{\alpha_n p_{n-1} + p_{n-2}}{\alpha_n q_{n-1} + q_{n-2}}.
\]

The convergents \(p_n/q_n \) satisfy (Theorem 171 in [15])

\[
|\alpha - p_n/q_n| < \frac{1}{q_n q_{n+1}}.
\]

They are the best rational approximations of \(\alpha \), in the sense that for any \(p \in \mathbb{Z} \) and \(q \in \mathbb{N} \), such that \(0 < q \leq q_n \) and \(p/q \neq p_n/q_n \), \(n \in \mathbb{N} \), one has \(|p_n - \alpha q_n| < |p - \alpha q| \) (Theorem 182 in [15]).

From the equality (42), for \(n \geq 0 \), we find

\[
x_n = -\frac{p_n - \alpha q_n}{p_{n-1} - \alpha q_{n-1}}.
\]

Denoting the product of the first \((n+1)\) numbers \(x_i \) by \(\beta_n = \prod_{i=0}^{n} x_i = \prod_{i=0}^{n} \alpha_i^{-1} \), we obtain that \(\beta_n = (-1)^{n+1}(p_n - \alpha q_n) \). Notice that \(\det(P_n) = (-1)^{n+1} \). Using the equality (42) again, one easily finds that \(\beta_{n+1} = q_{n+1} + q_n x_{n+1} \), and thus, \(q_{n+1} < \beta_{n+1} < 2q_{n+1} \).

Define \(\tilde{A}_n = \prod_{i=0}^{n} \alpha_i \). As \(\beta_n = \alpha_0 \tilde{A}_{n+1}^{-1} \), the previous bound implies

\[
\alpha_0 q_n < \tilde{A}_n < 2\alpha_0 q_n,
\]

assuming that \(\alpha_0 > 0 \).

Emphasizing again that the values of \(q_n \) and \(p_n \) are associated to \(\alpha \) by writing explicitly \(q_{n}(\alpha) \) and \(p_{n}(\alpha) \), notice that \(q_{n+1}(\alpha_0) = p_{n}(\alpha_1) \). The double inequality (45) for \((n + 1)\) instead of \(n \), can be written as

\[
p_{n}(\alpha_1) < \frac{\tilde{A}_{n+1}}{\alpha_0} < 2p_{n}(\alpha_1),
\]

implying the following bounds on \(p_n \),

\[
p_n < \tilde{A}_n < 2p_n.
\]

It is easy to show that \(\tilde{A}_n \) grows at least exponentially with \(n \). If \(1 < \alpha_i \leq \gamma \), for some \(i \in \{0,\ldots,n-1\} \), then \(\alpha_i \alpha_{i+1} = \alpha_i/(\alpha_i - \alpha_{i-1}) \geq \gamma/(\gamma - 1) = \gamma^2 \), where \(\gamma = (1 + \sqrt{5})/2 \) is the golden mean, the limit of the sequence of ratios \(F_{k+1}/F_k \) of successive Fibonacci numbers \(F_k \), defined by \(F_{k+2} = F_{k+1} + F_k \), for \(k \in \mathbb{N} \), and \(F_1 = F_2 = 1 \). This implies that \(\tilde{A}_n/\tilde{A}_{n-1} \geq \gamma^{n-1} \), for \(0 < j \leq n \). If \(\alpha_0 > 1 \), then \(\tilde{A}_n \geq \gamma^n \) and the previous inequality is also valid for \(j = 0 \), with \(\tilde{A}_{-1} = 1 \).

This growth can be controlled if \(\alpha \) is a Diophantine number.
Definition 6.1 An irrational number \(\alpha \) will be called Diophantine of order \(\beta \geq 0 \) if there exists a constant \(C > 0 \), such that for all \(p \in \mathbb{Z} \) and \(q \in \mathbb{N} \),

\[
|\alpha - \frac{p}{q}| > \frac{C}{q^{2+\beta}}.
\]

(48)

The set of all Diophantine numbers of order \(\beta \) will be denoted by \(D(\beta) \). Sometimes, less precisely, we will call Diophantine a vector \(\omega \in \mathbb{R}^2 \) with a Diophantine winding ratio. The Diophantine condition on \(\omega \) states that there exists \(C > 0 \), such that for all \(\nu \in \mathbb{Z}^2 \setminus \{0\} \), \(|\omega \cdot \nu| > C\|\nu\|^{-1+\beta}\).

The Diophantine condition on \(\alpha \), together with the inequality (43), imposes an upper bound on the growth rate of the denominators of its convergents. For \(\alpha \in D(\beta) \), there exists a constant \(K > 0 \) such that \(q_{n+1} < Kq_n^{1+\beta} \), for all \(n \in \mathbb{N}_0 \). Equivalently, using the inequalities (45), the Diophantine condition can be written as

\[
\bar{A}_{n+1} < K\bar{A}_n^{1+\beta},
\]

(49)

where \(K > 0 \) is a constant.

In particular, constant-type numbers, which have a bounded sequence of partial quotients, are Diophantine of order zero. Among them are quadratic irrationals, i.e. the roots of quadratic equations with integer coefficients, whose continued fraction expansions are eventually periodic. Constant-type numbers have zero Lebesgue measure in the real numbers. Diophantine numbers of any order \(\beta \) are of measure one.

Though the construction of a one-step renormalization transformation is more general, the bound (49) plays an essential role in the proof of Theorem 7.2 concerning the existence of a trivial attracting orbit of the sequence of renormalization operators which is associated to a Diophantine vector \(\omega \in \mathbb{R}^2 \). To prove the Theorem, we will also need the bounds obtained in the following Proposition.

Proposition 6.2 If \(\Omega_0 \in \mathbb{R}^2 \) is suitable, so is every \(\Omega_n = T_{n-1}^{-1}\Omega_{n-1}/\|T_{n-1}^{-1}\Omega_{n-1}\| \), for all \(n \in \mathbb{N} \). For a suitable choice of \(\Omega_0 \), we have the following bounds,

\[
\frac{1+\alpha_0}{4\alpha_0}(\bar{A}_n + \bar{A}_{n-1}) < \prod_{i=0}^{n-1}\|T_{n-i}^{-1}\Omega_i\| < (\bar{A}_n + \bar{A}_{n-1}).
\]

(50)

Proof: The first part of the claim can be proved by induction. Notice that \(\|P_n^{-1}\Omega_0\| = \|T_n^{-1}\cdots T_n^{-1}\Omega_0\| = \prod_{i=0}^{n}\|T_i^{-1}\Omega_i\| \), as the matrices \(T_i \) are symmetric. One easily finds that for a suitable \(\Omega_0 \in \mathbb{R}^2 \), \(1/2(p_n + p_{n-1} + q_n + q_{n-1}) \leq \|P_n^{-1}\Omega_0\| \leq p_n + p_{n-1} \). The bounds (50) follow from the inequalities (45) and (47).

7. CONVERGENCE OF THE RENORMALIZATION SCHEME

Recall that the orbit of an integrable Hamiltonian \(H_0^0 = \omega \cdot p + 1/2(\Omega \cdot p)^2 \) under the renormalization consists of Hamiltonians \(H_n^0 = \omega_n \cdot p + 1/2(\Omega_n \cdot p)^2 \), where \(n \in \mathbb{N}_0 \). The maps \(\omega_n \mapsto \omega_{n+1} \) and \(\Omega_n \mapsto \Omega_{n+1} \) are induced by the Gauss map of the inverse winding ratio of \(\omega \).

The vectors \(\omega \) with the winding ratio \(\alpha = [a_1, a_2, \ldots] \), where \(a \in \mathbb{N} \), are the fixed points of the first of these maps. A suitable vector \(\Omega \) is not necessarily a fixed point of the dynamics. However, in this case, it is possible to make a particular choice of \(\Omega \), such that it is a fixed point of the map. The corresponding integrable Hamiltonian \(H_0^0 \) is then a fixed point of the renormalization.

Similarly, if the winding ratio of a frequency vector \(\omega \) has a periodic continued fraction expansion, one can make a particular choice of a suitable vector \(\Omega \), such that the Hamiltonian \(H_0^0 \) generates a periodic orbit of the renormalization. More generally, if the winding ratio of \(\omega \) is a quadratic irrational and a particular choice of a suitable vector \(\Omega \) is made, the dynamics of \(H_0^0 \) eventually settles on a periodic orbit.
In the following, we show that if \(\omega_0 \) is a Diophantine vector and \(\Omega_0 \) is an arbitrary suitable vector, then the orbit of a resonant Hamiltonian \(H_0 \), sufficiently close to \(H_0^0 \), approaches the orbit of \(H_0^0 \) exponentially fast, under the action of the sequence of the renormalization operators \(R_n, n \in \mathbb{N}_0 \).

We first present a description of the eigenspaces of the derivative of the \(n^{th} \)-step renormalization operator at \(H_0^0 \), which is given by its action on an arbitrary function \(f_n \in \mathbb{I}_{n}^{n} \mathcal{A}_n(\rho') \), where \(\rho' > 0 \), componentwise, as

\[
DR_n(H_0^0) f_n = \frac{\theta_n}{\rho_n} \left(I - \mathbb{P}_{n+1}^{(0,0)} - \mathbb{P}_{n+1}^{(1,0)} - \mathbb{P}_{n+1}^{(0,2)} \right) \mathcal{D}N_{n+1}(H_0^{n+1}) f_n \circ T_n.
\]

The space of \(q \)-independent Hamiltonians is an invariant subspace of the derivative operator.

A constant Hamiltonian, and the Hamiltonians (\(\hat{\omega} \cdot p \), \(\Omega_n \cdot p \)) and (\(\hat{\omega} \cdot p \)), are eigenvectors with eigenvalue zero. For \(k \in \mathbb{N}_0^2 \) different from \((0,0) \), \((1,0)\), \((0,1)\) and \((0,2)\), the derivative operator maps the Hamiltonian \((\hat{\omega} \cdot p)^{k_1} (\Omega_n \cdot p)^{k_2} \) into

\[
DR_n(H_0^0)(\hat{\omega} \cdot p)^{k_1} (\Omega_n \cdot p)^{k_2} = \frac{\|\hat{\omega}_{n+1}\|^{k_1}}{(\alpha_{n+1} \|T_n^{-1} \Omega_n\|)^{2(k_1-1)+k_2}} (\hat{\omega}_{n+1} \cdot p)^{k_1} (\Omega_{n+1} \cdot p)^{k_2}.
\]

Thus, the operator norm of \(DR_n(H_0^0) \) acting on \(q \)-independent Hamiltonians can be bounded by

\[
\|DR_n(H_0^0)\| \leq \max\{1, \frac{\|\hat{\omega}_{n+1}\|}{\|\omega_{n+1}\|}\} \leq 2/3.
\]

The derivative of the \(n^{th} \)-step renormalization operator \(R_n \) at a \(q \)-independent Hamiltonian \(EH_n \) is the linear operator \(\mathcal{L}_n = DR_n(EH_n) : \mathbb{I}_n \mathcal{A}_n(\rho') \rightarrow \mathbb{I}_{n+1} \mathcal{A}_{n+1}(\rho') \), given by its action on an arbitrary \(f_n \in \mathbb{I}_n \mathcal{A}_n(\rho') \),

\[
\mathcal{L}_n f_n = \theta_n/\rho_n \mathcal{D} \mathcal{S}_{n+1}(EH_n) \mathcal{D}N_{n+1}(EH_n) f_n \circ T_n.
\]

The operators \(\mathcal{S}_{n+1} \) and \(\mathcal{V}_{n+1} \) have been introduced in Proposition 4.3 and Proposition 4.2, respectively. The next Proposition shows that there is a super-exponential shrinking of the \(q \)-dependent modes (which may also depend on the \(p \)-variables). In the case of vector fields on a torus, a similar result has been obtained in [28].

