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“Francesco Maggi’s book is a detailed and extremely well written explanation of the fascinating
theory of Monge–Kantorovich optimal mass transfer. I especially recommend Part IV’s discussion
of the ‘linear’ cost problem and its subtle mathematical resolution.”

– Lawrence C. Evans, UC Berkeley

“Over the last three decades, optimal transport has revolutionized the mathematical analysis of
inequalities, differential equations, dynamical systems, and their applications to physics, eco-
nomics, and computer science. By exposing the interplay between the discrete and Euclidean
settings, Maggi’s book makes this development uniquely accessible to advanced undergraduates
and mathematical researchers with a minimum of prerequisites. It includes the first textbook
accounts of the localization technique known as needle decomposition and its solution to Monge’s
centuries old cutting and filling problem (1781). This book will be an indispensable tool for
advanced undergraduates and mathematical researchers alike.”

– Robert McCann, University of Toronto
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Preface

In a hypothetical hierarchy of mathematical theories, the theory of optimal
mass transport (OMT hereafter) lies at quite a fundamental level, yielding a
formidable descriptive power in very general settings. The most striking exam-
ple in this direction is the theory of curvature-dimension conditions, which
exploits OMT to construct fine analytic and geometric tools in ambient spaces
as general as metric spaces endowed with a measure. The Bourbakist aesthet-
ics would thus demand OMT to be presented in the greatest possible generality
from the onset, narrowing the scope of the theory only when strictly necessary.
In contrast, this book stems from the pedagogically more pragmatic viewpoint
that many key features of OMT (and of its applications) already appear in full
focus when working in the simplest ambient space, the Euclidean space Rn ,
and with the simplest transport costs per unit mass, namely, the “linear” trans-
port cost c(x, y) = |x 2 y | and the quadratic transport cost c(x, y) = |x 2 y |2.
Readers of this book, who are assumed to be graduate students with an interest
in Analysis, should find in these pages sufficient background to start working
on research problems involving OMT – especially those involving partial dif-
ferential equations (PDEs); at the same time, having mastered the basics of the
theory in its most intuitive and grounded setting, they should be in an excel-
lent position to study more complete and general accounts on OMT, like those
contained in the monographs [Vil03, Vil09, San15, AGS08]. For other intro-
ductory treatments that could serve well to the same purpose, see, for example
[ABS21, FG21].

The story of OMT began in 1781, that is, in the midst of a founding period
for the fields of Analysis and PDE, with the formulation of a transport prob-
lem by Monge. Examples of famous problems formulated roughly at the same
time include the wave equation (1746), the Euler equations (1757), Plateau’s

xiii
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xiv Preface

problem1 and the minimal surface equation (1760), and the heat equation and
the Navier–Stokes equations (1822). An interesting common trait of all these
problems is that the frameworks in which they had been originally formulated
have all proved inadequate for their satisfactory solutions. For example, the
study of heat and wave equations has stimulated the investigation of Fourier’s
series, with the corresponding development of functional and harmonic anal-
ysis, and of the notion of distributional solution. Similarly, the study of the
minimal surface equation and of the Plateau’s problem has inspired a profound
revision of the notion of surface itself, leading to the development of geometric
measure theory. The Monge problem has a similar history:2 an original for-
mulation (essentially intractable), and a modern reformulation, proposed by
Kantorovich in the 1940s, which leads to a broader class of problems and to
many new questions. The main theme of this book is exploring the relation
between the Monge and Kantorovich transport problems, solving the former
both for the linear transport cost (the one originally considered by Monge,
which is of great importance in geometric applications) and for the quadratic
transport cost (which is central in applications to PDE), starting from the
solution of the latter for arbitrary transport costs.

The book is divided in four parts, requiring increasing levels of math-
ematical maturity and technical proficiency at the reader’s end. Besides a
prerequisite3 familiarity with the basic theory of Radon measures in Rn , the
book is essentially self-contained.

Part I opens with an introduction to the original minimization problem for-
mulated by Monge in terms of transport maps and includes a discussion about
the intractability of the Monge problem by a direct approach, as well as some
basic examples of (sometimes optimal) transport maps (Chapter 1). It then
moves to the solution of the discrete OMT problem with a generic transport
cost c(x, y) (Chapter 2), which serves to introduce in a natural way three key
ideas behind Kantorovich’s approach to OMT problems: the notions of trans-

port plan, c-cyclical monotonicity, and Kantorovich duality. Kantorovich’s
theory is then presented in Chapter 3, leading to existence and characterization
results for optimal transport plans with respect to generic transport costs.

