The Root Test


The Root Test: Let $\rho = \displaystyle{\lim_{n \to \infty} |a_n|^{1/n}}$.

  • If $\rho<1$, then $\sum a_n$ converges absolutely $\big($like the geometric series $\sum \rho^n$$\big)$

  • If $\rho>1$, then $\sum a_n$ diverges $\big($like the geometric series $\sum \rho^n$$\big)$

  • If $\rho=1$, or $\rho$ does not exist, then the test is inconclusive.

Notice again the comparison to a geometric series, since $\sqrt[n]{r^n} = r$.