Proposition 7.1 Let \(\omega_0 \in \mathcal{D}(\beta) \), for some \(\beta \geq 0 \). There exist \(c_1, c_2 > 0 \), such that

\[
\|\mathcal{L}_n \circ \cdots \circ \mathcal{L}_j(I - \mathbb{E})\| \leq c_1^{-j+1} \frac{\Lambda_{j,n}^2}{\Lambda_{j-1,n}^2} A_{j-1,n} e^{-c_2\Lambda_{j,n}},
\]

for \(n \geq 0 \) and \(j = 0, \ldots, n \), assuming that \(\|h_i\|_{i,p} \leq \zeta_i/2 \), for \(i = j, \ldots, n \), where, as before, \(\zeta_i = C_i/(\alpha_i \alpha_{i+1})^2 \), \(C_i \geq 0 \). Here,

\[
\Lambda_{j,n} = \max\{\sigma, \kappa\} \Lambda_{j-1,n}^{1+\beta}. \tag{55}
\]

Proof: The following properties of the linear operator \(\mathcal{L}_n \) will be useful to prove this Proposition. First, \(\mathcal{L}_n = \mathbb{I}_{n+1}^{n+1} \mathcal{L}_n \). Second, when acting on a Fourier mode, this operator changes its index \(\nu \) into \(T_n^{\nu} \nu \), as the derivatives of the elimination, translation and scaling maps do not change the value of \(\nu \). We are interested in the action of the operator \(\mathcal{L}_n \circ \cdots \circ \mathcal{L}_j(I - \mathbb{E}) \) on the modes indexed by \(\nu \neq 0 \). A mode with a particular value of \(k \in \mathbb{N}_0^2 \) can in general produce modes with different \(k' \)-values in \(\mathbb{N}_0^2 \). We will denote by \(\|k\|_{\text{min}} \) the minimum of the norms of the vectors \(k' \) generated from a mode index \(k \).

For every \(n \in \mathbb{N}_0 \), let

\[
I_n^{1+} = \{ (\nu, k) \in I_n^1 : |\hat{\omega}_n \cdot \nu| \leq \sigma |\Omega_n \cdot \nu| \},
\]

\[
I_n^{2+} = \{ (\nu, k) \in I_n^1 : |\hat{\omega}_n \cdot \nu| \leq \kappa |k| \}.
\]
be the two subsets of I^+_n. We also define the following subset of I^+_j, for $j = 0, \ldots, n$,
$$V^+_j = \{(\nu, k) \in I^+_j : (T^*_n \cdots T^*_j \nu, k') \in I^+_n \}.$$

For every $(\nu, k) \in V^+_j$, ν must satisfy the resonant condition
$$|\omega_{n+1} \cdot T^*_n \cdots T^*_j \nu| \leq \sigma |\Omega_{n+1} \cdot T^*_n \cdots T^*_j \nu|.$$ \hspace{1cm} (56)
Notice that $\omega_{n+1} \cdot T^*_n \cdots T^*_j \nu = T_j \cdots T_n \omega_{n+1} \cdot \nu$. As $T_n^{-1} \omega_n = \alpha_{n+1}^{-1} \omega_{n+1}$, we obtain
$$T_j \cdots T_n \omega_{n+1} = \omega_j \prod_{i=j+1}^{n+1} \alpha_i.$$ \hspace{1cm} (57)
Similarly, $\Omega_{n+1} \cdot T^*_n \cdots T^*_j \nu = T_j \cdots T_n \Omega_{n+1} \cdot \nu$. From $T_n^{-1} \Omega_n = \Omega_{n+1} \|T_n^{-1} \Omega_n\|$, we find
$$T_j \cdots T_n \Omega_{n+1} = \Omega_j \prod_{i=j}^n \frac{1}{\|T_i^{-1} \Omega_i\|}.$$

The condition (56) can then be written in the form
$$\left(\frac{1}{\sigma} \prod_{i=j+1}^{n+1} \alpha_i \|T_i^{-1} \Omega_{i-1}\| + \frac{1}{\|\omega_j\|}\right) |\omega_j \cdot \nu| \leq |\hat{\omega}_j \cdot \nu| + |\Omega_j \cdot \nu|.$$ \hspace{1cm} (58)
A lower bound on $|\omega_j \cdot \nu|$ can be obtained by using the Diophantine property of ω_0, i.e. that there exists $C_0 > 0$, such that $|\omega_0 \cdot \nu| \geq C_0 \|\nu\|^{-1+\beta}$, for any $\nu \in \mathbb{Z}^2$. This property implies that
$$|\omega_j \cdot \nu| = |\omega_0 \cdot T_0^{-1} \cdots T_j^{-1} \nu| \prod_{i=1}^j \alpha_i \geq \frac{C_0 \prod_{i=1}^j \alpha_i}{\|T_0^{-1} \cdots T_j^{-1} \nu\|^{1+\beta}},$$
for $j \geq 1$. As $\|T_0^{-1} \cdots T_j^{-1} \nu\| = \|T_j^{-1} \nu\| \leq (p_{j-1} + q_{j-1})\|\nu\| \leq (1 + 1/\alpha_0) \tilde{A}_{j-1} \|\nu\|$ and $\|\nu\| \leq 2(|\hat{\omega}_j \cdot \nu| + |\Omega_j \cdot \nu|)$, there exists $c > 1$, such that
$$|\omega_j \cdot \nu| \geq \frac{C_0 \tilde{A}_j}{c \alpha_0 (2c \tilde{A}_{j-1})^{1+\beta} (|\hat{\omega}_j \cdot \nu| + |\Omega_j \cdot \nu|)^{1+\beta}},$$ \hspace{1cm} (59)
for $j \geq 0$. The bounds (58) and (59) imply that
$$|\hat{\omega}_j \cdot \nu| + |\Omega_j \cdot \nu| \geq \left(\frac{1}{\sigma} \prod_{i=j+1}^{n+1} \alpha_i \|T_i^{-1} \Omega_{i-1}\| + \frac{1}{\|\omega_j\|}\right) C_0 \tilde{A}_j \\frac{\tilde{A}_{n+1} \prod_{i=j+1}^{n+1} \|T_i^{-1} \Omega_{i-1}\|}{\alpha_0 (2c \tilde{A}_{j-1})^{1+\beta} (|\hat{\omega}_j \cdot \nu| + |\Omega_j \cdot \nu|)^{1+\beta}},$$
and, thus,
$$(|\hat{\omega}_j \cdot \nu| + |\Omega_j \cdot \nu|)^{2+\beta} \geq \frac{C_0 \tilde{A}_{n+1} \prod_{i=j+1}^{n+1} \|T_i^{-1} \Omega_{i-1}\|}{\alpha_0 (2c)^{1+\beta} \sigma \tilde{A}_{j-1}^{1+\beta}}.$$

Using the bounds obtained in Proposition 6.2, we find that there exists $c' > 0$, such that
$$|\hat{\omega}_j \cdot \nu| + |\Omega_j \cdot \nu| \geq c' \Lambda^\nu_{j,n},$$ \hspace{1cm} (60)
where
$$\Lambda^\nu_{j,n} = \frac{\tilde{A}_{n+1} \tilde{A}_n}{\sigma \tilde{A}_{j-1}^{1+\beta} \tilde{A}_{j-1}}.$$ \hspace{1cm} (61)
Now consider the modes indexed by \((\nu, k) \in \mathbb{Z}^2 \times \mathbb{N}_0^2\) that belong to \(I_j^{+}\). Let \((T_n^* \ldots T_j^* \nu, k') \in I_{n+1}^+\) be the index of a mode generated by the action of the operator \(L_{n} \circ \cdots \circ L_{j}(I - E)\) on such a mode. The following condition must be satisfied,

\[
|\omega_{n+1} \cdot T_n^* \ldots T_j^* \nu| \leq \kappa ||k'||_{\min} \leq \kappa ||k'||.
\]

(62)

From the inequality (62), using the identity (57) and the Diophantine bound (59), we find that

\[
\|k'\| \geq ||k'||_{\min} \geq \frac{\mathcal{C}_0}{\kappa \mathcal{A}_{n+1}} \mathcal{A}_{j-1}^{\frac{1+\beta}{\gamma}} (|\hat{\omega}_j \cdot \nu| + |\Omega_j \cdot \nu|)^{1+\beta}.
\]

Define \(W_{j,n}^+ = \{ (\nu, k) \in I_j^+: (T_n^* \ldots T_j^* \nu, k') \in I_{n+1}^+ \}, \|\hat{\omega}_j \cdot \nu| + |\Omega_j \cdot \nu| \geq ||k'||_{\min}\}. \) If \((\nu, k) \in (I_j^+ \setminus V_{j,n}^+) \cap W_{j,n}^+\), then

\[
(|\hat{\omega}_j \cdot \nu| + |\Omega_j \cdot \nu|) \geq c'' \Lambda_{j,n}'',
\]

(63)

where

\[
\Lambda_{j,n}' = \frac{\mathcal{A}_{n+1}}{\kappa \mathcal{A}_{j-1}},
\]

(64)

and \(c'' > 0\). If \((T_n^* \ldots T_j^* \nu, k') \in I_{n+1}^+\) and \((\nu, k) \in (I_j^+ \setminus V_{j,n}^+) \cap (I_j^+ \setminus W_{j,n}^+),\) then

\[
\|k'\|_{\min} \geq c'' \Lambda_{j,n}''.
\]

(65)

