Practice problems for M380C Midterm II

November 3, 2019

- 1. Let R be a commutative ring.
 - (a) Show that if $M \subset R$ is a maximal ideal and $1 \in R$ then R/M is a field. (I know this is a theorem in the book. Please prove it from scratch).
 - (b) Give an example of a commutative ring R with a maximal ideal $M \subset R$ such that R/M is not a field.
- 2. An element of a ring is called nilpotent if some power of it is equal to zero.
 - (a) Let R be a commutative ring. Show that its nilpotent elements form an ideal. (This ideal is called R's nilradical and written nil(R).)
 - (b) Continuing (a), show that the nilradical of $R/\operatorname{nil}(R)$ is the zero ideal.
 - (c) Show that in a noncommutative ring, the nilpotent elements need not form an ideal.
- 3. (Chinese Remainder Theorem for Modules) Let M be an R-module and $A_1, \ldots, A_n \subset R$ be ideals. Prove that the map

$$M \to M/(A_1M \times \cdots \times A_nM), \quad m \mapsto (m + A_1M, \dots, m + A_nM)$$

is an *R*-module homomorphism with kernel $A_1 M \cap \cdots \cap A_n M$. Moreover, if the ideals A_1, \ldots, A_n are pairwise co-maximal then

$$M/(A_1\cdots A_n)M \cong M/A_1M \times M/A_kM.$$

- 4. Prove or disprove: if R is a UFD and $I \subset R$ is a prime ideal then R/I is a UFD.
- 5. Let R be an integral domain. Prove that R is a UFD if and only if every prime ideal $I \subset R$ contains a prime element $x \in I$.
- 6. Let R be a PID. An ideal $I \subset R$ is **primary** if for all $a, b \in R$ with $ab \in I$ either $a \in I$ or there exists $n \in \mathbb{N}$ such that $b^n \in I$. Prove that if $I \subset R$ is primary then there exists a prime element $p \in R$ and $n \in \mathbb{N}$ such that $I = (p^n)$.
- 7. (a) Let R be a PID. Prove that every prime ideal is maximal.
 - (b) Does Z[x] have a prime ideal that is not maximal? If so, give an example. If not, prove it.
- 8. Let R be an integral domain. Suppose the following conditions hold.
 - Any two elements a, b have a gcd d that is a linear combination of a, b (so d = ax + by for some $x, y \in R$).
 - If $a_1, a_2, \ldots \in R$ are such that $a_{i+1} \mid a_i$ for all *i* then there is an N such that for every n, m > N, a_n is an associate of a_m .

Prove that R is a PID.

- 9. Prove that irreducible elements are prime. Also show that if R is a PID then prime elements are irreducible.
- 10. Prove that PID's are UFD's. You may use the fact that, in a PID, an element is prime if and only if it is irreducible.
- 11. Let R be a Noetherian domain and $r \in R$ be a non-unit. Prove that there exist irreducible elements p_1, \ldots, p_n such that $r = p_1 \cdots p_n$.
- 12. Find the gcd of $x^3 2$ and x + 1 in $\mathbb{Q}[x]$ and write it as a linear combination of $x^3 2$ and x + 1.
- 13. Determine all integer solutions to 85x + 145y = 505.

- 14. Prove that a polynomial p ∈ Z[x] is irreducible in Z[x] if and only if it is irreducible in Q[x] and its content is 1. (Its content is the gcd of all of its coefficients). You can use Gauss' Lemma.
- 15. State and prove Gauss' Lemma.
- 16. Determine all the ideals of the ring $R = \mathbb{Z}[x]/(2, x^3 + 1)$.
- 17. Let $f \in \mathbb{Z}[x]$ be irreducible in $\mathbb{Z}[x]$. Prove that if $I \subset \mathbb{Z}[x]$ is a maximal ideal with $(f) \subset I$ then I = (f, p) for some integer prime p.
- 18. Prove or disprove:
 - (a) $\mathbb{R}[x, y]$ is a Euclidean domain.
 - (b) $\mathbb{R}[x, y]$ is Noetherian.
 - (c) $\mathbb{Z}[x]$ is a principal ideal domain (PID).
 - (d) $\mathbb{C}[x,y]/(y^2-2x-3)$ is a Euclidean Domain.
 - (e) $\mathbb{C}[x]/(x^2+1)$ is a field.
 - (f) $\mathbb{R}[x]/(x^2+1)$ is a field.
 - (g) $\mathbb{Q}[x]/(x^2+1)$ is a field.
 - (h) $\mathbb{Z}[x]/(x^2+1)$ is a field.

You can use any of the Theorems we discussed in class.

19. Let F be a field of characteristic p and let $c \in F$. Let $f(x) = x^p - c$. Suppose that f has no roots in F. Show that f is irreducible in F[x]. Hint: you may use the fact that there exists some field $K \supset F$ such that f splits over K in the sense that $f(x) = (x - z_1) \cdots (x - z_p)$ for some elements $z_1, \ldots, z_p \in K$.