Examples of Iterated Integrals


Example 1:  (from the video)  Compute $\displaystyle\iint_R(x-y)^2\,dA$ over the region with $x$ in $[0,2]$ and $y$ in $[0,1]$.  As we will soon see, by Fubini's Theorem, $dA=dx\,dy$ or $dA=dy\,dx$; i.e. we can fix $x$ and integrate with respect to $y$ first, or vice versa

Solution 1:  We will compute $\displaystyle\iint_R(x-y)^2\,dA=\int_0^2\int_0^1 (x-y)^2\,dy\,dx=\int_0^2\left(\int_0^1 (x-y)^2\,dy\right)\,dx$.

DO:  Integrate the parenthetical integral $\displaystyle\int_0^1 (x-y)^2\,dy$, treating $x$ as a constant, before reading more.

First we compute the antiderivative, then evaluate it (if you can do this substitution in your head, you can just evaluate the integral).  Remember, $y$ is our variable and $x$ is a constant.
$\displaystyle\int (x-y)^2\,dy\overset{\fbox{$ \,\,u\,=\,x-y\\ du\,=\,(-1)\,dy$}\\}{=} -\int u^2\,du=-\frac{1}{3}u^3+c $, so $\displaystyle\int_0^1 (x-y)^2\,dy=-\frac{1}{3}(x-y)^3 \left|\begin{array}{c} ^1 \\ _0\end{array}\right .=-\frac{1}{3}\left((x-1)^3-(x-0)^3\right)=\frac{x^3-(x-1)^3}{3}$

DO:  Integrate the outside integral, with the integrand being our answer from above: $\displaystyle\int_0^2\frac{x^3-(x-1)^3}{3}\,dx$ before reading more.

Here, we can see our antiderivative (after a mental substitution $u=x-1$, where $du=dx$)

$\displaystyle\int_0^2\frac{x^3-(x-1)^3}{3}\,dx=\frac{1}{3}\left(\frac{x^4}{4}-\frac{(x-1)^4}{4}\right)\left|\begin{array}{c} ^2 \\ _0 \end{array}\right .=\frac{1}{3}\left(\left(4-\frac{1}{4}\right)-\left(0-\frac{1}{4}\right)\right)=\frac{4}{3}$

In these two steps, one variable at a time, we have found $\displaystyle\iint_R(x-y)^2\,dA=\int_0^2\left(\int_0^1 (x-y)^2\,dy\right)\,dx=\int_0^2\left(\frac{x^3-(x-1)^3}{3}\right)\,dx=\frac{4}{3}$

----------------------------------------------------------------------------

Example 2:  Find the volume of the solid $W$ under the hyperbolic paraboloid $$z=f(x, y) = 2+ x^2 - y^2 $$ and over the square $D\,= \,[-1,\,1]\,\times\,[-1,\,1]$.

DO:  Compute this integral before reading more.  This is the graph of $f$:
    

Solution 2:  We will compute $\displaystyle\int_{-1}^1\int_{-1}^1\, (2+x^2 - y^2)\, dy\,dx$.

$\displaystyle\int_{-1}^1\left(\int_{-1}^1\, (2+x^2 - y^2)\, dy\right)\,dx=\int_{-1}^1\left[\,2y +x^2y -\frac{y^3}{3}\right]_{-1}^1\,dx$ (after integration with respect to $y$, leaving $x$ constant)

$\displaystyle=\int_{-1}^1\left[(2+x^2-1/3)-(-2-x^2+1/3)\right]\,dx =\int_{-1}^1\left(\frac{10}{3} +2x^2\right)\,dx$ (and now integrate with respect to $x$)

$\displaystyle=\left(\frac{10}{3}x+\frac{2}{3}x^3\right)\left|\begin{array}{c} ^1 \\ _{-1} \end{array}\right .=\frac{10}{3}+\frac{2}{3}-\left(-\frac{10}{3}-\frac{2}{3}\right)=8$