Inverse Trig Functions

Sine and Tangent

The functions sine, tangent and secant are not one-to-one, since they repeat (every $2\pi$ for sine and secant, and every $\pi$ for tangent). To get inverse functions, we must restrict their domains. We could do this in many ways, but the convention is:

SINE:  We restrict the domain to $[-\pi/2, \pi/2]$ to ensure our function is one-to-one.  By definition, $\sin^{-1}(x)$ is the angle in $[-\pi/2,\pi/2]$ whose sine is $x$. This only makes sense if $-1 \le x \le 1$. 

$$\theta = \sin^{-1}(x) \quad \Longleftrightarrow \quad \sin(\theta)=x, \quad \hbox{ for }-\pi/2 \le \theta \le \pi/2.$$

Examples:  $\sin^{-1}(1/2)$ is the angle $\theta$ (in the restricted domain) for which $\sin(\theta)=1/2$.  Thus $\theta=\pi/6$; i.e. $\sin^{-1}(1/2)=\pi/6$. 
DO:   Find $\sin^{-1}\left(\frac{\sqrt 3}{2}\right)$
                    

TANGENT:  We restrict the domain to $(-\pi/2,\pi/2)$.  By definition, $\tan^{-1}(x)$ is the angle in $(-\pi/2,\pi/2)$ whose tangent value is $x$.  Here, $x$ can be any real number; can you see why?

$$\theta=\tan^{-1}(x) \quad \Longleftrightarrow \quad \tan(\theta)=x, \quad \hbox{ for } -\pi/2 < \theta < \pi/2.$$

  
                       

DO: Find  $\tan^{-1}(\sqrt 3)$.

Some Facts

Advanced play for those who are interested

The function $\cos^{-1}$ is closely related to $\sin^{-1}$.   Specifically, $\cos^{-1}(x) = \frac{\pi}{2}-\sin^{-1}(x)$.  This is because $\cos\left(\frac{\pi}{2}-\theta\right)=\sin(\theta)$. 

Similarly, since $\cot(\theta)=1/\tan(\theta)$, $\cot^{-1}(x)=\tan^{-1}(1/x)$.

Likewise, $\sec^{-1}(x)=\cos^{-1}(1/x)$

DO:  Carefully play with these statements and see if you can see why they are true.