Math 328K. Fall 2025

Some solutions to Homework # 8

Prof. Hector E. Lomeli

Section 6.1. Exercise 10. Given that $11 \not\mid 6$, we have (6, 11) = 1. Using FLT, we have that $6^{10} \equiv 1 \pmod{11}$. We also have that $2000 = 10\ell$, where $\ell = 200$. We conclude that

$$6^{2000} = (6^{10})^{\ell} \equiv (1)^{\ell} = 1 \pmod{11}.$$

Section 6.1. Exercise 14. The last digit of the base 7 expansion of 3^{100} is the remainder 3^{100} **mod** 7. First, by FLT, we have that $3^6 \equiv 1 \pmod{7}$. Also, $100 \mod 6 = 4$. In fact, we can write $100 = 6 \cdot 16 + 4$. From these considerations, we have the following computation.

$$3^{100} \equiv 3^{96}3^4 = (3^6)^{16}3^4 \equiv 3^4 \pmod{7}$$
.

Now $3^2 \equiv 2 \pmod{7}$ and hence $3^4 \equiv 4 \pmod{7}$. We conclude that $3^{100} \mod{7} = 4 \mod{7} = 4$.

Section 6.1. Exercise 18. If $3 \nmid n$ then, by FLT we have that $3^2 \equiv 1 \pmod{3}$. We also know that, if n is odd, then $n^2 \equiv 1 \pmod{8}$. Given that 3 and 8 are coprime, the CRT implies that $n^2 \equiv 1 \pmod{24}$.

Section 6.1. Exercise 22. First we notice that $30 = 2 \cdot 3 \cdot 5$. The numbers 2, 3, 5 are pairwise coprime. Let $n \in \mathbb{Z}$. Using FLT, we know that

$$n^2 \equiv n \pmod{2}$$
, $n^3 \equiv n \pmod{3}$, $n^5 \equiv n \pmod{5}$.

This implies that $n^3 \equiv n^2 \equiv n \pmod 2$. Using the CRT we conclude that $n^3 \equiv n \pmod 6$. We also have that

$$n^9 \equiv n^3 \equiv n \pmod{6},$$

and

$$n^9 \equiv n^5 \equiv n \pmod{5}$$
.

Using the CRT we conclude that $n^9 \equiv n^5 \equiv n \pmod{30}$.

Section 6.1. Exercise 28. If p, q are two different primes them $p \nmid q$ and $q \nmid p$. Let $x = p^{q-1} + q^{p-1}$. Then FLT implies that

$$x \equiv q^{p-1} \equiv 1 \pmod{p}, \qquad x \equiv p^{q-1} \equiv 1 \pmod{q}.$$

Given that (p, q) = 1, we conclude that $x \equiv 1 \pmod{pq}$.

Section 6.3. Exercise 8. We notice that $63 = 7 \cdot 9$. The numbers 7, 9 are pairwise coprime. Let $a \in \mathbb{Z}$ such that $3 \nmid a$ or $9 \mid a$. Using the CRT, it is enough to show

$$a^7 \equiv a \pmod{7}, \qquad a^7 \equiv a \pmod{9}.$$

FLT implies that $a^7 \equiv a \pmod{7}$. For the second congruence, we have to consider two cases.

• If $3 \not\mid a$, then (a, 9) = 1 and hence $a^{\phi(9)} \equiv 1 \pmod{9}$. We have that $\phi(9) = 6$, so

$$a^7 = a^6 \cdot a \equiv 1 \cdot a = a \pmod{9}$$
.

• If $9 \mid a$, then $a \equiv 0 \pmod{9}$. This clearly implies that $a^7 \equiv a \pmod{9}$.

Using the CRT we conclude that $a^7 \equiv a \pmod{63}$.

