Group Theory problems

September 24, 2019

1. Prove that the group G of orientation preserving isometries of \mathbb{R}^{3} that preserve a regular dodecahedron is isomorphic to A_{5}. Hint: first determine $|G|$. How many 5-Sylow subgroups does G have?
2. Let n be an odd number so that $\pi=(1,2, \ldots, n) \in A_{n}$. Is the S_{n}-conjugacy class of π the same as its A_{n}-conjugacy class?
3. Let H be a subgroup of G. Recall that $C_{G}(H) \triangleleft N_{G}(H)$ denotes the centralizer and normalizer of H in G. Show there exists an injective homomorphism from $N_{G}(H) / C_{G}(H)$ into $\operatorname{Aut}(H)$.
4. Recall that $Q_{8}=\{1,-1, i, j, k,-i,-j,-k\}$ is the group with $i j=k, j k=i, k i=j, i^{2}=$ $j^{2}=k^{2}=-1$. Prove that Q_{8} is not isomorphic to a subgroup of S_{7}. (By contrast, D_{8} is isomorphic to a subgroup of S_{4}).
5. (a) Let M be a non-normal maximal subgroup of a finite group G. Show: the number of elements $g \in G$ that are contained in a conjugate of M is at most $(|M|-1)[G$: $M]+1$.
(b) Let H be a proper subgroup of G. Show that $G \neq \cup_{g \in G} g H g^{-1}$. Hint: use the previous problem.
(c) Show that every $M \in G L(n, \mathbb{C})$ is conjugate to an upper triangular matrix. Hint: M has a nonzero eigenvector. Thus the finiteness assumption in the previous problem is necessary.
6. A group is called an elementary abelian p-group if it is isomorphic to $(\mathbb{Z} / p)^{n}$ for some n. Suppose G is a solvable finite group.

- Prove G has a nontrivial characteristic abelian subgroup.
- Prove G has a nontrivial characteristic elementary abelian subgroup.
- Prove there is a nontrivial homomorphism $\phi: \operatorname{Aut}(G) \rightarrow G L\left(n, F_{p}\right)$ for some prime p.

7. Show there are exactly 4 homomorphisms from $\mathbb{Z} / 2$ into $\operatorname{Aut}(\mathbb{Z} / 8)$. Using these, construct the semi-direct products $\mathbb{Z} / 8 \rtimes \mathbb{Z} / 2$. Show these 4 groups are pairwise nonisomorphic.
8. Let G be a group of order p^{k} for some prime p and $k \geq 1$. Show that for every $1 \leq l \leq k$ that G has a normal subgroup of order p^{l}.
9. Show that if $|G|=336$ then G is not simple.
10. Prove that if $|G|=231$ then $Z G$ contains a Sylow 11-subgroup.
11. Let n_{p} be the number of Sylow p-subgroups. Show that if $n_{p} \neq 1 \bmod p^{2}$ then there exist distinct Sylow p-subgroups P, Q such that $[P: P \cap Q]=p$.
12. Find the ascending and descending central series of S_{4}.
13. Prove that $\mathbb{R}^{2} \rtimes \mathbb{R}^{>0}$ is solvable where $\left(\mathbb{R}^{>0}, \times\right)$ acts on \mathbb{R}^{2} by $t(x, y)=(t x, y / t)$. Also prove this group is not nilpotent. Context: this group is called SOL. It represents one of the 8 geometries in the Geometrization Theorem for 3-manifolds.
14. Let p be an odd prime and suppose $|G|=p^{3}$.

- Show that the map $\phi: G \rightarrow G$ defined by $\phi(g)=g^{p}$ is a homomorphism from G into the center of G.
- Suppose all nontrivial elements of G have order p. Show G splits as a semi-direct product.
- Suppose $x \in G$ has order p^{2}. Show $N=\langle x\rangle$ is normal in G. Let $y \in \operatorname{Ker}(\phi)-N$. Let $H=\langle y\rangle$. Show $G \cong N \rtimes H$.

