Math 328K. Fall 2025

Guide for Midterm Exam 2

Prof. Hector E. Lomeli

Solve the following problems.

§3.5 10, 36, 40, 46.	§4.3 4, 10, 12, 21–23.	§7.2 1–3, 8–10, 34.	HW 8: 9.
§3.7 2–8.	§6.1 10, 18–22, 28.	HW 5: 4–6.	
§4.1 14, 30, 34.	§6.3 7–10, 13, 22.	HW 6: 4, 6.	
§4.2 2, 8, 9, 12, 18.	§7.1 2, 5–7, 20–23.	HW 7: 5, 6.	

Concentrate on the following concepts.

- Fundamental theorem of arithmetic.
- Least common multiple.
- Linear diophantine equations.
- Congruences modulo *m* and properties.
- Inverse modulo *m*.
- Chinese remainder theorem.
- Wilson's theorem.

- Fermat's Little Theorem.
- Euler's ϕ -function.
- Euler's Theorem.
- Properties of Euler's ϕ -function.
- Multiplicative functions.
- Sum of divisors σ -function.
- Number of divisors τ -function.

Do the following practice questions.

- 1) Prove that any prime p > 3 is of the form 6k + 1 or 6k 1, for some $k \in \mathbb{N}$.
- 2) Let N be an integer such that N > 1. Let $p_1, ..., p_n$ be all the different prime numbers that divide N. Prove the following.
 - a) If all primes $p_1, ..., p_n$ are of the form 6k + 1 then the $N \mod 6 = 1$.
 - **b)** If *N* satisfies that *N* mod 6 = 5, then $2 \nmid N$, $3 \nmid N$ and there exists a prime of the form p = 6k 1 that divides *N*.
- 3) §3.5 # 56. (*Hint*: Use the previous problem.)
- **4)** Let *n* be an odd natural number. Prove that $n \mid 2^{(n-1)!} 1$.

- 5) Show that $a^{40} 1$ is divisible by 440 whenever (a, 110) = 1.
- **6)** Let $x, y, n \in \mathbb{N}$. Let $a \in \mathbb{Z}$ be an integer such that (a, n) = 1. Prove that, if $x \equiv y \pmod{\phi(n)}$ then

$$a^x \equiv a^y \pmod{n}$$
.

- 7) Let p be an odd prime. Assume that there exists x_0 such that $x_0^2 \equiv -1 \pmod{p}$. Show the following.
 - **a)** $x_0^k \not\equiv 1 \pmod{p}$, for k = 1, 2, 3.
 - **b)** If we define $r = \phi(p) \mod 4$ then $x_0^r \equiv 1 \pmod{p}$.
 - c) r = 0 and hence $p \equiv 1 \pmod{4}$.
- 8) Let p be an odd prime such that $p \equiv 3 \pmod 4$. Let a be an integer such that $a^{\frac{p-1}{2}} \equiv -1 \pmod p$. We will show that the equation $x^2 \equiv a \pmod p$ has no solution. By way of contradiction, suppose that there exists x_1 such that $x_1^2 \equiv a \pmod p$. Let $\ell = \frac{3p-5}{4}$. Show the following.
 - a) $\ell \in \mathbb{N}$.
 - **b**) If we define $x_0 = x_1 a^{\ell}$, then $x_0^2 \equiv -1 \pmod{p}$.
 - c) $p \equiv 1 \pmod{4}$. This is a contradiction and hence $x^2 \equiv a \pmod{p}$ has no solution.
- 9) Let z be an integer. Define

$$x = z \mod 8$$
, $y = z \mod 125$.

This is, x, y are the remainders that result when we divide z by 8 and 125, respectively. Prove that

$$z^n \equiv 376y^n - 375 \, x^n \, (\text{mod } 1000),$$

for all $n \in \mathbb{N}$.

(*Hint*: prove first that $z^n \equiv x^n \pmod{8}$ and $z^n \equiv y^n \pmod{125}$.)

- **10**) §7.2 #40. (*Hint*: You can use that $\phi(p^i) = p^{i-1}(p-1)$, if p is prime and $i \in \mathbb{N}$.
- 11) Let $m_1, m_2 \in \mathbb{N}$ be two integers such that $(m_1, m_2) = 1$. Let $x_1, x_2 \in \mathbb{Z}$. Prove that the following two statements are equivalent.
 - **a)** $(x_1, m_1) \cdot (x_2, m_2) = 1$.
 - **b**) $(x_1 \cdot m_2 + x_2 \cdot m_1, m_1 m_2) = 1.$
- 12) Let $m_1, m_2 \in \mathbb{N}$ be two integers such that $(m_1, m_2) = 1$. Let $x_1, x_2 \in \mathbb{Z}$ such that $(x_1, m_1) \cdot (x_2, m_2) = 1$. Bezout's theorem implies that there exists $y_1, y_2 \in \mathbb{Z}$ such that $m_2y_1 + m_1y_2 = 1$. Show the following.
 - a) There exists integers $\overline{x_1}$ and $\overline{x_2}$ such that

$$x_1 \overline{x_1} \equiv 1 \pmod{m_1}, \qquad x_2 \overline{x_2} \equiv 1 \pmod{m_2}.$$

b) If we define $z = x_1 \cdot m_2 + x_2 \cdot m_1$, then there exists $\overline{z} \in \mathbb{Z}$ such that

$$z \overline{z} \equiv 1 \pmod{m_1 m_2}$$
.

c) Write \overline{z} in terms of $\overline{x_1}$, $\overline{x_2}$, m_1 , m_2 , y_1 , y_2 . (*Hint*: Use the CRT.)