Let \(V_{j,n}^+ : A_j(\rho') \rightarrow A_j(\rho')\) be the projection operator on \(A_j(\rho')\) over the indices in \(V_{j,n}^+\), defined by the action

\[
V_{j,n}^+ f_j = \sum_{(\nu, k) \in V_{j,n}^+} (f_j)_{\nu, k} (\hat{\omega} \cdot p)^{\nu} (\Omega \cdot p)^{k} e^{\nu \cdot \hat{\omega}} e^{k \cdot \Omega},
\]

on an arbitrary \(f_j \in A_j(\rho')\). Let \(V_{j,n}^+ : A_j(\rho') \rightarrow A_j(\rho'')\) be the same projection followed by an analytic inclusion in the \(q\) variables, obtained by restricting the domain of \(f_j \in A_j(\rho')\) to \(D_j(\rho'')\), where \(\rho' > \rho'' > 0\) and \(\rho' = \rho''_2\). As

\[
\|V_{j,n}^+ f_j\|_{\|\cdot\|_{\rho''}} \leq \|V_{j,n}^+ \| \|f_j\|_{\|\cdot\|_{\rho''}}, \text{ with } \|V_{j,n}^+ \| \leq e^{-(\rho' - \rho'')} \Lambda_{j,n}'', \text{ as follows from the bound (60)}.
\]

Similarly, let \(W_{j,n}^+ : A_j(\rho') \rightarrow A_j(\rho')\), be the projection operator on \(A_j(\rho')\) over the indexes in \(W_{j,n}^+\), and \(W_{j,n}^+ : A_j(\rho') \rightarrow A_j(\rho'')\) the same projection followed by an analytic inclusion in the \(q\) variables. Here, as before, \(\rho' > \rho'' > 0\) and \(\rho' = \rho''_2\). As

\[
\|W_{j,n}^+ f_j\|_{\|\cdot\|_{\rho''}} = \sum_{(\nu, k) \in W_{j,n}^+} |(f_j)_{\nu, k}| \rho_2^{\nu \cdot \hat{\omega}} e^{\nu \cdot \hat{\omega}} e^{k \cdot \Omega} e^{-(\rho' - \rho'')(\nu \cdot \hat{\omega}) + k \cdot \Omega},
\]

from the bound (63), we find that the operator norm of \(W_{j,n}^+\) satisfies \(\|W_{j,n}^+\| \leq e^{-(\rho' - \rho'')(\nu \cdot \hat{\omega}) + k \cdot \Omega} \Lambda_{j,n}''.\)

Let \(\mathcal{I}_n : A_n(\rho''') \rightarrow A_n(\rho')\), be the inclusion map obtained by restricting the domain of the functions \(f_n \in A_n(\rho''')\) to \(D_n(\rho')\), where \(\rho''_2 > \rho'' > 0\) and \(\rho'' = \rho'\). As

\[
\|\mathcal{I}_n f_n\|_{\|\cdot\|_{\rho'}} = \sum_{(\nu, k) \in I_n} |(f_n)_{\nu, k}| \rho_2^{\nu \cdot \hat{\omega}} e^{\nu \cdot \hat{\omega}} e^{k \cdot \Omega} e^{-(\rho' - \rho')(\nu \cdot \hat{\omega}) + k \cdot \Omega} \leq \|\mathcal{I}_n\| \|f_n\|_{\rho''},
\]

the norm of the inclusion map \(\mathcal{I}_n\) acting on functions that are composed only of modes with \(\|k'\| \geq ||k'||_{\min}\) satisfying the inequality (65), can be bounded by \(\|\mathcal{I}_n\| \leq e^{-(\ln \rho_2' - \ln \rho_2') \nu \cdot \hat{\omega}} \Lambda_{j,n}''\).
To obtain the desired bound (54), we write the operator $\mathcal{L}_n \circ \cdots \circ \mathcal{L}_j (I - E)$ as

$$
\mathcal{L}_n \circ \cdots \circ \mathcal{L}_j (I - E) = \mathcal{L}_n \circ \cdots \circ \mathcal{L}_{j+1}(I - E) \bar{\mathcal{L}}_{j+1}^{(1)} \psi^+_{j,n} + \mathcal{L}_n \circ \cdots \circ \mathcal{L}_{j+1}(I - E) \bar{\mathcal{L}}_{j+1}^{(1)} \psi^+_{j,n}(I - V^+_{j,n}) + \mathcal{L}_n(\cdots(\mathcal{L}_1(\cdots(\mathcal{L}_n(I - E)\mathcal{L}_{n-1}(I - E)\cdots \mathcal{L}_2(I - E)\mathcal{L}_1(I - E))\cdots))\mathcal{L}_j(I - E))(I - V^+_{j,n}).
$$

(66)

Here, $\bar{\mathcal{L}}_{n}^{(1)}: \mathbb{I}^n \rightarrow \mathbb{I}^{n+1}$ and $\bar{\mathcal{L}}_{n}^{(2)}: \mathbb{I}^n \rightarrow \mathbb{I}^{n+1}$ are the derivatives of the n^{th}-step renormalization operator at $\mathbb{E}H_n$. With superscripts (1) and (2), we explicitly emphasize that these operators actually improve analyticity in q and p variables, respectively. For some $\rho' > 0$ satisfying $0 < \rho'_1 < \rho_1$, $\rho'_2 = \rho_2$, $\vartheta'_1 = \vartheta_1$ and $\vartheta'_2 > \vartheta_2$, the construction of the analyticity improving operators is possible, as mentioned in Remark 4.5.

The norm $\|D\mathcal{R}_i(H^0_i)\|$, $i \in \mathbb{N}_0$, can be bounded by a constant times θ_i/μ_i. By Cauchy's estimate, we have

$$
\|D\mathcal{R}_i(H_i) - D\mathcal{R}_i(H^0_i)\| \leq 2\|h_i\|_{i,\vartheta'_{i,\rho'_{i}}} \left(\frac{\theta_i}{\lambda_i} \|\mathcal{L}_n \circ \cdots \circ \mathcal{L}_{j+1}(I - E)\| + \frac{\theta_n}{\mu_n} \|\mathcal{L}_{n-1} \circ \cdots \circ \mathcal{L}_j(I - E)\|\right),
$$

(67)

where $D\mathcal{R}_i(H_i)$ is the derivative of the i^{th}-step renormalization operator \mathcal{R}_i at a Hamiltonian $H_i = H^0_i + h_i$. In particular, the inequality (67) is satisfied by \mathcal{L}_i, the derivative of the i^{th}-step renormalization operator at $\mathbb{E}H_i$. As, by assumption, $\|h_i\|_{i,\vartheta'} \leq \zeta_i/2$, we have the bound $\|\mathcal{L}_i\| \leq c_i \theta_i/\mu_i$, with $c_i > 0$.

Using the bounds on the operator norms $\|\psi^+_{i,n}\|$, $\|\psi^+_{j,n}\|$, and $\|\psi_{i,\vartheta'}\|$, obtained above, we find that

$$
\|\mathcal{L}_n \circ \cdots \circ \mathcal{L}_j(I - E)\| \leq c_3 e^{-2\Lambda_{j,n}} \left(\frac{2\theta_i}{\mu_j} \|\mathcal{L}_n \circ \cdots \circ \mathcal{L}_{j+1}(I - E)\| + \frac{\theta_n}{\mu_n} \|\mathcal{L}_{n-1} \circ \cdots \circ \mathcal{L}_j(I - E)\|\right),
$$

where $\Lambda_{j,n} \leq \frac{1}{2} \left(\Lambda_{j,n}^{(1)} + \Lambda_{j,n}^{(2)}\right)$, with $\Lambda_{j,n}^{(1)}$ and $\Lambda_{j,n}^{(2)}$ given by the expressions (61) and (64), respectively, and $c_2 = \min\{c_1,\rho_0,0\}$. Using the bounds on the norms of \mathcal{L}_i, for $i = j, \ldots, n$, we obtain

$$
\|\mathcal{L}_n \circ \cdots \circ \mathcal{L}_j(I - E)\| \leq 3c_3 e^{-j+1} e^{-2\Lambda_{j,n}} \prod_{i=j}^{n} \frac{\theta_i}{\mu_i}.
$$

The bound (54) follows from this inequality and the bounds in Proposition 6.2. □

Let $h_0 \in \mathbb{I}^0 \mathcal{A}_0(\rho')$, $\rho' > 0$, componentwise. After the first $(n+1)$ renormalization steps the perturbation can be separated into two parts,

$$
h_{n+1} = \mathbb{E}h_{n+1} + (I - E)h_{n+1}.
$$

(68)

The q-independent part of the perturbation can be determined by

$$
\mathbb{E}h_{n+1} = D\mathcal{R}_n(H^0_n)\mathbb{E}h_n + \mathbb{E}\mathcal{O}^0_n(\|h_n\|^2_{n,\vartheta'}),
$$

(69)

or after applying this equality recursively,

$$
\mathbb{E}h_{n+1} = D\mathcal{R}_n(H^0_n) \cdots D\mathcal{R}_0(H^0_0)\mathbb{E}h_0 + \sum_{j=1}^{n} D\mathcal{R}_n(H^0_n) \cdots D\mathcal{R}_j(H^0_j)\mathbb{E}\mathcal{O}^0_{j-1}(\|h_{j-1}\|^2_{j-1,\vartheta'}).\quad (70)
$$

Here $\mathcal{O}^0_n(\|h_n\|^2_{n,\vartheta'})$ denotes the second-order remainder of the Taylor expansion of $\mathcal{R}_n(H_n)$ about H^0_n. The norm of $\mathcal{O}^0_n(\|h_n\|^2_{n,\vartheta'})$ will be denoted by F^2_n and can be estimated by the bound (24).

In order to estimate the q-dependent part of the perturbation, we perform the Taylor expansion of $\mathcal{R}_n(H_n)$ about $\mathbb{E}H_n$, the q-independent part of the Hamiltonian H_n. The q-dependent part of the perturbation is

$$
(I - E)h_{n+1} = \mathcal{L}_n(\mathbb{E}h_n + (I - E)h_n) + \mathcal{O}_n((I - E)h_n)^2_{n,\vartheta'},\quad (71)
$$
where $O_n(||(I - E)h_n||_{n, \rho}^2)$ denotes the second-order remainder of the Taylor expansion of $K_n(H_n)$ about EH_n. The norm of this remainder is of the order of $||(I - E)h_n||_{n, \rho}^2$ and will be denoted by G_n^2.

After successive applications of the previous recursion relation, we obtain

\[
(I - E)h_{n+1} = L_n \cdots L_0(I - E)h_0 + \sum_{j=1}^{n} L_n \cdots L_j(I - E)O_{j-1}||(I - E)h_{j-1}||_{j-1, \rho'}^2 + (I - E)O_n||(I - E)h_n||_{n, \rho'}^2 .
\]

We will use this identity to estimate the decrease of the norm of the q-dependent part of the perturbation in the following Theorem.