1 The minimization of surface area under a prescribed boundary condition (together with the
related minimal surface equation) has been studied by mathematicians at least since the work
of Lagrange (1760). The modern consolidated terminology calls this minimization problem
“Plateau’s problem,” although Plateau’s contribution was dated almost a century later (1849)
and consisted in extensive experimental work on soap films.

2 For a complete and accurate account on the history of the Monge problem and on the
development of OMT, see the bibliographical notes of Villani’s treatise [Vil09].

3 All the relevant terminologies, notations, and required results are summarized in Appendix A,
which is for the most part a synopsis of [Mag12, Part I].
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Preface xv

The optimal transport plans constructed in Kantorovich’s theory are more
general and flexible objects than the optimal transport maps sought by Monge,
which explains why solving the Kantorovich problem is way easier than solving
the Monge problem. Moreover, a transport map canonically induces a transport
plan with the same transport cost, thus leading to the fundamental question:
When are optimal transport plans induced by optimal transport maps? Parts
II and IV provide answers to these questions in the cases of the quadratic and
linear transport costs, respectively.

Part II opens with the Brenier theorem (Chapter 4), which asserts the exis-
tence of an optimal transport map in the Monge problem with quadratic cost
under the assumptions that the origin mass distribution is absolutely continu-
ous with respect to the Lebesgue measure and that both the origin and final
mass distributions have finite second order moments; moreover, this optimal
transport map comes in the form of the gradient of a convex function, and is
uniquely determined, and therefore called the Brenier map from the origin to
the final mass distribution. In Chapter 5, we establish some sharp results on the
first order differentiability of convex functions, which we then use in Chapter
6 to prove McCann’s remarkable extension of the Brenier theorem – in which
the absolute continuity assumption on the origin mass distribution is sharply
weakened, and the finiteness of second order moments is entirely dropped. In
both the Brenier theorem and the Brenier–McCann theorem, the transport con-
dition is expressed in a measure-theoretic form (see (1.6) in Chapter 1) which
is weaker than the “infinitesimal transport condition” originally envisioned by
Monge (see (1.1) in Chapter 1). The former implies the latter for transport maps
that are Lipschitz continuous and injective, but, unfortunately, both properties
are not generally valid for gradients of convex functions. To address this point,
in Chapter 7, we provide a detailed analysis of the second order differentia-
bility properties of convex functions, which we then exploit in Chapter 8 to
prove the validity of the Monge–Ampère equation for Brenier maps between
absolutely continuous distributions of mass. In turn, the latter result is of key
technical importance for the applications of quadratic OMT problems to PDE
and geometric/functional inequalities.

Part III has two main themes: the first one describes some celebrated applica-
tions of Brenier maps to mathematical models of physical interests; the second
one introduces the geometric structure of the Wasserstein space. That is the
space of finite second-moment probability measures P2(Rn ) endowed with
the distance W2 defined by taking the square root of the minimum value in the
Kantorovich problem with quadratic cost. The close relation between the purely
geometrical properties of the Wasserstein space and the inner workings of many
mathematical models of basic physical importance is one of the most charming
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xvi Preface

and inspiring traits of OMT theory and definitely the reason why OMT is so
relevant for mathematicians with such largely different backgrounds.

We begin the exposition of these ideas in Chapter 9, where we present OMT
proofs of two inequalities of paramount geometric and physical importance,
namely, the Euclidean isoperimetric inequality and the Sobolev inequality. We
then continue in Chapter 10 with the analysis of a model for self-interacting
gases at equilibrium. While studying the uniqueness problem for minimizers
in this model, we naturally introduce an OMT-based notion of convex combi-
nation between probability measures, known as displacement interpolation,
together with a corresponding class of displacement convex “internal ener-
gies.” The latter include an example of paramount physical importance, namely,
the (negative) entropy S of a gas. As a further application of displacement
convexity (beyond the uniqueness of equilibria of self-interacting gases), we
close Chapter 10 with an OMT proof of another key geometric inequality, the
Brunn–Minkowski inequality.

