Definition: Let $\sum a_n$ be an infinite series.
|
| Example: The alternating harmonic series $$\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} = 1 - \frac12 + \frac13 - \frac14+\ldots$$ is conditionally convergent, since the harmonic series $\sum \frac{1}{n}$ diverges. |
| Theorem: If $\sum a_n$ is absolutely convergent, then $\sum a_n$ converges. |