Theorem 7.2 Let $\omega_0 \in D(\beta)$, $0 \leq \beta < \sqrt{2} - 1$, and let $\rho'_1 > 0$. There exist $\tau > 2$ and $\rho'_2, \sigma, \kappa, C > 0$, such that if $H_0 = H_0^0 + h_0 \in \mathbb{R} \cdot A_0(\rho')$ and $||h_0||_{0, \rho'} \leq C^2 < 1$, then $||I - E)h_n||_{n, \rho'} \leq CA_n^{-\tau} < \zeta_n/2$, $n \geq 0$, where $\zeta_n = C'(\alpha_n, \alpha_{n+1})^2$, $C' > 0$. Furthermore, if $\beta < (\sqrt{101} - 11)/10$, then $||h_n||_{n, \rho'} \leq CA_n^{-2} < \zeta_n/2$.

Proof: We find first, using the Diophantine bound (49), that if $\beta < \sqrt{2} - 1$ and $\tau > 2$, there exists $C > 0$, such that

\[
\frac{\zeta_n}{2} = \frac{C'}{2K^4A_n^{-3}A_n^{-\tau}} \geq \frac{C'}{2K^4A_{n-1}^{-3}A_{n-1}^{-\tau}} \geq \frac{C'}{2K^4+2\beta A_{n-1}^{-3}A_{n-1}^{-\tau}} > \frac{C}{A_{n-1}^2} > \frac{C}{A_n^2} .
\]

Let $\tau' = \ln c_1/\ln \gamma$, where $c_1 > 1$ is the constant from Proposition 7.1. As $A_n/A_{j-1} \geq \gamma^{n-j}$, $0 \leq j \leq n$, the inequality (54) implies

\[
||L_n \circ \cdots L_j(I - E)|| \leq \frac{\tilde{A}_n^{\tau' + \tau}e^{-c_2\Lambda_j}}{A_{j-1}^{\tau' + \tau}} .
\]

Using the inequality $e^{-t} \leq (s/t)^s$, valid for any $t > 0$ and $s > 0$, we find that, for any $\tau'' > 0$,

\[
\frac{\tilde{A}_n^{\tau' + \tau}e^{-c_2\Lambda_j}}{A_{j-1}^{\tau' + \tau}} \leq (\max\{\sigma, \kappa\})^{\tau''} \left(\frac{\tau''(2 + \beta)}{c_2}\right) \frac{\tilde{A}_n^{\tau''(2 + \beta) - (4 + \tau')}}{A_{n+1}^{\tau'' - (4 + \tau')}} .
\]

Let $\tau'' > 0$ be given, such that $\tau = \tau'' - \tau - 4 > 2$. There exist $\sigma, \kappa > 0$, such that

\[
\frac{\tilde{A}_n^{\tau' + \tau}e^{-c_2\Lambda_j}}{A_{j-1}^{\tau' + \tau}} \leq (\max\{\sigma, \kappa\})^{\tau''} \left(\frac{\tau''(2 + \beta)}{c_2}\right) \frac{\tilde{A}_n^{(1 + \beta) + (4 + \tau') \beta}}{6A_{n+1}^{\tau''}} ,
\]

and thus,

\[
||L_n \circ \cdots L_j(I - E)|| \leq \frac{\tilde{A}_j^{(1 + \beta) + (4 + \tau') \beta} \beta}{6A_{n+1}^{\tau''}} .
\]

We will prove the Theorem by induction. There exists $0 < C < 1$, such that

\[
||I - E)h_0||_{0, \rho'} \leq \frac{\tilde{A}_0^{(1 + \beta) + (4 + \tau') \beta}}{6A_{n+1}^{\tau''}} .
\]

Therefore, for $n = 0$, the claim is true. Assume that that the claim holds for $0 < j \leq n$. Thus, there exists $C > 0$, such that $||I - E)h_j||_{j, \rho'} \leq CA_j^{-\tau} < \zeta_j/2$ and $||h_j||_{j, \rho'} \leq CA_j^{-2} < \zeta_j/2$.

We will show that the claim is true for $j = n + 1$.

Using the identity (72), we obtain

\[
||I - E)h_{n+1}||_{n+1, \rho'} \leq ||L_n \cdots L_0(I - E)h_0||_{n+1, \rho'} + \sum_{j=1}^{n} ||L_n \cdots L_j(I - E)|| \cdot G_j^2 + G_{n+1}^2 .
\]
We will estimate the size of the terms on the right hand side of the inequality (76).

As \(\|h_0\|_{\alpha,0'} \leq C^2 < 1 \), the inequality (74), for \(j = 0 \), implies a bound on the first term

\[
\|L_n \ldots L_0(I - \mathcal{E})h_0\|_{n+1,\rho'} \leq \frac{C}{6A_{n+1}^r} .
\]

(77)

Using Cauchy’s formula, one can obtain an estimate on the norm of the second-order remainder \(\mathcal{O}_n(\| (I - \mathcal{E})h_0 \|^2_{n,\rho'}) \), analogous to the bound (24),

\[
G_n^2 \leq \frac{||(I - \mathcal{E})h_0\|^2_{n,\rho'}}{(\zeta_n - \|\mathcal{E}h_0\|_{n,\rho'})(\zeta_n - \|\mathcal{E}h_0\|_{n,\rho'} - ||(I - \mathcal{E})h_0\|_{n,\rho'})} .
\]

Applying the inductive hypothesis and the Diophantine condition in the form (49), or equivalently, \(\alpha_{n+1} \leq K\hat{A}_n^\alpha \), we further obtain that, for some \(C > 0 \),

\[
G_n^2 \leq \frac{4C^2\zeta_n^2 A_n^{2\tau}}{A_n^{2\tau}} \leq \frac{4C^2\hat{K}2^{\tau(1+\beta)+8}\hat{A}_n^{\alpha_1} \hat{A}_n^{4\beta}}{C^2\hat{A}_n^{2\tau(1+\beta)}} < \frac{C}{6A_{n+1}^r} ,
\]

(78)

if \(0 < \beta < 1 \) and \(\tau \geq 8(1+\beta)/(1-\beta) \). Using the bounds (74) and (78), we can estimate the sum

\[
\sum_{j=1}^{n} \|L_n \ldots L_j(I - \mathcal{E})\| \cdot G_{j-1}^2 \leq \frac{2C^2}{3A_{n+1}^{\tau}} \sum_{j=1}^{n} \frac{\hat{A}_n^{\tau(1+\beta)+(4+\tau')/2}}{\zeta_n^2 A_{j-1}^{\tau}} < \frac{2C^2\hat{K}8\hat{A}_n^{\alpha_1}}{3C^2\hat{A}_n^{\tau} \sum_{j=1}^{n} A_{j-1}^{\tau(1+\beta)}(12+\tau')/2} .
\]

Since for \(\alpha_0 > 1 \), we have \(\hat{A}_{j-1} \geq \gamma^{j-1} \), the previous sum can be bounded by some positive constant, if \(0 \leq \beta < 1 \) and \(\tau > \beta(\tau' + 12)/(1-\beta) \). Thus, there exists \(C > 0 \), such that

\[
\sum_{j=1}^{n} \|L_n \ldots L_j(I - \mathcal{E})\| \cdot G_{j-1}^2 \leq \frac{C}{6A_{n+1}^r} .
\]

(79)

Finally, if \(0 \leq \beta < 1 \) is given, and constants \(\tau > 2 \) and \(\sigma, \kappa, C > 0 \) are chosen according to the various conditions stated above, using the bounds (77), (78) and (79), we obtain

\[
\| (I - \mathcal{E})h_{n+1} \|_{n+1,\rho'} \leq \frac{C}{6A_{n+1}^r} + \frac{C}{6A_{n+1}^r} + \frac{C}{6A_{n+1}^r} = \frac{C}{2A_{n+1}^r} < \frac{C}{A_{n+1}^r} - \frac{\zeta_{n+1}}{2} .
\]

(80)

Concerning the \(q \)-independent part of the perturbation, from the identity (70), we find that

\[
\|\mathcal{E}h_{n+1}\|_{n+1,\rho'} \leq \|DR_n(H_n^0) \ldots DR_0(H_0^0)\mathcal{E}h_0\|_{n+1,\rho'}
\]

\[
+ \sum_{j=1}^{n} \|DR_n(H_n^0) \ldots DR_0(H_0^0)\mathcal{E}\| \cdot F_{j-1} + F_n^2 .
\]

(81)

Using the bound (52) on the derivative of a one-step renormalization operator acting on \(q \)-independent Hamiltonians and the first of the inequalities (50), one obtains that there exists \(C > 0 \), such that

\[
\|DR_n(H_n^0) \ldots DR_0(H_0^0)\mathcal{E}h_0\|_{n,\rho'} \leq \frac{4\alpha_0^2}{(1 + \alpha_0)A_n^2} \|h_0\|_{\alpha,0'} \leq \frac{4\alpha_0^2}{(1 + \alpha_0)A_n^2} C^2 < \frac{C}{6A_n^2} .
\]

(82)

From the estimate (24) obtained in Theorem 4.4, we have the following bound on the norm of the second-order remainder, \(F_n^2 \leq \zeta_n^{-1}(\zeta_n - \|h_0\|_{n,\rho'})^{-1}\|h_n\|^2_{n,\rho'} \). Using the inductive hypothesis and the Diophantine property of \(\omega_0 \), we find that there exists \(C > 0 \), such that

\[
F_n^2 \leq \frac{2C^2}{\zeta_n^2 A_{j-1}^{\alpha_1}} \leq \frac{2C^2\hat{K}4^{(1+\beta)}\alpha_1^4}{C^2\hat{A}_n^{4(1+\beta)}} \leq \frac{2C^2\hat{K}4^{(1+\beta)}\alpha_1^4}{C^2\hat{A}_n^{4(1+\beta)}} \leq \frac{C}{6A_{j}^2} .
\]

(83)
for $0 \leq \beta < (\sqrt{11} - 5)/8$. Since, from the bound (52) and the inequalities (50), one has

$$\|D^R_n(H_0^0) \ldots D^R_j(H_j^0)\| \leq \frac{8\alpha_0 \hat{A}_j \hat{A}_{j-1}}{(1 + \alpha_0) \hat{A}_n^2},$$

the sum on the right hand side of the inequality (81) can be estimated by

$$\sum_{j=1}^{n} \|D^R_n(H_0^0) \ldots D^R_j(H_j^0)\| \cdot F_{j-1}^2 \leq \frac{16\alpha_0 C^2 \hat{K}_n^8}{(1 + \alpha_0) C^2 \hat{A}_n^2} \sum_{j=1}^{n} \hat{A}_j \hat{A}_{j-1}^{1+4\beta} \hat{A}_{j-2}^{4\beta} \leq \frac{16\alpha_0 C^2 \hat{K}_n^{11+5\beta}}{(1 + \alpha_0) C^2 \hat{A}_n^2} \sum_{j=1}^{n} \frac{1}{\hat{A}_j^{4-(2+5\beta)(1+\beta)-4\beta}}.$$

