Math 328K. Fall 2025

Some solutions to Homework # 1

Prof. Hector E. Lomeli

§1.1. Exercise 12. Let $x \in \mathbb{R}$. We have to consider two cases.

- a) $0 \le \{x\} < 1/2$,
- **b)** $1/2 \le \{x\} < 1$.

In each case, we will compute [x], [x + 1/2], [2x] and show that [x] + [x + 1/2] = [2x].

a) If $0 \le \{x\} < 1/2$, then

$$0 \le x - [x] < \frac{1}{2},$$

and this implies that $[x] \le x < [x] + \frac{1}{2}$. From this we get that

$$[x] < [x] + \frac{1}{2} \le x + \frac{1}{2} < [x] + 1,$$

and

$$2[x] \le 2x < 2[x] + 1.$$

Following the definition of greatest integer function, we find that $[x + \frac{1}{2}] = [x]$ and [2x] = 2[x]. From this, we conclude that [x] + [x + 1/2] = [2x].

b) If $1/2 \le \{x\} < 1$, then

$$\frac{1}{2} \le x - [x] < 1,$$

and this implies that $[x] + \frac{1}{2} \le x < [x] + 1$. From this we get that

$$[x] + 1 \le x + \frac{1}{2} < [x] + \frac{3}{2} < [x] + 2,$$

and

$$2[x] + 1 \le 2x < 2[x] + 2$$
.

Following the definition of greatest integer function, we find that $[x + \frac{1}{2}] = [x] + 1$ and [2x] = 2[x] + 1. We conclude that [x] + [x + 1/2] = [2x].

§1.1. Exercise 14. Let $x, y \in \mathbb{R}$. Using problem **§1.1. #14**, we get [x] + [x + 1/2] = [2x] and [y] + [y + 1/2] = [2y]. Then

$$[2x] + [2y] - [x] - [y] = [x + 1/2] + [y + 1/2].$$

It is enough to show that

$$[x + 1/2] + [y + 1/2] \ge [x + y].$$

We have that $[x + y] \le x + y$ and

$$x + y = \left(x + \frac{1}{2}\right) + \left(y + \frac{1}{2}\right) - 1 < \left[x + \frac{1}{2}\right] + 1 + \left[y + \frac{1}{2}\right] + 1 - 1$$

From this, we conclude that [x + y] < [x + 1/2] + [y + 1/2] + 1, and hence $[x + y] \le [x + 1/2] + [y + 1/2]$.

§1.1. Exercise 18. Let $x \in \mathbb{R}$, $n \in \mathbb{Z}$, and $m \in \mathbb{N}$. To solve this problem, we need to have m > 0.

We define z = x + n. Given that [z] = [x] + n, it is enough to show the identity

$$\left[\frac{[z]}{m}\right] = \left[\frac{z}{m}\right].$$

We define the following two integers.

$$\alpha = \left\lceil \frac{[z]}{m} \right\rceil, \qquad \beta = \left\lceil \frac{z}{m} \right\rceil.$$

We will show two inequalities: $\alpha \leq \beta$, $\beta \leq \alpha$.

1) Given that $[z] \le z$ and m > 0, we have

$$\alpha \le \frac{[z]}{m} \le \frac{z}{m} < \beta + 1.$$

Given that $\alpha, \beta \in \mathbb{Z}$ and $\alpha < \beta + 1$, this implies that $\alpha \leq \beta$.

2) Clearly, $\beta \leq \frac{z}{m}$. Using that m > 0, we get

$$m\beta \le z < [z] + 1.$$

We have that $m\beta$, $[z] \in \mathbb{Z}$ and $m\beta < [z] + 1$. This implies that $m\beta \leq [z]$, and therefore,

$$\beta \le \frac{[z]}{m} < \alpha + 1.$$

Given that $\alpha, \beta \in \mathbb{Z}$ and $\beta < \alpha + 1$, we conclude $\beta \leq \alpha$.

§1.2. Exercise 22. The identity $\frac{1}{k^2 - 1} = \frac{1}{2} \left(\frac{1}{k - 1} - \frac{1}{k + 1} \right)$ will not gives us a telescoping sum. But we can modify this identity, introducing an extra term that cancels. Notice that

$$\frac{1}{k^2 - 1} = \frac{1}{2} \left(\left(\frac{1}{k - 1} + \frac{1}{k} \right) - \left(\frac{1}{k} + \frac{1}{k + 1} \right) \right).$$

This implies that

$$\frac{1}{k^2 - 1} = a_k - a_{k-1},$$

where $a_k = -\frac{1}{2} \left(\frac{1}{k} + \frac{1}{k+1} \right)$.

From this, we get

$$\sum_{k=2}^{n} \frac{1}{k^2 - 1} = \sum_{k=2}^{n} (a_k - a_{k-1}) = a_n - a_1 = -\frac{1}{2} \left(\frac{1}{n} + \frac{1}{n+1} \right) + \frac{3}{4}.$$