Section 6.3. Exercise 10. Let a, b be relatively prime positive integers. Let $z = a^{\phi(b)} + b^{\phi(a)}$. Then Euler's theorem implies that

$$z \equiv b^{\phi(a)} \equiv 1 \pmod{a}, \qquad z \equiv a^{\phi(b)} \equiv 1 \pmod{b}.$$

Given that (a, b) = 1, we conclude that $z \equiv 1 \pmod{ab}$.

Section 6.3. Exercise 12. a) $x \equiv 17 \pmod{20}$.

- **b)** $x \equiv 4 \pmod{21}$.
- **9. a).** If p is prime, then $p \ge 2$. Using induction, we can prove that $2^{n-1} \ge n$, for all $n \in \mathbb{N}$. This implies that $p^{n-1} \ge n$.
- **9. b). Solution 1.** If q > 1, then the numbers p, p^2, \ldots, p^n are n positive integers that are not coprime with m and are less than m. This implies that p, p^2, \ldots, p^n are not in U_m , and hence $\#(U_m) \le m n$. We conclude that $\phi(m) \le m n$. If q = 1, then $\phi(m) m = \phi(p^n) p^n = p^{n-1} \ge n$.
- **9. b). Solution 2.** Given that (p,q) = 1, we have that

$$\phi(m) = \phi(p^n q) = \phi(p^n) \phi(q) = (p^n - p^{n-1})\phi(q).$$

This implies that

$$m - \phi(m) = p^n q - (p^n - p^{n-1})\phi(q) = p^n (q - \phi(q)) + p^{n-1}\phi(q).$$

We know that $1 \le \phi(q) \le q$, and $p^{n-1} \ge n$. We conclude that $m - \phi(m) \ge p^{n-1} \ge n$.

9. c). If a is an integer such that $p \mid a$, then $p^n \mid a^n$. Using the previous part of this exercise, we have that $m - \phi(m) - n \ge 0$. This implies that

$$a^{m-\phi(m)-n}$$

is an integer and

$$a^{m-\phi(m)} = a^{m-\phi(m)-n}a^n \equiv 0 \pmod{p^n}.$$

10. We will assume m > 1 and prove that

$$a^{m-\phi(m)}\left(a^{\phi(m)}-1\right) \equiv 0 \; (\text{mod } m).$$

Using the FLT, we know that m can be written as

$$m = p_1^{n_1} p_2^{n_2} \cdots p_{\ell}^{n_{\ell}},$$

where p_1, \ldots, p_ℓ are distinct primes and $n_1, \ldots, n_\ell \in \mathbb{N}$.

The factors $p_1^{n_1}$, $p_2^{n_2}$, \cdots , $p_\ell^{n_\ell}$ are pairwise coprime. Using the CRT, it is enough to prove that

$$a^{m-\phi(m)}\left(a^{\phi(m)}-1\right) \equiv 0 \pmod{p_i^{n_i}},$$

for all $i = 1, ..., \ell$. For each i, we also define $q_i = m/p_i^{n_i}$. Clearly, $(p_i, q_i) = 1$.

Let $1 \le i \le \ell$ be chosen. We have two cases: $p_i \mid a$ and $p_i \not\mid a$.

Case 1. If $p_i \mid a$, then we can write $m = p_i^{n_i} q_i$. Using the previous problem, we have that

$$a^{m-\phi(m)} \equiv 0 \pmod{p_i^{n_i}}.$$

Case 2. If $p_i \nmid a$, then $(p_i^{n_i}, a) = 1$. Using Euler's theorem,

$$a^{\phi\left(p_i^{n_i}\right)} \equiv 1 \pmod{p_i^{n_i}}.$$

However, we also have that $(p_i^{n_i}, q_i) = 1$ and therefore,

$$\phi(m) = \phi(p_i^{n_i})\phi(q_i).$$

This implies that

$$\left(a^{\phi(m)} - 1\right) \equiv 0 \pmod{p_i^{n_i}}.$$

In both cases, we conclude that

$$a^{m-\phi(m)}\left(a^{\phi(m)}-1\right) \equiv 0 \pmod{p_i^{n_i}}.$$