Math 325K. Fall 2025

Table for the euclidean algorithm

Prof. Hector E. Lomeli

The input of this algorithm is a pair of numbers 0 < b < a. In the method, we will get a sequence of non-negative numbers r_0, r_1, r_2, \ldots

We will consider that the algorithm ends, when one of the elements satisfies $r_{n+1} = 0$. For each k = 1, ..., n the sequence will be positive and strictly decreasing

$$r_0 > r_1 > r_2 > \cdots > r_n > 0.$$

We let $r_0 = a$ and $r_1 = b$. In each step, if $r_k > 0$, we let q_k and r_{k+1} be the quotient and remainder that we get when we divide r_{k-1} by r_k . This implies that $0 \le r_{k+1} < r_k$ and

$$r_{k+1} = r_{k-1} - q_k \, r_k.$$

k	r_{k-1}	r_k	q_k	r_{k+1}
1				
2				
3				
4				
5				
6				
7				
8				