In Chapter 11, we introduce the Wasserstein space (P2(Rn ),W2), build
up some geometric intuition on it by a series of examples, prove that it is a
complete metric space, and explain how to interpret displacement convexity as
geodesic interpolation in (P2(Rn ),W2). We then move, in the two subsequent
chapters, to illustrate how to interpret many parabolic PDEs as gradient flows of
displacement convex energies in the Wasserstein space. In Chapter 12, we intro-
duce the notion of gradient flow, discuss why interpreting an evolution equation
as a gradient flow is useful, how it is possible that the same evolution equation
may be seen as the gradient flow of different energies, and how to construct
gradient flows through the minimizing movements scheme. Then, in Chapter
13, we exploit the minimizing movements scheme framework to prove that the
Fokker–Planck equation (describing the motion of a particle under the action of
a chemical potential and of white noise forces due to molecular collisions) can
be characterized (when the chemical potential is convex) as the gradient flow
of a displacement convex functional on the Wasserstein space, and, as a further
application, we derive quantitative rates for convergence to equilibrium in the
Fokker–Planck equation.

In Chapter 14, we obtain additional insights about the geometry of the
Wasserstein space by looking at the Euler equations for the motion of an
incompressible fluid. The Euler equations describe the motion of an incom-
pressible fluid in the absence of friction/viscosity and can be characterized as
geodesics equations in the (infinite-dimensional) “manifold” M of volume-
preserving transformations of a domain. At the same time, geodesics (on a
manifold embedded in some Euclidean space) can be characterized by a lim-
iting procedure involving an increasing number of “mid-point projections” in
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Preface xvii

the ambient space: there lies the connection with OMT, since the Brenier the-
orem allows us to characterize L2-projections over M as compositions with
Brenier maps. The analysis of the Euler equations serves also to introduce two
crucial objects: the action functional of an incompressible fluid (time integral
of the total kinetic energy) and the continuity equation (describing how the
Eulerian velocity of the fluid transports its mass density). In Chapter 15, we
refer to these objects when formally introducing the concepts of (Eulerian)

velocity of a curve of measures in P2(Rn ) and characterize the Wasserstein
distance between the end points of such a curve in terms of minimization of
a corresponding action functional. This is the celebrated Benamou–Brenier

formula, which provides the entry point to understand the “Riemannian” (or
“infinitesimally Hilbertian”) structure of the Wasserstein space. We only briefly
explore the latter direction, by quickly reviewing the notion of gradient induced
by such Riemannian structure (Otto’s calculus).

Part IV begins with Chapter 16, where a sharp result for the existence of
optimal transport maps in dimension one is presented. In Chapter 17, we first
introduce the fundamental disintegration theorem and then exploit it to give
a useful geometric characterization of transport plans induced by transport
maps and to prove the equivalence of infima for the Monge and Kantorovich
problems when the origin mass distribution is atomless. We then move, in
Chapter 18, to construct optimal transport maps for the Monge problem with
linear transport cost. We do so by implementing a celebrated argument due to
Sudakov, which exploits disintegration theory to reduce the construction of an
optimal transport map to the solution of a family of one-dimensional transport
problems. The generalization of Sudakov’s argument to more general ambi-
ent spaces (like Riemannian manifolds or even metric measure spaces) lies at
the heart of a powerful method for proving geometric and functional inequal-
ities, known as the “needle decomposition method,” and usually formalized
in the literature as a “localization theorem.” In Chapter 19, we present these
ideas in the Euclidean setting. Although this restricted setting does not allow
us to present the most interesting applications of the technique itself, its discus-
sion seems, however, sufficient to illustrate several key aspects of the method,
thus putting readers in an ideal position to undertake further reading on this
important subject.

Having put the focus on the clarity of the mathematical exposition above
anything else, the main body of this book contains very few bibliographical
references and almost no bibliographical digressions. A set of bibliographical
notes has been included in the appendix with the main intent of acknowledg-
ing the original papers and references used in the preparation of the book
and of pointing students to a few of the many possible further readings.
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xviii Preface

For comprehensive bibliographies and historical notes on OMT, we refer to
[AGS08, Vil09, San15].

This book originates from a short course on OMT I taught at the Universi-
dad Autónoma de Madrid in 2015 at the invitation of Matteo Bonforte, Daniel
Faraco, and Juan Luis Vázquez. An expanded version of the lecture notes of
that short course formed the initial core of a graduate course I taught at the
University of Texas at Austin during the fall of 2020, and whose contents
roughly correspond to the first 14 chapters of this book. The remaining chapters
have been written in a more advanced style and without the precious feed-
back generated from class teaching. For this reason, I am very grateful to Fabio
Cavalletti, Nicola Gigli, Carlo Nitsch, and Aldo Pratelli who, in reading those
final four chapters, have provided me with very insightful comments, spotted
subtle problems, and suggested possible solutions that led to some major revi-
sions (and, I think, eventually, to a very nice presentation of some deep and
beautiful results!). I would also like to thank Lorenzo Brasco, Kenneth DeMa-
son, Luigi De Pascale, Andrea Mondino, Robin Neumayer, Daniel Restrepo,
Filippo Santambrogio, and Daniele Semola for providing me with additional
useful comments that improved the correctness and clarity of the text. Finally,
I thank Alessio Figalli for his initial encouragement in turning my lecture notes
into a book.

