Math 328K. Fall 2025

Guide for Midterm Exam 1

Prof. Hector E. Lomeli

You should know how to solve the problems in homework assignments 1–4. Focus on the following.

Concentrate on the following concepts.

- Natural numbers.
- Integers.
- Well-ordering principle.
- Sequence.
- Geometric sequence.
- Principle of Mathematical Induction.

- Second Principle of Mathematical Induction.
- Recursive definition of sequences.
- Divisibility.
- Division algorithm. (QRT)
- Prime numbers.

- Composite numbers.
- Greatest common divisor.
- Linear combination.
- Bezout's theorem.
- Relatively primes.
- Euclidean algorithm.

Do the following practice questions.

- 1) Let b_1, b_2, \ldots be the sequence given by $b_k = k^5 (k-1)^5$. Let $n \in \mathbb{N}$. Show the following.
 - a) $10 \mid b_k 1$, for all $k \in \mathbb{N}$. (*Hint*: use that $2 \mid k^2 k$.)
 - **b)** There exists an integer q such that $\sum_{k=1}^{n} b_k = 10q + n$.
 - c) $10 \mid n^5 n$. (*Hint*: Use telescoping sums to compute $\sum_{k=1}^{n} b_k$.)

2) A sequence is defined, recursively, as follows: $L_1 = 0$, $L_2 = 4$, $L_3 = 24$ and

$$L_{n+1} = -3L_{n-2} + L_{n-1} + 3L_n$$

for all $n \ge 3$. For each $n \in \mathbb{N}$, let G_n be $G_n = 3^n - (-1)^n - 4$. Show that the these sequences satisfy: $L_n = G_n$, for all $n \in \mathbb{N}$.

- 3) Let $a, b \in \mathbb{Z}$ and $d \in \mathbb{N}$. Assume that $d \mid a b$. Use mathematical induction to prove that $d \mid a^n b^n$, for all $n \in \mathbb{N}$.
- **4)** Let $m \in \mathbb{N}$. If $a \in \mathbb{Z}$, we will denote by $a \mod m$ the remainder of dividing a by m.

Let $x, y \in \mathbb{Z}$ be two integers such that $m \mid x - y$. Prove that $x \mod m = y \mod m$. This is, if $m \mid x - y$ then both integers have the same remainder when divided by m. (*Hint*: Use uniqueness in the QRT.)

- 5) Let $a, b \in \mathbb{N}$ be positive integers such that (a, b) = c. Suppose that $c \neq b$. Prove the following.
 - **a)** 0 < c < b.
 - **b**) There exists $x \in \mathbb{Z}$ such that $(ax) \mod b = c$. (*Hint:* use Bezout's theorem.)
- **6)** Let p be prime and $\alpha \in \mathbb{Z}$ be an integer such that $p \nmid \alpha$. Show that there exists $\beta \in \mathbb{Z}$ such that $(\alpha\beta) \mod p = 1$. (*Hint:* Prove that $(\alpha, p) = 1$ and use Bezout's theorem.)
- 7) Let $a_1, a_2 \in \mathbb{Z}$ and $b \in \mathbb{N}$. Prove that the following statements are equivalent
 - **a**) $(a_1, b) = (a_2, b) = 1$.
 - **b**) $(a_1 a_2, b) = 1$.
- 8) Let m_1, m_2 be two relatively prime integers. Let $x_1, x_2 \in \mathbb{Z}$ such that $(x_1, m_1) = 1$, $(x_2, m_2) = 1$. We define

$$z = x_2 m_1 + x_1 m_2 \in \mathbb{Z},$$

Show that $(z, m_1) = 1$, $(z, m_2) = 1$ and $(z, m_1 m_2) = 1$.