Practice problems for M380C Midterm II

November 3, 2019

1. Let R be a commutative ring.
(a) Show that if $M \subset R$ is a maximal ideal and $1 \in R$ then R / M is a field. (I know this is a theorem in the book. Please prove it from scratch).
(b) Give an example of a commutative ring R with a maximal ideal $M \subset R$ such that R / M is not a field.
2. An element of a ring is called nilpotent if some power of it is equal to zero.
(a) Let R be a commutative ring. Show that its nilpotent elements form an ideal. (This ideal is called R 's nilradical and written $\operatorname{nil}(R)$.)
(b) Continuing (a), show that the nilradical of $R / \operatorname{nil}(R)$ is the zero ideal.
(c) Show that in a noncommutative ring, the nilpotent elements need not form an ideal.
3. (Chinese Remainder Theorem for Modules) Let M be an R-module and $A_{1}, \ldots, A_{n} \subset R$ be ideals. Prove that the map

$$
M \rightarrow M /\left(A_{1} M \times \cdots \times A_{n} M\right), \quad m \mapsto\left(m+A_{1} M, \ldots, m+A_{n} M\right)
$$

is an R-module homomorphism with kernel $A_{1} M \cap \cdots \cap A_{n} M$. Moreover, if the ideals A_{1}, \ldots, A_{n} are pairwise co-maximal then

$$
M /\left(A_{1} \cdots A_{n}\right) M \cong M / A_{1} M \times M / A_{k} M
$$

4. Prove or disprove: if R is a UFD and $I \subset R$ is a prime ideal then R / I is a UFD.
5. Let R be an integral domain. Prove that R is a UFD if and only if every prime ideal $I \subset R$ contains a prime element $x \in I$.
6. Let R be a PID. An ideal $I \subset R$ is primary if for all $a, b \in R$ with $a b \in I$ either $a \in I$ or there exists $n \in \mathbb{N}$ such that $b^{n} \in I$. Prove that if $I \subset R$ is primary then there exists a prime element $p \in R$ and $n \in \mathbb{N}$ such that $I=\left(p^{n}\right)$.
7. (a) Let R be a PID. Prove that every prime ideal is maximal.
(b) Does $\mathbb{Z}[x]$ have a prime ideal that is not maximal? If so, give an example. If not, prove it.
8. Let R be an integral domain. Suppose the following conditions hold.

- Any two elements a, b have a gcd d that is a linear combination of a, b (so $d=$ $a x+b y$ for some $x, y \in R)$.
- If $a_{1}, a_{2}, \ldots \in R$ are such that $a_{i+1} \mid a_{i}$ for all i then there is an N such that for every $n, m>N, a_{n}$ is an associate of a_{m}.

Prove that R is a PID.
9. Prove that irreducible elements are prime. Also show that if R is a PID then prime elements are irreducible.
10. Prove that PID's are UFD's. You may use the fact that, in a PID, an element is prime if and only if it is irreducible.
11. Let R be a Noetherian domain and $r \in R$ be a non-unit. Prove that there exist irreducible elements p_{1}, \ldots, p_{n} such that $r=p_{1} \cdots p_{n}$.
12. Find the gcd of $x^{3}-2$ and $x+1$ in $\mathbb{Q}[x]$ and write it as a linear combination of $x^{3}-2$ and $x+1$.
13. Determine all integer solutions to $85 x+145 y=505$.
14. Prove that a polynomial $p \in \mathbb{Z}[x]$ is irreducible in $\mathbb{Z}[x]$ if and only if it is irreducible in $\mathbb{Q}[x]$ and its content is 1 . (Its content is the gcd of all of its coefficients). You can use Gauss' Lemma.
15. State and prove Gauss' Lemma.
16. Determine all the ideals of the ring $R=\mathbb{Z}[x] /\left(2, x^{3}+1\right)$.
17. Let $f \in \mathbb{Z}[x]$ be irreducible in $\mathbb{Z}[x]$. Prove that if $I \subset \mathbb{Z}[x]$ is a maximal ideal with $(f) \subset I$ then $I=(f, p)$ for some integer prime p.
18. Prove or disprove:
(a) $\mathbb{R}[x, y]$ is a Euclidean domain.
(b) $\mathbb{R}[x, y]$ is Noetherian.
(c) $\mathbb{Z}[x]$ is a principal ideal domain (PID).
(d) $\mathbb{C}[x, y] /\left(y^{2}-2 x-3\right)$ is a Euclidean Domain.
(e) $\mathbb{C}[x] /\left(x^{2}+1\right)$ is a field.
(f) $\mathbb{R}[x] /\left(x^{2}+1\right)$ is a field.
(g) $\mathbb{Q}[x] /\left(x^{2}+1\right)$ is a field.
(h) $\mathbb{Z}[x] /\left(x^{2}+1\right)$ is a field.

You can use any of the Theorems we discussed in class.
19. Let F be a field of characteristic p and let $c \in F$. Let $f(x)=x^{p}-c$. Suppose that f has no roots in F. Show that f is irreducible in $F[x]$. Hint: you may use the fact that there exists some field $K \supset F$ such that f splits over K in the sense that $f(x)=\left(x-z_{1}\right) \cdots\left(x-z_{p}\right)$ for some elements $z_{1}, \ldots, z_{p} \in K$.