With my gratitude to Luigi Ambrosio and Cedric Villani, from whom I have
first learned OMT about 20 years ago during courses at the Scuola Normale
Superiore di Pisa and at the Mathematisches Forschungsinstitut Oberwolfach,
and with my sincere admiration for the many colleagues who have contributed
to the discovery of the incredibly beautiful Mathematics contained in this book,
I wish readers to find here plenty of motivations, insights, and enjoyment while
learning about OMT and preparing themselves for contributing to this theory
with their future discoveries!
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Notation

a.e., almost everywhere
s.t., such that
w.r.t., with respect to
N, Z, Q, R, natural, integer, rational, and real numbers
Rn , the n-dimensional Euclidean space
Br (x), open ball in Rn with center x and radius r (Euclidean metric)
Int(E), interior of a set E ¢ Rn (Euclidean topology)
Cl(E), closure of a set E ¢ Rn (Euclidean topology)
"E, boundary of a set E ¢ Rn (Euclidean topology)
Sn , the n-dimensional sphere in Rn+1

¿E , the outer unit normal ¿E : "E ³ Sn21 of a set E ¢ Rn with C1-boundary
Rn×m , matrices with n-rows and m-columns
A7, the transpose of a matrix/linear operator
Rn×nsym , matrices A * Rn×n , with A = A7

w · v (v * Rn , w * Rm), the linear map from Rn to Rm

defined by (w · v)[e] = (v · e) w
B(Rn ), the Borel subsets of Rn

Ln , the Lebesgue measure on Rn

H k , the k-dimensional Hausdorff measure on Rn

P (Rn ), probability measures on Rn

Pac(Rn ), measures in P (Rn ) that are absolutely continuous w.r.t. Ln

Pp (Rn ), measures in P (Rn ) with finite p-moment (1 f p < >)
Pp,ac(Rn ) = Pac(Rn ) + Pp (Rn )
¿ << ¿, ¿ is absolutely continuous w.r.t. ¿ (¿, ¿ measures on Rn)
Lp (Rn ), p-summable functions w.r.t. Ln (1 f p f >)
Lp (¿), p-summable functions w.r.t. a Borel measure ¿ (1 f p f >)
C0
c (Rn ), functions on Rn that are continuous with compact support

xix
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xx Notation

C0
b

(Rn ), functions on Rn that are continuous and bounded
7
�, weak-star convergence of Radon measures (C0

c -test functions)
n
�, narrow convergence of Radon measures (C0

b
-test functions)

C0
c (Rn ) · C0

c (Rm ), functions f (x, y) = g(x) h(y), (x, y) * Rn × Rm ,
with g * C0

c (Rn ), h * C0
c (Rm )

C0,α (Rn ), ³-Hölder continuous functions (³ * (0,1], C0,1
= Lip)

Ck,α (Rn ), k-times differentiable functions whose kth gradient is in C0,α

D f , distributional derivative of f * L1
loc(Rn )

' f , pointwise gradient of f or density of D f w.r.t. Ln

f d¿, or f (x) d¿(x), the measure defined
by the integral of f * L1

loc(¿) w.r.t. ¿∫
X
f (x, y) d¿(x), integration w.r.t. ¿ occurs in the x-variable of f (x, y)

f |E , the restriction of f to E ¢ F when f is a function defined on F
p : X × Y ³ X , projection on the first factor of X × Y , i.e., p(x, y) = x
q : X × Y ³ Y , projection on the second factor of X × Y , i.e., q(x, y) = y

idX , the identity map on the set X (X omitted if clear from the context)
C(a,b, . . .), a generic constant depending only a,b, . . .

whose value may increase at each subsequent appearance

Disambiguation: The terms “formal” and “formally” are used in this book to
indicate the quality of being endowed with full mathematical rigor. This may
create confusion since, in the Analysis literature, the term “formal” is some-
times (if not often) used to express the quality of “being presented without
a full justification”: e.g., expressions like “by a formal integration by parts,
taken without discussing the negligibility of boundary terms” or “by a for-
mal argument that does not take into account measurability issues” are quite
common in the OMT literature. However, synonyms of “formal” are “official,”
“legal,” “validated,” and “authoritative,” which definitely point to the quality of
possessing full mathematical rigor; hence, the use of “formal” in this book.
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