Math M427J. Fall 2025

Guide for Midterm Exam 2

Prof. Hector E. Lomeli

Solve the following problems.

2.5 2–4, 7, 13, 14.

3.1 4, 6, 8, 14, 15.

Extra HW6 2, 3, 4, 5, 6.

2.15 2, 4, 6, 8, 10, 12.

3.3 1–5.

Concentrate on the following concepts.

- Method of guessing a particular solution.
- Higher-order equations.
- Higher-order characteristic equation.
- Higher-order fundamental solutions.

- Particular solution for higher-order equations.
- Matrix. Dimension of a matrix.
- \mathbb{R}^n . Sum and scalar product.
- Product of a matrix and a vector.
- Product of two matrices.
- Linear combination of vectors.

- Systems of differential equations.
- Reduction of an equation of order *n*.
- Linear system.
- Vector space.
- Linearly independent sets.

Do the following practice questions.

1) Find second order nonhomogeneous equations for which the following are general solutions.

a)
$$y(t) = C_1 + C_2 e^t - \frac{1}{2}t^2 + 4t$$
.

b)
$$y(t) = C_1 e^{2t} + C_2 e^t + 3t + 1$$
.

c)
$$y(t) = e^{-2t}(C_1 \cos t + C_2 \sin t) + 3t^3 - 2t^2 + t$$
.

2) Find a general solution for the following equations. Use the guessing method to find particular solutions.

a)
$$y'' + 4y = \sin 2t$$
.

b)
$$y'' - 2y' - 3y = 9t^2$$
.

c)
$$y'' - y' - 2y = 4e^{-t}$$
.

d)
$$y'' - 2y' - 3y = 2e^t - 10\sin t$$
.

e)
$$y'' + 6y' + 13y = 17e^{-2t}\cos 2t$$
.

f)
$$y'' + 9y = 6t \sin(3t) - \cos(3t)$$
.

3) Find a general solution for the following equations.

a)
$$y^{(3)} - 2y'' - y' + 2y = 0$$
.

b) $y^{(3)} - 9y'' + 25y' - 17y = 0$.

c)
$$y^{(4)} + 8y'' + 16y = 0$$
.

d)
$$y^{(4)} - 2y'' + y = 0.$$

e)
$$y^{(5)} + y^{(4)} + 3y^{(3)} - 5y'' = 0$$
.

4) Consider the linear operator

$$L[y] = y^{(3)} + 6y'' + 13y' + 10y.$$

- a) Find the general solution of L[y] = 0.
- **b)** Solve the initial value problem

$$L[v] = 0, \ v(0) = 0, v'(0) = 0, v''(0) = 1.$$

c) Let $g(t) = t e^{-2t}$. Use one of the formulas

$$\Psi(t) = \int_0^t v(t-s)g(s) \, ds = \int_0^t v(s)g(t-s) \, ds,$$

to find a solution of $L[\Psi] = g(t)$.

d) Find the general solution of L[y] = g(t).

5) Consider the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix},$$

and

$$\mathbf{w}_1 = \begin{bmatrix} -2 \\ -5 \\ 6 \end{bmatrix}, \quad \mathbf{w}_2 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \quad \mathbf{w}_3 = \begin{bmatrix} -2 \\ -9 \\ 2 \end{bmatrix}.$$

Let A be a 3×3 matrix with the property that

$$A \cdot \mathbf{v}_1 = \mathbf{w}_1, \ A \cdot \mathbf{v}_2 = \mathbf{w}_2, \ A \cdot \mathbf{v}_3 = \mathbf{w}_3.$$

Find the matrix A. (*Hint:* The three columns of A are $A \cdot e^1$, $A \cdot e^2$, $A \cdot e^3$, where

$$\mathbf{e}^1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{e}^2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{e}^3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

Write e^1 , e^2 , and e^3 in terms of v_1 , v_2 , v_3 .)

6) Consider the vectors

$$\mathbf{v}_1 = \begin{bmatrix} \alpha \\ -4 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -9 \\ \alpha \end{bmatrix}.$$

Find all possible values of α for which $\mathbf{v}_1, \mathbf{v}_2$ are linearly dependent. In each case, find a linear combination such that $C_1\mathbf{v}_1 + C_2\mathbf{v}_2 = \mathbf{0}$, where at least one of the constants C_1 , C_2 is not equal to zero.

7) Let V be the set of solutions of the linear system $\dot{\mathbf{x}} = A\mathbf{x}$, where

$$A = \left[\begin{array}{cc} -2 & 5 \\ 1 & 2 \end{array} \right].$$

Verify that the following functions are elements of V that are linearly independent.

$$\mathbf{x}^{1}(t) = \begin{bmatrix} 3e^{3t} - 5e^{-3t} \\ e^{-3t} + 3e^{3t} \end{bmatrix}, \ \mathbf{x}^{2}(t) = \begin{bmatrix} 2e^{3t} - 5e^{-3t} \\ e^{-3t} + 2e^{3t} \end{bmatrix}.$$

8) We continue with the previous example. Let

$$\mathbf{x}^{3}(t) = \begin{bmatrix} 5e^{-3t} + 2e^{3t} \\ 2e^{3t} - e^{-3t} \end{bmatrix}.$$

Then we can verify that $\mathbf{x}^3(t)$ is also an element of the vector space V. However, $\{\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3\}$ is dependent. Find a linear combination such that

$$C_1\mathbf{x}^1(t) + C_2\mathbf{x}^2(t) + C_3\mathbf{x}^3(t) = \mathbf{0},$$

where at least one of the constants C_1 , C_2 , C_3 is not equal to zero. (*Hint*: substitute t = 0 to simplify the equations.)