Introduction to Number Theory (M328K)

Homework # 2 Fall 2025

Prof. Hector E. Lomeli

- **1.** §1.3 # 4.
- **2.** §1.3 # 8.
- 3. Use the Principle of Mathematical Induction to prove that

$$\sum_{k=1}^{n} \frac{k}{2^k} = 2 - \frac{n+2}{2^n},$$

for all $n \ge 1$.

4. A sequence x_n is defined recursively as follows: $x_1 = 100$ and

$$x_{n+1} = 11 x_n - 10,$$

for all $n \ge 1$. Use the PMI to show that the sequence satisfies $x_n = 9 \cdot 11^n + 1$, for all $n \ge 1$.

5. A sequence L_n is defined, recursively, as follows: $L_1 = 0$, $L_2 = 4$, $L_3 = 24$ and

$$L_{n+1} = -3L_{n-2} + L_{n-1} + 3L_n$$

for all $n \ge 3$. For each $n \in \mathbb{N}$, let G_n be $G_n = 3^n - (-1)^n - 4$. Use strong induction to show that these sequences satisfy: $L_n = G_n$, for all $n \in \mathbb{N}$.

6. §1.3 # 14.

Hint: Let P(n) be the following predicate:

$$P(n) \Leftrightarrow (\exists x, y \in \mathbb{Z})(x \ge 0 \land y \ge 0 \land n = 7x + 10y).$$

We can use strong induction to prove that P(n) is true, for all $n \ge 54$. Show the following.

- a) $P(54), P(55), \ldots, P(60)$ are true. Prove each statement separately.
- **b**) $(\forall n \ge 60) (P(54) \land \cdots \land P(n) \rightarrow P(n+1)).$
- **7.** §1.3 # 31. (*Hint*: Use strong induction.)