Theorems for and Examples of Computing Limits of Sequences

Evaluating limits of sequences using limits of functions

The limit of a function is the limit of continuous values of the function, while the limit of a sequence is a limit of discrete numbers.  Nonetheless, we recognize that if a continuous function passes through all numbers of a sequence, then the convergence or divergence of the sequence matches the convergence or divergence of the function.  To see this, just picture the graph of a sequence (earlier in this module) and draw the curve through the dots, letting the curve be $f(x)$, and hence $f(n)=a_n$ for the positive integers $n$.

Theorem 1:  Let $f$ be a function with $f(n)=a_n$ for all integers $n>0$.
If $\displaystyle\lim_{x\to\infty}f(x)=L$, then $\displaystyle\lim_{n\to\infty}a_n=L$ also.

This theorem allows use to compute familiar limits of functions to get the limits of sequences.
Example 1:  By the theorem, since $\displaystyle\lim_{x\to\infty}\frac{1}{x^r}=0$ when $r>0$, $\displaystyle\lim_{n\to\infty}\frac{1}{n^r}=0$ when $r>0$.  Learn this example.
-------------------------------------------------------------------
Example 2:  Evaluate $\displaystyle\lim_{n\to\infty}\frac{2n}{3n-4}$.

Solution 2:  By dividing the top and the bottom by $n$, we get $\displaystyle\lim_{n\to\infty}\frac{2}{3-\tfrac 4 n}$.   By the previous example, $\tfrac 4 n$ converges to 0, so we get $\displaystyle\lim_{n\to\infty}\frac{2n}{3n-4}=\frac{2}{3}$.
-------------------------------------------------------------------
Example 3:  Evaluate $\displaystyle\lim_{n\to\infty}\frac{5n}{e^n}$.  DO:  To solve this limit, first compute $\displaystyle\lim_{x\to\infty}\frac{5x}{e^x}$ before reading on.



Solution 3:  We use l'Hospital's Rule. $\displaystyle\lim_{x\to\infty}\frac{5x}{e^x}\underset{\fbox{$\tfrac \infty \infty\,,\, \text{l'H}$}}{=}\lim_{x\to\infty}\frac{5}{e^x}=0$.  Thus $\displaystyle\lim_{n\to\infty}\frac{5n}{e^n}=0$ by Theorem 1.
Notice that we cannot take a derivative of a sequence, since a derivative exists only if the function is continuous, and sequences are not continuous.  Yet, because of our theorem, we can use l'Hopital's rule on the associated (continuous) $f(x)$ and compute our limit by taking derivatives.  We get the limit of the sequence by evaluating the limit of the function.

Alternating sign sequences

Unlike continuous functions, sequences sometimes have alternating positive and negative values, such as $a_n=\frac{(-1)^n}{n}$.  We cannot find a nice function $f$ with $f(x)=\frac{(-1)^x}{x}$.  (Why not?)  Fortunately, we have another theorem to help us with these sequences.
 
Theorem 2:  $\displaystyle \lim_{n\to\infty}a_n=0$ if and only if $\displaystyle\lim_{n\to\infty}|a_n|=0$.
Warning:  This is only true when the limits are equal to 0. 
This theorem allows us to evaluate the limit of a sequence with both positive and negative values by evaluating the limit of its absolute value (using Theorem 1, for example).  If this limit is 0, our original limit is zero. 



To see why this theorem makes sense, think about this graph of a sequence $a_n=2\frac{(-1)^n}{2}$, which converges to 0.  The graph of $\left\{|a_n|\right\}$ would flip all the negative points to their positive values, giving a sequence steadily decreasing to zero.

       


Example 4:  By Theorem 1, since $\displaystyle\lim_{x\to\infty}r^x=0$ when $0<r<1$ (remember exponential functions?), $\displaystyle\lim_{n\to\infty}r^n=0$ when $0<r<1$.  By Theorem 2, this extends to $-1<r<1$.  If $r>1$ or $r\le-1$, the limit diverges.  (DO:  what happens when $r=1$?)  Summarizing:
$\displaystyle\lim_{n\to\infty}r^n \left\{\begin{array}{ll}\text{converges }&\text{ if }-1<r\le 1\\\text{diverges}&\text{otherwise}\end{array}\right.$  Learn this.  We will use it frequently.

-------------------------------------------------------------------
Example 5:  Let $ a_n=(-1)^n\frac{3^{n+2}}{5^n}$.  We will take the the absolute value of our sequence, which here simply means ignoring the alternating sign $(-1)^n$, and take a limit to see if we get 0.  Rewrite to get $|a_n|=3^2\left(\frac{3}{5}\right)^n=9\left(\frac{3}{5}\right)^n$.  We evaluate
$\displaystyle\lim_{n\to\infty}|a_n|= \lim_{n\to\infty}\frac{3^{n+2}}{5^n}=9\left(\frac{3}{5}\right)^n=9\cdot 0=0$, by Example 4 with $r=\tfrac 3 5$, since $-1<r<1$.  Therefore,
$\displaystyle\lim_{n\to\infty}a_n=\lim_{n\to\infty}(-1)^n\frac{3^{n+2}}{5^n}=0$ by Theorem 2.