Intuitive idea of why these laws work.

By definition of limit, if $\displaystyle\lim_{x \to a} f(x) = L$ and $\displaystyle\lim_{x \to a} g(x) = M$, then $f(x)$ is close to $L$ and $g(x)$ is close to $M$ whenever $x$ is close to $a$.

The limit laws not involving a quotient:


The limit laws involving a quotients: