1 4/16/13: A few reminders

There is a homework due Thurs.

Definition 1. A polynomial \(f \in \mathbb{Z}[x] \) is primitive if the gcd of its coefficients is 1. More generally, the content of \(f \in \mathbb{Z}[x] \) is the gcd of its coefficients. So we may write \(f = dg \) where \(d \in \mathbb{Z} \) is the content of \(f \) and \(q \) is primitive.

Lemma 1.1. The product of primitive polynomials is primitive.

Proof. Let
\[
f(x) = a_nx^n + \cdots + a_0, \quad g(x) = b_mx^m + \cdots + b_0.
\]

email:lpbowen@math.utexas.edu
Let d be the content of fg. To obtain a contradiction suppose $d > 1$. Let p be a prime dividing d. Let $j \geq 0$ be the smallest number such that $p \nmid a_j$ and let $k \geq 0$ be the smallest number such that $p \nmid b_k$. Then the coefficient on x^{j+k} is

$$c_{j+k} = a_jb_k + a_{j+1}b_{k-1} + \cdots a_{j+k}b_0.$$

But notice that $p \mid b_0, b_1, \ldots$. Since also $p \mid c_{j+k}$ we must have $p \mid a_jb_k$ which is impossible. This contradiction implies the lemma. \hfill \Box

Motivation: $2x^2 + 2$ is reducible in $\mathbb{Z}[x]$ because it equals $2(x^2 + 1)$. But it is irreducible in $\mathbb{Q}[x]$.

Theorem 1.2 (Gauss’ Lemma). If a primitive polynomial $f(x) \in \mathbb{Z}[x]$ is reducible over \mathbb{Q} then it is reducible over \mathbb{Z}.

Proof. Let $f(x) = u(x)v(x)$ where $u, v \in \mathbb{Q}[x]$ have positive degree. By clearing denominators and taking out common factors we can write this as

$$f(x) = \frac{a}{b}\lambda(x)\mu(x)$$

where a, b are coprime integers and $\lambda, \mu \in \mathbb{Z}[x]$ are primitive. So

$$bf(x) = a\lambda(x)\mu(x).$$

The content on the left hand side is b. The content on right hand side is a (because the previous lemma implies that the product $\lambda\mu$ is primitive). So $a = b$ and $f = \lambda\mu$. \hfill \Box

Definition 2. A polynomial in $\mathbb{Z}[x]$ is integer monic if its leading coefficient is 1.

Corollary 1.3. If an integer monic polynomial factors over \mathbb{Q} then it factors into integer monic polynomials.

So how do we know when a polynomial is irreducible? here’s one criterion:

Lemma 1.4. Let $f(x) = a_0 + a_1x + \cdots + a_nx^n \in \mathbb{Z}[x]$. If p is a prime with $p \nmid a_n$ and the residue of f mod p (for some prime p) is irreducible in $\mathbb{F}_p[x]$ then f is irreducible in $\mathbb{Q}[x]$. In particular, if f is also primitive, then f is irreducible in $\mathbb{Z}[x]$.

Example: $x^4 - 6x^3 + 12x^2 - 3x + 9$ equals $x^4 + x + 1$ mod 2 which is irreducible (in $\mathbb{F}_2[x]$). So this poly is irreducible in $\mathbb{Z}[x]$.

We will present one criterion due to Eisenstein:

Theorem 1.5 (Eisenstein’s criterion). Let $f(x) = a_nx^n + \cdots + a_0$. Suppose p is a prime, $p \mid a_i$ for all $0 \leq i \leq n - 1$, $p \nmid a_n$ and $p^2 \nmid a_0$. Then f is irreducible over \mathbb{Q}.
Proof. Wlog f is primitive. To obtain a contradiction, we assume f is reducible. Using Gauss’ Lemma, we obtain

$$f(x) = (b_rx^r + \cdots + b_0)(c_sx^s + \cdots + c_0)$$

where the b_i, c_i’s are integers. Note $a_0 = b_0c_0$. Since $p | a_0, p^2 \nmid a_0$ we have wlog $p | b_0, p \nmid c_0$. There must be a smallest number k such that $p \nmid b_k$ (otherwise $p | a_i$ for all i which is false). Note

$$a_k = b_kc_0 + b_{k-1}c_1 + \cdots b_0c_k.$$

If $k < n$ then $p | a_k$ now implies $p | b_kc_0$ which is false. So $k = n$. But this also doesn’t make sense because it implies that $s = 0$ so we don’t really have a factorization after all.

Example: the polynomial $f(x) = x^{p-1} + x^{p-2} + \cdots + x + 1$ is irreducible over \mathbb{Q}. Why? Well, it doesn’t satisfy the Eisenstein criterion but if you consider $f(x+1) = (x+1)^{p-1} + \cdots + (x+1) + 1$ and rewrite the coefficients you’ll find that it does satisfy the Eisenstein criterion. So $f(x+1)$ is irreducible over \mathbb{Q}. But this implies $f(x)$ is irreducible over \mathbb{Q} as well.

2 Polynomial rings over commutative rings

Throughout this section R is a commutative ring with unit.

Recall the definition of $R[x]$ and $R[x_1, \ldots, x_n]$.

Lemma 2.1. If R is an ID then so is $R[x]$.

Recall that $R[x, y] = R[x][y]$ for example.

Corollary 2.2. If R is an ID then so is $R[x_1, x_2, \ldots, x_n]$.

Recall the definition of UFD and gcd.

Lemma 2.3. If R is a UFD then any two elements have a gcd.

Corollary 2.4. If R is a UFD then every irreducible element is prime (and every prime element is irreducible).

Recall that $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.

Recall the notion of primitive polynomial and the content of a polynomial.

Lemma 2.5. If R is a UFD, then any product of primitive polynomials in $R[x]$ is primitive. In fact $c(fg) = c(f)c(g)$.

We’d like to know if there’s a form of Gauss’ lemma - that irreducible polynomials of $R[x]$ are still irreducible in $F[x]$ where F is the field of fractions of R.

Lemma 2.6. If $f \in R[x]$ is primitive and irreducible in $R[x]$ then it is irreducible in $F[x]$.

Lemma 2.7 (Key Lemma). Suppose R is a UFD. Any primitive polynomial in $R[x]$ can be factored in a unique way as a product of irreducible polynomials in $R[x]$.

Proof. This is similar to Gauss’ Lemma. Let $f \in R[X]$ be primitive. Because $F[X]$ is a Euclidean ring and therefore a UFD, $f = p_1 \cdots p_n$ for some irreducible polynomials $p_i \in F[X]$. By clearing denominators and factoring out the gcd’s we see that $p_i = (a_i/b_i)q_i$ where $a_i, b_i \in R$ and $q_i \in R[X]$ is a primitive irreducible polynomial. Therefore

$$f = \frac{a_1 \cdots a_n}{b_1 \cdots b_n} q_1 \cdots q_n$$

and

$$(b_1 \cdots b_n)f = (a_1 \cdots a_n)(q_1 \cdots q_n).$$

But the content of the LHS is $b_1 \cdots b_n$ and the content of the RHS is $(a_1 \cdots a_n)$. So $a_1 \cdots a_n = b_1 \cdots b_n$ which implies

$$f = q_1 \cdots q_n.$$

This proves existence. Uniqueness follows from the statement that every irreducible is prime (and vice versa).

Theorem 2.8. If R is a UFD then so is $R[x]$ and more generally, $R[x_1, x_2, \ldots, x_n]$.

Proof. This is practically a corollary of the lemma above.

Note that $\mathbb{Q}[x_1, x_2]$ is not a PID so not a Euclidean ring for example.

3 Vector Spaces: definition and examples

Let F be a field. A vector space over F is an abelian group V (in which we write the group law additively) and a scalar product which we write as rv for $r \in F$ and $v \in V$ such that for every $r, s \in F$ and $v, w \in V$

1. $r(v + w) = rv + rw$;
2. $(r + s)v = rv + sv$;
3. $r(sv) = (rs)v$;
4. $1v = v$.

3.1 Examples and subspaces

1. Let F^n be the set of all n-tuples (f_1, \ldots, f_n) with $f_i \in F$ for each i. We can regard F^n as a vector space over F.

4
2. We can regard $F[x]$ as a vector space over F. Also let $F_n[x]$ denote the set of all polynomials $p \in F[x]$ with degree $\leq n$. Then we can regard $F_n[x]$ as a vector space over F.

3. Suppose K is a field and $F \subset K$ is a subfield of K. For example, $\mathbb{Q} \subset \mathbb{R}$ or $\mathbb{R} \subset \mathbb{C}$. In this case, we can regard K as a vector space over F.

4. A subspace of a vector space is just a subset that happens to be a vector space when we restrict the scalar product and the additive group law. Equivalently $W \subset V$ is a subspace if W is closed under addition, subtraction and scalar multiplication. For example, we may regard $F_m[x]$ as a subspace of $F[x]$. Also if $F \subset K \subset L$ are fields then we may regard K as a vector subspace of L (where both K and L are considered to be vector spaces over F).

5. Let $F = \mathbb{R}$. Consider $V = \mathbb{R}^\mathbb{N} = \{(r_1, r_2, \ldots) : r_i \in \mathbb{R}\}$ as a vector space over \mathbb{R}. This space has a lot of interesting vector subspaces such as:

 (a) $c_0 = \{(r_1, r_2, \ldots) \in \mathbb{R}^\mathbb{N} : \lim_i r_i = 0\}$
 (b) $\ell^1 = \{(r_1, r_2, \ldots) \in \mathbb{R}^\mathbb{N} : \sum_i |r_i| < \infty\}$
 (c) $\ell^2 = \{(r_1, r_2, \ldots) \in \mathbb{R}^\mathbb{N} : \sum_i |r_i|^2 < \infty\}$
 (d) $\ell^\infty = \{(r_1, r_2, \ldots) \in \mathbb{R}^\mathbb{N} : \sup_i |r_i| < \infty\}$.

You should verify that each of these is a vector subspace. It’s a bit nontrivial to show that ℓ^2 is closed under addition. You need something called the Cauchy-Schwartz inequality which says that $(\sum_i |r_i + s_i|^2)^{1/2} \leq (\sum_i r_i^2)^{1/2} + (\sum_i s_i^2)^{1/2}$. This comes from an infinite-dimensional generalization of Pythagoras’ formula $a^2 + b^2 = c^2$.

4 Homomorphisms, Kernels and Quotients

A map $T : V \rightarrow W$ between vector spaces over F is a homomorphism if for every $v, w \in V$ and $r, s \in F$,

$$T(rv + sw) = rT(v) + sT(w).$$

We also say that T is F-linear or an F-homomorphism if we need to emphasize the dependence on F.

If T is 1-1 it is said to be an isomorphism or an embedding. Two vector spaces V, W are isomorphic if there is a bijective homomorphism between them.

Examples:

- Let $T : \mathbb{C} \rightarrow \mathbb{C}$ by $T(a + bi) = a - bi$. Show T is a \mathbb{Q}-linear isomorphism of vector spaces over \mathbb{Q}.
- Let $T : \mathbb{Q}[x, y] \rightarrow \mathbb{Q}[x]$ be the map $T(p(x, y)) = p(x, 0)$. Show that T is a homomorphism between vector spaces over \mathbb{Q}.
What do homomorphism from F^n to F^m “look like”? You should pause and think about this for a minute. You already know the answer when $F = \mathbb{R}$. At least you’ve seen it before. So think...