If $2 - 11\beta - 5\beta^2 > 0$, the sum on the right side can be bounded by a positive constant, as \hat{A}_j grows at least exponentially with j. Thus, there exists $C > 0$, such that

$$\sum_{j=1}^{n} \|D^R_n(H_0^0) \ldots D^R_j(H_j^0)\| \cdot F_{j-1}^2 \leq \frac{C}{6\hat{A}_n^2}. \quad (84)$$

Using the bounds (82), (83) and (84), the inequality (81) implies

$$\|Eh_{n+1}\|_{n+1,\rho'} \leq \frac{C}{6\hat{A}_n^2} + \frac{C}{6\hat{A}_n^2} + \frac{C}{6\hat{A}_n^2} = \frac{C}{2\hat{A}_n^2}. \quad (85)$$

Finally, taking into account the estimates (80) and (85), we find that

$$\|h_{n+1}\|_{n+1,\rho'} = \|(I - E)h_{n+1}\|_{n+1,\rho'} + \|Eh_{n+1}\|_{n+1,\rho'} \leq \frac{C}{2\hat{A}_{n+1}^2} + \frac{C}{2\hat{A}_n^2} \leq \frac{C}{\hat{A}_n^2} < \frac{\zeta_{n+1}}{2}.$$

This completes the proof of the claim. \hfill \Box

Corollary 7.3 Let $\omega_0 \in D(\beta)$, with $0 \leq \beta < (\sqrt{11} - 11)/10$. Given $\rho_i > 0$, there exist $\rho'_2, \sigma, \kappa, \tilde{C} > 0$ and a non-empty open neighborhood $B^+_{0,\rho'} \subset \Gamma_0^+ \mathcal{A}_0(\rho')$ of H_0^0, such that for all Hamiltonians $H_0 \in B^+_{0,\rho'}$ and $n \in \mathbb{N}_0$, $\|H_n - H_0^0\|_{n,\rho'} \leq \tilde{C} \gamma^{-2n}$.

Proof: The proof of this Corollary follows directly from Theorem 7.2 and the fact that \hat{A}_n grows at least exponentially with $n \geq 0$, i.e. $\hat{A}_n \geq \gamma^n$, for $\alpha_0 > 1$. \hfill \Box

Remark 7.4 In the context of Remark 4.6, the set of Hamiltonians in $\Gamma_0^+ \mathcal{A}_0(\rho')$ that satisfies the assumptions of Theorem 7.2 and the neighborhood $B^+_{0,\rho'}$ in Corollary 7.3 could be replaced with an open ball $B_{0,\rho'} \subset \mathcal{A}_0(\rho')$.

8. DEFINITION OF INVARIANT TORI AND FORMAL IDENTITIES

In the remaining part of this paper, we apply the result about the convergence of the constructed renormalization scheme for $\omega_0 \in D(\beta)$, with $0 \leq \beta < (\sqrt{11} - 11)/10$, to prove a KAM theorem for near-integrable Hamiltonians. We construct the invariant tori with Diophantine frequency vectors for Hamiltonians approaching the trivial limit set under the renormalization. We start by providing some definitions and some formal identities that will be used in the construction.

Definition 8.1 Given $\delta_1 > 0$, we define

$$D_{n,0}(\delta_1) = \{q \in \mathbb{C}^2 : |\text{Im} \omega_n' \cdot q| < \delta_1, |\text{Im} \Omega_n' \cdot q| = 0\} \times \{0\}. \quad (86)$$
Definition 8.2 Given \(r > 0 \) and \(\delta_1 > 0 \), let \(A_{n,0}(\delta_1) \) be the space of functions \(f \), analytic on \(D_{n,0}(\delta_1) \), 2\(\pi \)-periodic in both \(q \)-variables, with the finite norm
\[
\|f\|_{n,\delta_1} = \sum_{\nu \in \mathbb{Z}^d} |f_\nu|(1 + |\Omega_n \cdot \nu|)^r e^{\beta_1|\omega_n \cdot \nu|},
\]
where \(f_\nu \) are the Fourier coefficients of \(f \).

Definition 8.3 We say that \(H_n \) has an invariant torus with frequency vector \(\omega_n \) if there exists a continuous map \(\Gamma_n : \mathcal{D}_{n,0}(\delta_1) \to \mathcal{D}_n(\rho) \), with \(\rho > 0 \), componentwise, and a continuous function \(t : \mathbb{R} \to \mathbb{R} \), such that for all \(s \in \mathbb{R} \),
\[
\Phi_n^{t(s)} \circ \Gamma_n = \Gamma_n \circ \Psi_n.
\]
Here \(\Phi_n \) is the flow for the Hamiltonian \(H_n \) and \(\Psi_n \) is the flow for the Hamiltonian \(K_n = \omega_n \cdot p \), i.e. \(\Psi_n^s(q,0) = (q + \omega_n s,0) \).

Notice that an invariant torus of a Hamiltonian is defined as the conjugacy between the Hamiltonian flow and a linear flow of an integrable Hamiltonian.

The flow \(\Phi_n \) for the Hamiltonian \(H_n \) and the flow \(\Phi_{n+1} \) for the renormalized Hamiltonian \(H_{n+1} = \mathcal{R}_n(H_n) \) can be related by
\[
\Lambda_n \circ \Phi_{n+1}^t = \Phi_n^{\theta_{n}^t} \circ \Lambda_n.
\]

This identity is valid for \(t \in \mathbb{C} \) on any domain where the compositions are well-defined. The identity formally follows from
\[
\frac{d}{dt} f \circ \Phi_n^{\theta_n^t} \circ \Lambda_n \big|_{t=0} = \theta_n^t \{ f, H_n \} \circ \Lambda_n = \frac{\theta_n^t}{\mu_n} \{ f \circ \Lambda_n, H_n \circ \Lambda_n \} = \{ f \circ \Lambda_n, \mathcal{R}_n(H_n) \},
\]
where we have used the identity \(\theta_n^t = \{ f, g, \Lambda_n \} = \{ f, g \} \circ \Lambda_n \), for complex valued functions \(f \) and \(g \) defined on a neighborhood of \(T^2 \times \mathbb{R}^2 \). Here \(\{ f, g \} = \nabla_q f \cdot \nabla_p g - \nabla_q g \cdot \nabla_p f \) is the Poisson bracket of the functions \(f \) and \(g \).

Now, we have the identities
\[
\Lambda_n \circ \Gamma_{n+1} \circ \mathcal{T}_n^{-1} \circ \Psi_n = \Lambda_n \circ \Gamma_{n+1} \circ \Psi_{n+1}^{-1} \circ \mathcal{T}_n^{-1}
\]
\[
= \Lambda_n \circ \Phi_{n+1}^{\theta_{n+1}^0(\alpha_{n+1}^{-1}s)} \circ \Gamma_{n+1} \circ \mathcal{T}_n^{-1} = \Phi_n^{\theta_{n+1}^0(\alpha_{n+1}^{-1}s)} \circ \Lambda_n \circ \Gamma_{n+1} \circ \mathcal{T}_n^{-1}.
\]

Thus, formally, if \(\Gamma_{n+1} \) is an invariant torus with frequency vector \(\omega_{n+1} \) of \(H_{n+1} \), then
\[
\Gamma_n = \Lambda_n \circ \Gamma_{n+1} \circ \mathcal{T}_n^{-1} = \mathcal{M}_n(\Gamma_{n+1})
\]
is the invariant torus with frequency vector \(\omega_n \) of \(H_n \). The flow parameters \(t_n \) and \(t_{n+1} \) are related by \(t_n(s) = \theta_n^0 t_{n+1}(\alpha_{n+1}^{-1}s) \). One solution of this functional equation is \(t_n(s) = \xi s / \prod_{i=1}^n \tau_i \), where \(\xi \) is a constant.

9. CONSTRUCTION OF INVARIANT TORI

The formal relationship (91) between invariant tori of a Hamiltonian and its renormalization motivates the construction of an invariant torus. In this section we study the properties of the maps \(\mathcal{M}_n \), defined by (91), and use them to construct invariant tori for near-integrable Hamiltonians in a space of functions of low regularity. In the following, assume that \(\omega_0 \in D(\beta) \), with \(0 \leq \beta < (\sqrt{161} - 11)/10 \), and that \(H_n \in \mathcal{L}_n^0 A_n(\rho^i) \), \(n \in \mathbb{N}_0 \), is the renormalization orbit of a given Hamiltonian \(H_0 \in \mathcal{B}_{\rho^i}(C^2) \) in the domain of attraction of the integrable limit set.

Introduce the coordinates \(x_1 = \omega'_n \cdot q, x_2 = \Omega'_n \cdot q, y_1 = \omega_n \cdot p \) and \(y_2 = \Omega_n \cdot p \), for a given \(n \in \mathbb{N}_0 \). Denote the partial derivative with respect to \(x_1, x_2, y_1 \) and \(y_2 \) as \(\partial_i \), for \(i = 1, 2, 3 \) and 4, respectively. We can define the components of a vector valued function \(f = (f^i, f^p) \) on \(D_{n,0}(\delta_1) \), \(\delta_1 > 0 \), as \(f^i = \omega'_n \cdot f^i, f^p = \Omega'_n \cdot f^p, f^i = \omega_n \cdot f^p, f^i = \Omega_n \cdot f^p. \)
Definition 9.1 Given $r > 0$ and $\delta_1 > 0$, let $B_{n,0}(\delta_1)$ be the Banach space of vector-valued functions $f = (f^0, f^p)$ on $D_{n,0}(\delta_1)$, whose components f^i, $i = 1, 2, 3, 4$, belong to $A_{n,0}(\delta_1)$, with the norm

$$\|f\|_{n,\delta_1} = \max\{c_n\|f^1\|_{n,\delta_1}, \|f^2\|_{n,\delta_1}, \|f^3\|_{n,\delta_1}, \|f^4\|_{n,\delta_1}\},$$

(92)

where $c_n = \tilde{A}_n \prod_{i=0}^{n-1} \|T_i^{-1}\Omega_i\|$.

The maps M_n are defined formally by the action on a vector valued function $F = I + f$, where I is the identity map and $f \in B_{n+1,0}(\delta_1)$,

$$M_n(F) = \Lambda_n \circ F \circ T_n^{-1}.$$

(93)

The weight factor c_n has been introduced in the norm (92) in order to make the map M_n a contraction; if the norm were defined without that factor, the scaling map in Λ_n would actually expand the first component of F.

