Group Theory problems

September 24, 2019

- 1. Prove that the group G of orientation preserving isometries of \mathbb{R}^3 that preserve a regular dodecahedron is isomorphic to A_5 . Hint: first determine |G|. How many 5-Sylow subgroups does G have?
- 2. Let n be an odd number so that $\pi = (1, 2, ..., n) \in A_n$. Is the S_n -conjugacy class of π the same as its A_n -conjugacy class?
- 3. Let H be a subgroup of G. Recall that $C_G(H) \triangleleft N_G(H)$ denotes the centralizer and normalizer of H in G. Show there exists an injective homomorphism from $N_G(H)/C_G(H)$ into $\operatorname{Aut}(H)$.
- 4. Recall that $Q_8 = \{1, -1, i, j, k, -i, -j, -k\}$ is the group with $ij = k, jk = i, ki = j, i^2 = j^2 = k^2 = -1$. Prove that Q_8 is not isomorphic to a subgroup of S_7 . (By contrast, D_8 is isomorphic to a subgroup of S_4).
- (a) Let M be a non-normal maximal subgroup of a finite group G. Show: the number of elements g ∈ G that are contained in a conjugate of M is at most (|M|-1)[G: M] + 1.
 - (b) Let H be a proper subgroup of G. Show that $G \neq \bigcup_{g \in G} gHg^{-1}$. Hint: use the previous problem.
 - (c) Show that every $M \in GL(n, \mathbb{C})$ is conjugate to an upper triangular matrix. Hint: M has a nonzero eigenvector. Thus the finiteness assumption in the previous problem is necessary.

- A group is called an elementary abelian p-group if it is isomorphic to (Z/p)ⁿ for some n. Suppose G is a solvable finite group.
 - Prove G has a nontrivial characteristic abelian subgroup.
 - Prove G has a nontrivial characteristic elementary abelian subgroup.
 - Prove there is a nontrivial homomorphism ϕ : Aut $(G) \rightarrow GL(n, F_p)$ for some prime p.
- Show there are exactly 4 homomorphisms from Z/2 into Aut(Z/8). Using these, construct the semi-direct products Z/8 ⋊ Z/2. Show these 4 groups are pairwise nonisomorphic.
- 8. Let G be a group of order p^k for some prime p and $k \ge 1$. Show that for every $1 \le l \le k$ that G has a normal subgroup of order p^l .
- 9. Show that if |G| = 336 then G is not simple.
- 10. Prove that if |G| = 231 then ZG contains a Sylow 11-subgroup.
- 11. Let n_p be the number of Sylow *p*-subgroups. Show that if $n_p \neq 1 \mod p^2$ then there exist distinct Sylow *p*-subgroups P, Q such that $[P : P \cap Q] = p$.
- 12. Find the ascending and descending central series of S_4 .
- 13. Prove that $\mathbb{R}^2 \rtimes \mathbb{R}^{>0}$ is solvable where $(\mathbb{R}^{>0}, \times)$ acts on \mathbb{R}^2 by t(x, y) = (tx, y/t). Also prove this group is not nilpotent. Context: this group is called **SOL**. It represents one of the 8 geometries in the Geometrization Theorem for 3-manifolds.
- 14. Let p be an odd prime and suppose $|G| = p^3$.
 - Show that the map φ : G → G defined by φ(g) = g^p is a homomorphism from G into the center of G.
 - Suppose all nontrivial elements of G have order p. Show G splits as a semi-direct product.
 - Suppose x ∈ G has order p². Show N = ⟨x⟩ is normal in G. Let y ∈ Ker(φ) − N.
 Let H = ⟨y⟩. Show G ≅ N ⋊ H.