Answer: $m \times n$-matrices with values in F. More generally, if we are given vector space V,W over F we let $\text{Hom}_F(V,W)$ denote the set of all homomorphisms from V to W. We just denote this by $\text{Hom}(V,W)$ if it’s safe to leave F implicit. So $\text{Hom}(F^n,F^m)$ can be identified with the set of $m \times n$ matrices with values in F.

Note that there is a ring structure to $\text{Hom}(V,V)$ (which by the way is often denoted $\text{End}(V,V)$ because a homomorphism from V to itself is called an endomorphism). The multiplication is given by composition and the addition is well, addition. There is also a scalar multiplication so we can also regard $\text{Hom}(V,V)$ as an F-vector space. We won’t be studying this very much but it is very interesting.

Definition 3. The kernel of a homomorphism $T : V \to W$ is the subspace

$$\ker(T) = \{ v \in V : T(v) = 0 \}.$$

You should check that this really is a subspace.

If $V \subset W$ is a subspace then the quotient space denoted W/V is the space of cosets of V in W. So $W/V = \{ a + V : a \in W \}$. There is a canonical homorphism from W onto W/V.

Lemma 4.1. If $T : V \to W$ is a homomorphism then the image of T is a subspace of W and $V/\ker(T)$ is isomorphic to the image of T.

5 Direct products

If V_1, \ldots, V_n are vector spaces over F then we let

$$V_1 \oplus \cdots \oplus V_n = \{(v_1, \ldots, v_n) : v_i \in V_i \}$$

with the obvious vector space structure over F. This is the direct product of V_1, \ldots, V_n. As a short exercise, you should show that $F^n \oplus F^m$ is isomorphic to F^{n+m} and that F^n is isomorphic to $F \oplus \cdots \oplus F$ (with n summands).

There is a notion of interval direct product: If V_1, \ldots, V_n are subspaces of V, and for every $v \in V$ there is a unique $v_1 \in V_1, v_2 \in V_2, \ldots, v_n \in V_n$ such that $v = v_1 + \cdots + v_n$ then we say V is the internal direct product of V_1, \ldots, V_n.

Theorem 5.1. If V is the internal direct product of subspaces V_1, \ldots, V_n then V is isomorphic to the direct product $V_1 \oplus \cdots \oplus V_n$.

(The proof is an easy exercise).
6 Bases, linear independence, dimension

Definition 4. Let V be a vector space over a field F. If $v_1, \ldots, v_n \in V$ and $r_1, \ldots, r_n \in F$ then

$$r_1v_1 + \cdots + r_nv_n \in V$$

is a linear combination over F of the elements v_1, \ldots, v_n. We also call this an F-linear combination of v_1, \ldots, v_n. The set of all F-linear combinations of v_1, \ldots, v_n is called the span of v_1, \ldots, v_n. It is a subspace of V denoted $L(v_1, \ldots, v_n)$. If it is all of V then we say that v_1, \ldots, v_n spans V. If for every element $v \in L(v_1, \ldots, v_n)$ there is a unique set of scalars r_1, \ldots, r_n such that $v = r_1v_1 + \cdots + r_nv_n$ then we say that $\{v_1, \ldots, v_n\}$ is linearly independent (over F). Otherwise it is linearly dependent (over F). If the set $\{v_1, \ldots, v_n\}$ spans V and is linearly independent over F then we say it is a basis for V over F.

Lemma 6.1. If $S \subset V$ is a finite set which spans V then S contains a basis for V.

Proof. By an inductive argument there exist elements $s_1, \ldots, s_k \in S$ such that $0 \neq L(s_1)$ and $L(s_1, \ldots, s_i) \neq L(s_1, \ldots, s_{i+1})$ for all $1 \leq i < k$ and k is maximal with this property. In particular this means that if t is any element of S then $L(s_1, \ldots, s_k) = L(s_1, \ldots, s_k, t)$. In particular, t is in the span of $\{s_1, \ldots, s_k\}$ so it is an F-linear combination of s_1, \ldots, s_k. Since this is true for all $t \in S$, we must have that $L(S) = L(s_1, \ldots, s_k) = V$. It is easy to check that $\{s_1, \ldots, s_k\}$ is linearly independent over F so it is a basis.

