Introduction to Number Theory (M328K)

Homework # 4 Fall 2025

Prof. Hector E. Lomeli

1. §3.3 # 32.

- **2.** Let $a, x, y \in \mathbb{N}$.
 - a) Use the PMI to prove that the following predicate is true, for all $k \in \mathbb{N}$.

$$P(k) \iff a^y - 1 \mid (a^y)^k - 1.$$

- **b)** Prove that, if $y \mid x$, then $a^y 1 \mid a^x 1$.
- **3.** Let $a, m, n \in \mathbb{N}$ with a > 1. We define $d_0 = a^{(m,n)} 1$ and $d_1 = (a^m 1, a^n 1)$. Prove the following.
 - **a**) $d_0|d_1$.
 - **b)** There exists $p, q \in \mathbb{N}$ such that

$$(m,n) = m p - n q.$$

- c) If we let $u = a^{mp} 1$ and $v = a^{nq} 1$, then d_0 can be written as a linear combination of u and v.
- **d**) $d_1|d_0$ and therefore $d_0 = d_1$.

Use the Euclidean algorithm to find each of the following greatest common divisors. In each case, write the greatest common divisor of the integers as a linear combination of these integers. Justify your answer and show all your work.

- **4.** (190, 25).
- **5.** (800, 255)
- **6.** (2000, 1001)