We already know the derivatives of the six basic trig functions.
|
$\displaystyle\frac{d}{dx}\bigl(\sin(x)\bigr)=\cos(x)$ $\displaystyle\frac{d}{dx}\bigl(\cos(x)\bigr)=-\sin(x)$ $\displaystyle\frac{d}{dx}\bigl(\tan(x)\bigr)=\sec^2(x)$ |
$\displaystyle\frac{d}{dx}\bigl(\cot(x)\bigr)=-\csc^2(x)$ $\displaystyle\frac{d}{dx}\bigl(\sec(x)\bigr)=\sec(x)\tan(x)$ $\displaystyle\frac{d}{dx}\bigl(\csc(x)\bigr)=-\cot(x)\csc(x)$ |
| $\displaystyle\int\sin x\,dx=-\cos
x+C$ $\displaystyle\int\cos x\,dx=\sin x+C$ |
| $\begin{eqnarray} \int\tan(x)\,dx&=&-\ln\bigl\lvert\cos(x)\bigr\rvert+C = \quad\ln\bigl\lvert\sec(x)\bigr\rvert+C \\ \displaystyle\int\cot(x)\,dx&=&\quad\ln\bigl\lvert\sin(x)\bigr\rvert+C \,= \,\,-\ln\bigl\lvert\csc(x)\bigr\rvert+C \\ \displaystyle\int\sec(x)\,dx&=& \quad\ln\bigr\lvert\sec(x)+\tan(x)\bigr\rvert+C \\ \displaystyle\int\csc(x)\,dx&=& -\ln\bigr\lvert\csc(x)+\cot(x)\bigr\rvert+C \end{eqnarray}$ |