Similarly, for a vector valued function $g = (g^0, g^p)$ on $D_{n}(\rho)$ with components $g^1 = \omega_n \cdot g^0$, $g^2 = \Omega_n \cdot g^0$, $g^3 = \tilde{\omega}_n \cdot g^0$, and $g^4 = \Omega_n \cdot g^0$ in $A_{n}(\rho)$, define the norms

$$\|g\|_{n,\rho} = \max\{c_n\|g^1\|_{n,\rho}, \|g^2\|_{n,\rho}, \|g^3\|_{n,\rho}, \|g^4\|_{n,\rho}\},$$

(94)

$$\|g\|_{n,\rho} = \max\{\|\partial_1 g^1\|_{n,\rho}, c_n^{-1}\|\partial_1 g^2\|_{n,\rho}, \|\partial_1 g^3\|_{n,\rho}, \|\partial_1 g^4\|_{n,\rho}\}.$$

(95)

Before proving that in the above norm the maps M_n are contractions, let us state the following Proposition.

Proposition 9.2 Let $\delta_1 > 0$, $\delta_1^C = [\delta_1 \omega_{n+1} \|/(n_{\alpha,1} \omega_n)] < 2\delta_1^3/3$ and $\rho > 0$, componentwise, with $\rho_1 > \delta_1$. Let also $f_n, g_n \in A_{n}(\delta_1)$, $h_n \in A_{n}(\rho)$ and $X_n, Y_n \in A_{n}^2(\delta_1)$, such that $\delta_1 + \|\omega'_n \cdot X_n\|_{n,\delta_1} < \rho_1$, $\|\Omega'_n \cdot X_n\|_{n,\delta_1} < \rho_1$, $\|\omega'_n \cdot Y_n\|_{n,\delta_1} < \rho_2$ and $\|\Omega'_n \cdot Y_n\|_{n,\delta_1} < \rho_2$. If $U(q,0) = (g + X_n(q,0) + Y_n(q,0))$ is a given change of variables, then

(i) $\|f_n(q,0)\|_{n,\delta_1} \leq \|f_n\|_{n,\delta_1}$, $\forall(q,0) \in D_{n,0}(\delta_1)$,

(ii) $f_n g_n \in A_{n,0}(\delta_1)$ and $\|f_n g_n\|_{n,\delta_1} \leq \|f_n\|_{n,\delta_1} \|g_n\|_{n,\delta_1}$,

(iii) $\|f_n + 1 \circ T_n^{-1}\|_{n,\delta_1} \leq \|T_n^{-1}\Omega_n\| \|f_n + 1\|_{n+1,\delta_1}^C$,

(iv) $\|h_n \circ U\|_{n,\delta_1} \leq c_{n_1}(\|\Omega_n \cdot X_n\|_{n,\delta_1}) \|h_n\|_{n,\rho}$,

where $c_{n_1}(s) = \sup_{t \geq 0} (1 + t)^s e^{-(\rho_1 - s)t}$, for $|s| < \rho_1$.

The proof of this Proposition is straightforward and will be omitted. Denote by $B_n(b)$ an open ball of radius $b > 0$ in the affine space $I + B_{n,0}(\delta_1)$, centered at the identity.

Lemma 9.3 Let $r < 1$ and let $0 < \delta_1 < \rho_1$. For sufficiently small $b, C > 0$ and all Hamiltonians $H_n, n \in N_0$, of the renormalization orbit of $H_0 \in B_{1,0}^r(C^2)$, the map M_n is a contraction with the contraction rate $a < 1$ (independent of H_0 and n) from $B_{n+1}(b)$ into $B_n(b)$.

Proof: Let $F_{n+1} \in B_{n+1}(b)$ and let $f_{n+1} = F_{n+1} - I$. Define the map N_n by

$$N_n(f_{n+1}) = M_n(F_{n+1}) - I = \Lambda_n \circ (I + f_{n+1}) \circ T_n^{-1} - I.$$

The fact that the maps V_{H_n}, U_{H_n}, and S_{H_n}, included in the identity motivates us to write $\Lambda_n = T_n \circ (I + g_{n+1})$. Therefore,

$$N_n(f_{n+1}) = T_n \circ (f_{n+1} + g_{n+1} \circ (I + f_{n+1})) \circ T_n^{-1}. $$
As the maps $V_{H_n^+}, U_{H_n^+}$ and $S_{H_n^+}$ depend only on the q-dependent part of the Hamiltonian, $\|g_{n+1}^{i+1}\|_{n+1,\rho'} \leq C_1\|{(1-\mathbb{E})}h_{n+1}\|_{n,\rho'}$, for $i = 1, 2, 3, 4$, i.e. $\|g_{n+1}^{i+1}\|_{n+1,\rho'} \leq CC_1A_0^{-n}$, where $C_1 > 0$ is an n-independent constant. Here, we assume that $C > 0$ is sufficiently small such that the estimates of Theorem 7.2 are valid. Using the Diophantine bound (49) and the inequalities (50), we find that, if $\tau \geq 2 + \beta$, then

$$\|g_{n+1}\|_{n+1,\rho'} \leq \hat{A}_{n+1} \prod_{i=0}^{n} T_{i}^{-1} \Omega_i \frac{CC_1}{\hat{A}_n} \leq \frac{CC_2}{A_n^{-2-\beta}} \leq CC_2,$$

where $C_2 > 0$ is a constant. These inequalities show that the growth of the weight factor with n is slower than the decrease of the norm of the q-dependent part of Hamiltonian.

The derivative of the operator N_n at f_{n+1} is given by its action on an arbitrary $\tilde{f} \in B_{n+1}(b)$,

$$DN_n(f_{n+1})\tilde{f} = T_n \circ (\tilde{f} + Dg_{n+1} \circ (I + f_{n+1})\tilde{f}) \circ T_n^{-1}.$$

Using the Proposition 9.2, we find that for $(\delta_1, 0) < \rho'' < \rho'$, componentwise,

$$\|DN_n(f_{n+1})\tilde{f}\|_{n,\delta_1} \leq \|T_n^{-1}\Omega_n\|^{r-1}\|\tilde{f}\|_{n+1,\delta_1^c} + \|T_n^{-1}\Omega_n\|^{r-1}c_{\rho''}(\|f_{n+1}^{i+1}\|_{n+1,\delta_1^c})\|g_{n+1}\|_{n+1,\rho''} \|\tilde{f}\|_{n+1,\delta_1^c},$$

providing that $\delta_1^c + \|f_{n+1}^{i+1}\|_{n+1,\delta_1^c} < \rho''$. For $i, j = 1, 2, 3, 4$, we find that $\|g_{n+1}\|_{n+1,\rho''} \leq C_3\|g_{n+1}\|_{n+1,\rho''}$, with $C_3 > 0$. Thus, as $r \neq 1$ and $\|T_n^{-1}\Omega_n\| \geq 3/2$, for sufficiently small $C > 0$, the operator norm $\|DN_n(f_{n+1})\|$ can be bounded by a positive constant $a < 1$.

As $\|N_n(0)\|_{n,\delta_1} \leq \|T_n^{-1}\Omega_n\|^{r-1}c_{\rho''}(0)\|g_{n+1}\|_{n+1,\rho''}$, for sufficiently small $C > 0$, $\|N_n(0)\|_{n,\delta_1} < (1-a)b$. This shows that M_n maps $B_{n+1}(b)$ into $B_n(b)$ and contracts distances at least by a factor $a < 1$.

Before we prove that every Hamiltonian H_n, of the renormalization orbit of $H_0 \in B_{q,\rho'}^+(C^2)$, with sufficiently small $C > 0$, has an invariant torus of Diophantine frequency vector ω_n, we will prove the following Proposition.

Proposition 9.4 Let $0 < \delta_1 < \rho'_1$ and $\rho'_2 > 0$. For sufficiently small $b > 0$, the following holds. If $H_0 \in B_{q,\rho'}^+(C^2)$, $\|m-s_m\| \leq C_4\|{(1-\mathbb{E})}H_m\|_{m,\rho'}$ and $|t_m| < C_5$, for some $C_4, C_5 > 0$, $t_m, s_m \in \mathbb{R}$ and for all $m \in \mathbb{N}_0$, and if $C > 0$ is sufficiently small, then

$$\|\Phi_m^t \circ \Phi_m^{-(s_m)} - I\|_{m,\delta_1} \leq b,$$

where Φ_m is the flow for the Hamiltonian H_m^0 restricted to $D_{m,0}(\delta_1)$.

Proof: Let $s \in \mathbb{R}$ be given and let $(q, 0) \in D_{m,0}(\delta_1)$. The flow Φ_m for the Hamiltonian H_m satisfies the equation,

$$\frac{d}{dt}(\Phi_m^t \circ \Phi_m^{-(s_m)} - I)(q, 0) = (\mathbb{J} \cdot \nabla H_m \circ \Phi_m^t \circ \Phi_m^{-(s_m)})(q, 0),$$

where $\mathbb{J}(q, p) = (p, -q)$ and $\nabla = (\nabla_q, \nabla_p)$. Introducing the function

$$\Upsilon_s(q, t) = (\Phi_m^t \circ \Phi_m^{-(s_m)} - I)(q, 0),$$

2π-periodic in both q-variables, we can integrate the equation (97) to obtain the integral equation

$$\Upsilon_s(q, t) = -(s \omega_m, 0) + \int_0^t dt' \{J \cdot \nabla H_m \circ \{(q, 0) + \Upsilon_s(q, t')\}\}.$$
This equation can be viewed as the fixed point equation of the functional Ξ_s, defined by the action

$$
\Xi_s(\Upsilon_s(q,t),q) = -\langle s\omega_m,0 \rangle + \int_0^t dt' \{ J \cdot \nabla H_m \circ [q(0) + \Upsilon_s(q,t')] \},
$$

