One version of Fubini's theorem for a rectangle says

Theorem: if $z=F(x, y)$ is continuous on a rectangle $D=[a, b] \times[c, d]$, then

$$
\int_{a}^{b}\left(\int_{c}^{d} F(x, y) d y\right) d x=\int_{c}^{d}\left(\int_{a}^{b} F(x, y) d x\right) d y
$$

Surprisingly, however, without continuity, the theorem may fail. We shall define a function $z=F(x, y)$ on the square $D=[0,1] \times[0,1]$ for which Fubini's Theorem fails in the sense that

$$
\int_{0}^{1}\left(\int_{0}^{1} F(x, y) d y\right) d x \neq \int_{0}^{1}\left(\int_{0}^{1} F(x, y) d x\right) d y
$$

First we'll define a function $z=f(x, y)$ on $[0,1] \times[0,1]$ taking only the values $-1,0$ or 1 :

Algebraically,

$$
f(x, y)=-1 \quad \text { when } \quad \frac{1}{2^{k}}<x, y \leq \frac{1}{2^{k-1}}, \quad k \geq 1
$$

while

$$
f(x, y)=1 \quad \text { when }\left\{\begin{array}{l}
\frac{1}{2^{k}}<x \leq \frac{1}{2^{k-1}} \\
\frac{1}{2^{m}}<y \leq \frac{1}{2^{m-1}}
\end{array} \quad, \quad 1 \leq m<k ;\right.
$$

otherwise $f(x, y)=0$. Now set

$$
F(x, y)=\frac{f(x, y)}{y^{2}}
$$

For fixed $y, 0<y \leq 1$, the function $f(x, y)$ takes values 1 and -1 on intervals of equal length in x, so

$$
\int_{0}^{1} F(x, y) d x=\frac{1}{y^{2}} \int_{0}^{1} f(x, y) d x=0
$$

On the other hand, for $\frac{1}{2}<x \leq 1$, we see that

$$
\int_{0}^{1} F(x, y) d y=\int_{0}^{1} \frac{f(x, y)}{y^{2}} d y=-\int_{1 / 2}^{1} \frac{1}{y^{2}} d y=\left[\frac{1}{y}\right]_{1 / 2}^{1}=-2+1=-1
$$

But now we come to the crucial point of the definition of f. For $\frac{1}{2^{k}}<x \leq \frac{1}{2^{k-1}}$ with $k>1$,

$$
\begin{gathered}
\int_{0}^{1} F(x, y) d y=\int_{1 / 2^{k}}^{1} \frac{f(x, y)}{y^{2}} d y=-\int_{1 / 2^{k}}^{1 / 2^{k-1}} \frac{1}{y^{2}} d y+\int_{1 / 2^{k-1}}^{1} \frac{1}{y^{2}} d y=\left[\frac{1}{y}\right]_{1 / 2^{k}}^{1 / 2^{k-1}}-\left[\frac{1}{y}\right]_{1 / 2^{k-1}}^{1} \\
=\left(2^{k-1}-2^{k}\right)-\left(1-2^{k-1}\right)=-1+2.2^{k-1}-2^{k}=-1
\end{gathered}
$$

because $2^{k-1} .2=2^{k}$. Consequently,

$$
\int_{0}^{1} F(x, y) d x=0, \quad 0<y \leq 1, \quad \quad \int_{0}^{1} F(x, y) d y=-1, \quad 0<x \leq 1
$$

Thus

$$
\int_{0}^{1}\left(\int_{0}^{1} F(x, y) d x\right) d y=0 \neq-1=\int_{0}^{1}\left(\int_{0}^{1} F(x, y) d y\right) d x
$$

What's gone wrong? Well, there's no way $F(x, y)$ can be made continuous at $(0,0)$ because as (x, y) approaches $(0,0), F(x, y)$ is blowing up to $+\infty$ in one direction, to $-\infty$ in another direction, and converging to 0 in yet another direction.