Remark 1. The lemma above is still true when S is infinite but then you need transfinite induction (e.g. Zorn’s lemma) to prove it.

Definition 5. We say that V is finite dimensional if there is a finite basis for V.

Lemma 6.2. Let V be finite-dimensional. If $S \subset V$ is linearly independent then there exists a basis B for V such that $S \subset B$.

Proof. Let C be a finite basis for V. There exists a maximal set $C' \subset C$ with the property that $S \cup C'$ is linearly independent. Because any $c \in C \setminus C'$ has the property that $C' \cup S \cup \{c\}$ is linearly dependent it follows that $\text{span}(S \cup C') = \text{span}(S \cup C) = V$. So $S \cup C'$ is a basis for V.

Lemma 6.3. Let V be a vector space over F with finite bases S, T. Then S and T have the same number of elements.

Proof. Let $s \in S$. It follows from the previous lemma (or rather its proof) that there is a subset $T' \subset T$ such that $\{s\} \cup T'$ is a basis for V. We can write s as an F-linear combination in T in a unique way. From this we see that $|T'| = |T| - 1$. (Because $\{s\} \cup T'$ is a basis, any element of T can be expressed in a unique way as an F-linear combination of elements of $\{s\} \cup T'$. We can also express s as a linear combination of elements in T in a unique way. So if $t_1, t_2 \in T \setminus T'$ then

$$t_1 = r_1s + \sum_{t_i' \in T'} \alpha_i t_i', \quad t_2 = r_2s + \sum_{t_i' \in T'} \beta_i t_i'$$
\[s = \sum_{t_i \in T_i} c_i t_i \]

So
\[t_1 = r_1(\sum c_i t_i) + \sum_{t'_i \in T'} \alpha_i t'_i \]
implies that the coefficient \(c_2 = 0 \) (by uniqueness). Similarly, \(c_1 = 0 \). But this means that \(t_1, t_2 \) can be expressed as combinations of \(T' \) which contradicts that \(T \) is a basis.

Now if we list out the elements of \(S \) as \(S = \{s_1, \ldots, s_n\} \) for some \(n \) then we obtain basis \(\{s_1, \ldots, s_i\} \cup T_i \) for some \(T_i \subset T \) and by induction \(|T_i| = |T| - i \). In particular, \(S \cup T_n \) is a basis with \(|S \cup T_n| = |T| \). But we have to have \(T_n = \emptyset \) because \(S \) is already a basis. So we have to have \(|S| = |T| \) as required.

The lemma above allows us to define the \(F \)-dimension of a vector space as the cardinality of any basis. Note that the dimension depends on the field \(F \). For example, the \(\mathbb{R} \)-dimension of \(\mathbb{C} \) is (you supply the answer). But the \(\mathbb{Q} \)-dimension of \(\mathbb{C} \) is

Lemma 6.4. If \(V, W \) are vector spaces over \(F \) and the \(F \)-dimensions of \(V \) and \(W \) are finite and equal then \(V \) is isomorphic to \(W \) (as \(F \)-vector spaces).

Proof. Let \(B \) be a basis for \(V \), \(C \) a basis for \(W \) and let \(T : B \to C \) be a bijection. We extend \(T \) by linearity. Show that this defines an isomorphism. \(\square \)

Lemma 6.5. If \(T : V \to W \) is a homomorphism and \(V \) is finite-dimensional then
\[\dim_F(\ker(T)) + \dim_F(\text{Image}(T)) = \dim_F(V). \]

Proof. The idea of the proof is that we can construct a basis for \(V \) from a basis for \(\ker(T) \) and a basis for \(\text{Im}(T) \). \(\square \)