(99)
on a space of functions $\Upsilon_s : D_m, \omega(\delta) \times J \to \mathbb{C} \times \mathbb{C}$, $J = [0,t] \subset \mathbb{R}$, with the norm

$$
\| \Upsilon_s \| = \sup_{t' \in J} \max \{ c_m \| \Upsilon_s(\cdot,t') \|_{m,\delta_1}, \| \nabla^2 \Upsilon_s(\cdot,t') \|_{m,\delta_1}, c_m \| \nabla^3 \Upsilon_s(\cdot,t') \|_{m,\delta_1}, c_m \| \nabla^4 \Upsilon_s(\cdot,t') \|_{m,\delta_1} \},
$$

where $\Upsilon_s = \omega_m \cdot \Upsilon_s$, $\Upsilon_s = \Omega_m \cdot \Upsilon_s$, $\Upsilon_s = \Omega_m \cdot \Upsilon_s$, and $\Upsilon_s = (\Upsilon_s^2, \Upsilon_s^4)$. We consider an open ball of functions Υ_s in that space that satisfy $\| \Upsilon_s \| < b$, with $0 < b < \min \{ \rho_1', \delta_1, \rho_2 \}$. This justifies the formal use of equations (98) and (99), as for any given $t' \in J$, one has $\| \Upsilon_s(\cdot,t') \|_{m,\delta_1} \leq \| \Upsilon_s \|$. Now, if $\Upsilon_s^{(1)}$ and $\Upsilon_s^{(2)}$ are two functions from that ball, we have

$$
\Xi_s(\Upsilon_s^{(2)}(q,t),q) - \Xi_s(\Upsilon_s^{(1)}(q,t),q) = \int_0^t dt' \int_{\Upsilon_s^{(1)}(q,t')} d\Upsilon \cdot \nabla (J \cdot \nabla H_m) \circ [(q,0) + \Upsilon].
$$

Thus,

$$
\| \Xi_s(\Upsilon_s^{(2)},\cdot) - \Xi_s(\Upsilon_s^{(1)},\cdot) \| \leq |t| \cdot \| \Upsilon_s^{(2)} - \Upsilon_s^{(1)} \| \cdot \| \nabla (J \cdot \nabla H_m) \circ [(q,0) + \Upsilon] \|,
$$

(100)

where

$$
\| \nabla (J \cdot \nabla H_m) \circ [(q,0)] \| \leq \max \{ c_m \| \partial_2 \partial_3 H_m \|_{m,\rho''} + \sum_{i=1,i\neq 2}^4 \| \partial_i \partial_3 H_m \|_{m,\rho''},
$$

$$
\| \partial_2 \partial_4 H_m \|_{m,\rho''} + c_m^{-1} \sum_{i=1,i\neq 2}^4 \| \partial_i \partial_2 H_m \|_{m,\rho''}, c_m \| \partial_2 \partial_1 H_m \|_{m,\rho''} + \sum_{i=1,i\neq 2}^4 \| \partial_i \partial_2 H_m \|_{m,\rho''},
$$

$$
c_m \| \partial_2 \partial_3 H_m \|_{m,\rho''} + \sum_{i=1,i\neq 2}^4 \| \partial_i \partial_3 H_m \|_{m,\rho''},
$$

with $b + \delta_1 < \rho_1' < \rho_1'$ and $b < \rho_2' < \rho_2'$. Using Cauchy estimates on the norms of the derivatives and the fact that $\| \partial_2 \partial_3 H_m \|_{m,\rho''} \leq C_6 \| (1 - \mathcal{E}) H_m \|_{m,\rho''}$, for $i = 1,2,3$, where $C_6 > 0$, this norm can be bounded by an m-independent constant. Here, we again use the fact that $\| (1 - \mathcal{E}) H_m \|_{m,\rho''}$ drops faster with m, than c_m increases. The inequality (100) then implies that, if $|t| = |t_m| < C_5$, $H_0 \in B_{0,\rho''}(C^2)$ and $C > 0$ is sufficiently small, Ξ_s is a contraction with a contraction rate $\alpha < 1$. Notice that

$$
\Xi_s(0,q) = ((t-s)\omega_m,0) + J \cdot \nabla h_m(q,0)t,
$$

and that $\nabla E h_m(q,0) = 0$. Therefore, since $|t_m - s_m| \leq C_4 \| (1 - \mathcal{E}) H_m \|_{m,\rho''}$, where $C_4 > 0$ and $|t_m| < C_5$, if $s = s_m$, then, for sufficiently small $C > 0$, we have $\| \Xi_s(0,q) \| < (1 - \alpha)b$. This shows that $\Xi_s(b \cdot \cdot \cdot)$ is a contraction on a ball of radius $b > 0$, and has a unique fixed point Υ_s, of norm $\| \Upsilon_s \| < b$, that satisfies the equation (98). The claim follows from the fact that for $|t_m| < C_5$, one has $\| \Upsilon_s(\cdot,t_m) \|_{m,\delta_1} \leq \| \Upsilon_s \|$.

\[\square\]

Let, in the following, $b > 0$ and $C > 0$ be chosen sufficiently small such that the assumptions of Lemma 9.3 and Proposition 9.4 are satisfied. Let F_m, $m \in \mathbb{N}_0$, be arbitrary maps in $B_{m}(b)$. Define

$$
\Gamma_{n,m} = (\mathcal{M}_n \circ \cdots \circ \mathcal{M}_{m-1})(F_m),
$$

(101)

for $0 \leq n < m$, or, taking into account the definition (93) of the operators \mathcal{M}_n,

$$
\Gamma_{n,m} = \Lambda_n \circ \cdots \circ \Lambda_{m-1} \circ F_m \circ \mathcal{T}_{m-1}^{-1} \circ \cdots \circ \mathcal{T}_n^{-1}.
$$

(102)

Here, the maps Λ_n and the operators \mathcal{M}_n are associated to the sequence of Hamiltonians H_n, $n \in \mathbb{N}_0$.
Theorem 9.5 Let $0 < \delta_1 < \delta'_1$. If $H_0 \in B^+_{0,\rho}(C^2)$ and $b, C > 0$ are sufficiently small, the limits $\Gamma_n = \lim_{\epsilon \to \infty} \Gamma_{n,m}$, $n \in \mathbb{N}_0$, exist in $B_n(b)$, and satisfy

$$\|\Gamma_n - I\|_{n,\delta_1} \leq b.$$

Γ_n is an invariant torus of H_n with frequency vector ω_n. The invariant tori satisfy

$$\Gamma_n = \Lambda_n \circ \Gamma_{n+1} \circ \mathcal{T}_n^{-1}.$$

Proof: By Lemma 9.3, if $n < m < i$, then $\|\Gamma_{n,i} - \Gamma_{n,m}\|_{n,\delta_1} \leq 2b\alpha^{m-n}$. Thus, the sequence $m \mapsto \Gamma_{n,m}$ is Cauchy and converges in this norm to a limit Γ_n. Moreover, this limit is independent of F_m. The relationship (104) follows from the continuity of \mathcal{M}_n.

Now, we want to show that, in the above norm, $\Gamma_n \to I$, when $n \to \infty$. Consider a one-parameter family of Hamiltonians $H_n(s) = H_n^0 + s(H_n - H_n^0)$, $s \in \mathbb{C}$, and let $\Lambda_n(s)$ and $\Gamma_n(s)$ be the corresponding one parameter families of maps. The map $s \mapsto \Lambda_n(s)$ is analytic in the domain $|s| < \zeta_n \mathcal{A}^2_{n,i}/\mathcal{C}$ containing the unit disc. By uniform convergence, $s \mapsto \Gamma_n(s)$ is analytic from the same domain into $B_n(b)$. As $\Gamma_n(0) = I$, by Schwartz's lemma, $\|\Gamma_n(1) - I\|_{n,\delta_1} \leq 2b\mathcal{C}/(\zeta_n \mathcal{A}^2_{n,i})$. The inequality (103) then follows from Theorem 7.2.

It remains to be proved that Γ_n is an invariant torus of H_n with frequency vector ω_n. First, we formally have the identities

$$\Phi^m_{n} \circ \Gamma_{n,m} \circ \Psi^{-s_n}_n = \Phi^m_{n} \circ \Lambda_n \circ \cdots \circ \Lambda_{m-1} \circ \mathcal{T}^{-1}_{n-1} \circ \cdots \circ \mathcal{T}^{-1}_n \circ \Psi^{-s_n}_n = \Lambda_n \circ \Phi^m_{n+1} \circ \cdots \circ \Lambda_{m-1} \circ \mathcal{T}^{-1}_{n-1} \circ \cdots \circ \mathcal{T}^{-1}_n \circ \Psi^{-s_n}_n \circ \mathcal{T}^{-1}_n \circ \cdots \circ \mathcal{T}^{-1}_1,$$

on any domain where the compositions are well-defined, where $t_m = t_{m-1} \cdots t_0$ and $s_m = \alpha_m^{-1} \cdots \alpha_i^{-1} s_0$, $m \in \mathbb{N}$. As the map Λ_n maps $\mathcal{D}_n(\rho')$ into $\mathcal{D}_n(\rho'')$, with $\rho'' < \rho'$, componentwise, for t_0 in an open interval containing zero and H_0 sufficiently close to H_0^0, the equality $\Phi^m_{n} \circ \Lambda_n = \Lambda_n \circ \Phi^m_{n+1}$, $n \in \mathbb{N}_0$, is an identity between maps on $\mathcal{D}_n(\rho')$, with a range contained in $\mathcal{D}_n(\rho')$.

As both sides of (105) are the maps on $\mathcal{B}_{n,0}(\delta_1)$, we have the identity

$$\Phi^m_{n} \circ \Gamma_{n,m} \circ \Psi^{-s_n}_n = (\mathcal{M}_n \circ \cdots \circ \mathcal{M}_{m-1}) (\Phi^m_{n+1} \circ \Phi^m_{n+2} \cdots \Phi^m_{m,0} \circ \cdots \circ \Phi^m_{n,0}).$$

Here, we have also used the fact that I is the invariant torus of frequency ω_n of H_n^0. It suffices to show that the map $\Phi^m_{n+1} \circ \Phi^m_{n+2} \cdots \Phi^m_{m,0}$ belongs to the domain of \mathcal{M}_m, for sufficiently large m.

Let $t_0 = \xi s_0$, where $\xi = \prod_{j=1}^{\infty} \tau_j = \lim_{\epsilon \to \infty} \prod_{j=1}^{k} \tau_j$ and $\tau_j = \tau_h j$. The existence of this limit follows from the convergence of $\sum_{j=0}^{\infty} |\tau_{j+1} - 1|$ and the mean value theorem. The convergence of the sum itself follows from the fact that $|\tau_{j+1} - 1| \leq C_{\delta} \|h\|, \|\xi\|_{\infty}$, where $C_{\delta} > 0$, and Theorem 7.2. We have,

$$\frac{\bar{m}}{\alpha_0} (t_m - s_m) = t_0 \prod_{i=1}^{m} \tau_i^{-1} - s_0 = \left(\prod_{i=m+1}^{\infty} \tau_i^{-1} - 1 \right) s_0 \leq s_0 C_{\delta} \|h\|, \|\xi\|_{\infty},$$

with $C_{\delta} > 0$.

Thus, for sufficiently small $b, \mathcal{C} > 0$, the assumptions of Proposition 9.4 are satisfied. The same Proposition then implies that $|\Phi^m_{n+1} \circ \Phi^m_{n+2} \cdots \circ \Phi^m_{m,0} - I|_{n,\delta_1} < b$ and that the map $\Phi^m_{n+1} \circ \Phi^m_{n+2} \cdots \Phi^m_{m,0}$ belongs to the domain of \mathcal{M}_m. The right hand side of (105) converges in $\mathcal{B}_{n,0}(\delta_1)$ to Γ_n when $m \to \infty$. As the convergence implies pointwise convergence and since the maps Φ^m_{n} and Ψ^{-s_n} are both continuous and invertible, we conclude that $\Phi^m_{n+1} \circ \Gamma_n \circ \Psi^{-s_n} = \Gamma_n$. Thus, Γ_n is an invariant torus of frequency ω_n, associated to the Hamiltonian H_n. \hfill \Box
10. ANALYTICITY OF INARIANT TORI

Theorem 9.5 shows that every Hamiltonian H_0 sufficiently close to H_0^0 has an invariant torus Γ_0 with a Diophantine frequency vector ω_0. In this section, we show that the so-constructed invariant tori can be extended to analytic functions. We use the fact that Γ_0 depends analytically on H_0.

Define the translation $J_v : (q,p) \mapsto (q+v,p)$, for $v \in \mathbb{R}^2$, a one parameter family of Hamiltonians $H_n(v) = H_n \circ J_v$ and the map $J_v : H_n \mapsto H_n \circ J_v^{-1}$. Let $\Lambda_n(v)$ be the one parameter family of maps introduced in Definition 4.1, associated to $H_n(v)$. Let $0 < \rho' < \rho$, $0 < p' < 3\rho'/2$, componentwise, be chosen as in Definition 4.1.

Proposition 10.1 Let $v \in \mathbb{R}^2$. For sufficiently small $c > 0$ and for all Hamiltonians $H_0 \in B_{0,v}^+(C^2) \subset \mathbb{R}_0^N A_{n}(\rho')$, if the sequence H_n, $n \in \mathbb{N}_0$, is the renormalization orbit of H_0, then the identity $\Lambda_n \circ J_v = J_v \circ U_{H_n}$, is valid on $D_n(\rho')$, $n \in \mathbb{N}$.

Proof: The proof of this proposition follows from the construction of the transformation U_{H_n} that satisfies the equation $I^v H_n \circ U_{H_n} = 0$. In section 5, this transformation is constructed as the composition of a sequence of canonical transformations U_0 generated by functions ϕ. As the translation J_v commutes with I^v and differentiation, we have $\phi_{H_n} \circ J_v = \phi_{H_n} \circ J_v$, where ϕ_{H_n} is the generating function associated to H_n. Then, $U_{\phi_H} \circ J_v = J_v \circ U_{\phi_H \circ J_v}$. The claim follows, by taking the limit of the product of the above mentioned sequence.

Proposition 10.2 Let $v \in \mathbb{R}^2$. For sufficiently small $C > 0$ and for all Hamiltonians $H_0 \in B_{0,v}^+(C^2) \subset \mathbb{R}_0^N A_{n}(\rho')$, if the sequence H_n, $n \in \mathbb{N}_0$, is the renormalization orbit of H_0, then the identity $\Lambda_n \circ J_v = J_v \circ U_{H_n}$, is valid on $D_n(\rho')$, $n \in \mathbb{N}$.

Proof: Notice first that $T_n \circ J_v = J_{T_n v} \circ T_n$ and that $V_{H_{n+1}}$ and $S_{H_{n+1}}$ commute with J_v. Further, notice that $V_{H_{n+1} \circ J_v} = V_{H_{n+1}}$ and $S_{H_{n+1} \circ J_v} = S_{H_{n+1}}$. Recall that $\Lambda_n = T_n \circ V_{H_{n+1}} \circ U_{H_{n+1}} \circ S_{H_{n+1}}$, $H_{n+1} = (\theta/\mu_n) H_n \circ T_n$, $H_{n+1}'' = H_{n+1}' \circ V_{H_{n+1}}$ and $\tilde{H}_{n+1} = H_{n+1}'' \circ S_{H_{n+1}}$. Let $H_{n+1}'(v) = (\theta_n/\mu_n) H_n(v) \circ T_n$, $H_{n+1}(v) = \tilde{H}_{n+1}'(v) \circ V_{H_{n+1}}(v)$ and $\tilde{H}_{n+1}(v) = H_{n+1}'(v) \circ U_{H_{n+1}}(v)$. Using the previous relations and the Proposition 10.1, we find that $\Lambda_n \circ J_v = J_{T_n v} \circ T_n \circ V_{H_{n+1}}(T_n v) \circ S_{H_{n+1}}(T_n v)$, and the claim immediately follows.

Proposition 10.3 Let $v \in \mathbb{R}^2$. For sufficiently small $C > 0$ and for all Hamiltonians $H_0 \in B_{0,v}^+(C^2) \subset \mathbb{R}_0^N A_{n}(\rho')$, we have $J_v \circ \Gamma_0(H_0 \circ J_v) = \Gamma_0(H_0) \circ J_v$. Here, by writing $\Gamma_0(H_0)$, we have emphasized that the invariant torus Γ_0 is associated to a Hamiltonian H_0.

Proof: Let $v \in \mathbb{R}^2$ be fixed. Since J_v^{-1} is an isometry on $A_n(\rho)$, for sufficiently small $C > 0$ and for all Hamiltonians $H_0 \in B_{0,v}^+(C^2)$, $J_v^{-1}(H_0)$ belongs to $B_{0,v}^+(C^2)$ and the orbit $K_{n-1} \circ \cdots \circ K_0(J_v^{-1}(H_0))$, $n \in \mathbb{N}$, satisfies the bounds analogous to those obtained in Theorem 7.2. Thus, we can construct the maps

$$
\Gamma_{0,m}(H_0 \circ J_v) = \Lambda_0(v) \circ \cdots \circ \Lambda_{m-1}(T_{m-2}^{-1} \cdots T_0^{-1} v) \circ T_{m-1}^{-1} \circ \cdots \circ T_0^{-1},
$$

for $m \in \mathbb{N}$. By Theorem 9.5, the limit $\Gamma_0(H_0 \circ J_v) = \lim_{m \to \infty} \Gamma_{0,m}(H_0 \circ J_v)$ is an invariant torus of $H_0 \circ J_v$ with frequency vector ω_0. Using Proposition 10.2, we find

$$
\Gamma_{0,m} \circ J_v = \Lambda_0(v) \circ \cdots \circ \Lambda_{m-1}(T_{m-2}^{-1} \cdots T_0^{-1} v) \circ T_{m-1}^{-1} \circ \cdots \circ T_0^{-1} = J_v \circ \Gamma_{0,m}(H_0 \circ J_v).
$$

Further, by taking the limit $m \to \infty$ of this identity, we find that $J_v \circ \Gamma_0(H_0 \circ J_v) = \Gamma_0(H_0) \circ J_v$. This holds for all Hamiltonians H_0 in a ball $B_{0,v}^+(C^2)$ independent of $v \in \mathbb{R}^2$.

The relationship between $\Gamma_0(H_0 \circ J_v)$ and $\Gamma_0(H_0)$, valid a priori for $v \in \mathbb{R}^2$, can be used to analytically continue $\Gamma_0(H_0)$ away from $\mathbb{R}^2 \times \{0\}$.

In the following, given any two sets X and Y, if $x \in X$, then E_x denotes the evaluation functional defined by $E_x f = f(x)$, for all functions $f \in Y^X$.

Theorem 10.4 Let \(\rho_1 - \rho'_1 > \delta_1 > \delta'_1 > 0 \) and \(\rho_2 - \rho'_2 > 0 \). There exists an open neighborhood \(B \) of \(H_0^0 \) in \(A_0(\rho) \), such that for every Hamiltonian \(H_0 \in B \), the map

\[
G_{H_0}(q, p) = \mathcal{E}_0 J_q \circ \Gamma_0 (H_0 \circ J_q), \quad q \in D_{0,1}(\delta'_1), \quad p \in \mathbb{C}^2,
\]

(106)
defines an analytic function \(G_{H_0} \) on \(D_{0,1}(\delta'_1) \times \mathbb{C}^2 \) whose restriction to \(\mathbb{R}^2 \times \{0\} \) coincides with \(\Gamma_0(H_0) \).

Proof: Let \(\delta = (\delta_1, 0) \). The map \((q, H) \mapsto H \circ J_q \) is analytic from \(D_{0,1}(\delta) \times A_0(\rho') \) into \(A_0(\rho') \). This follows from the fact that the map \(J_q^{-1} \) is bounded with norm 1 from \(A_0(\rho') \) to \(A_0(\rho' + \delta) \), for every \(q \in D_{0,1}(\delta_1) \), and the differentiation is bounded from \(A_0(\rho) \) to \(A_0(\rho' + \delta) \).

Define the map \(G : H_0 \mapsto G(H_0) \), by setting \(G(H_0)(q, p) = \Gamma_0(H_0)(q, 0) - S_0(q, p) \), for \(H_0 \) in the domain of \(\Gamma_0 \). Here \(S_0(q, p) = (q, 0) \). As \(J_q^{-1} \) is bounded from \(A_0(\rho) \) to \(A_0(\rho') \), there exists an open ball \(B \) in \(A_0(\rho) \) containing \(H_0^0 \), such that for every \(q \in D_{0,1}(\delta_1) \), \(H_0 \) and \(J_q^{-1}H_0 \) belong to the domain of \(\Gamma_0 \). Since \(\Gamma_0 \) depends analytically on \(H_0 \), so does \(G \), and as, \(\mathcal{E}_0 \) is bounded, the map \((q, H_0) \mapsto \mathcal{E}_0 G(J_q^{-1}H_0) \) is analytic on \(D_{0,1}(\delta_1) \times B \). The analyticity of \(G_{H_0} \) for \(H_0 \in B \) follows from the identity \((G_{H_0} - S_0)(q, p) = \mathcal{E}_0 G(J_q^{-1}H_0) \).

Using Proposition 10.3, we find

\[
\mathcal{E}_{(q,0)} \Gamma_0(H_0) = \mathcal{E}_0(\Gamma_0(H_0) \circ J_q) = \mathcal{E}_0 J_q \circ \Gamma_0(H_0 \circ J_q) = G_{H_0}(q, 0),
\]

for all \(q \in \mathbb{R}^2 \) and \(H_0 \in B \). This shows that \(\Gamma_0(H_0) \) and \(G_{H_0} \) agree on \(\mathbb{R}^2 \times \{0\} \) as claimed. \(\square \)

Acknowledgements

I am sincerely grateful to Professor Hans Koch for his support and numerous helpful discussions.