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With the sketched modifications we are able to perform the intended “blow-up”
procedure.
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Symmetry results for Plateau’s surfaces

Francesco Maggi

(joint work with Jacob Bernstein)

Aminimal Plateau’s surface Σ is defined here as a closed subset of R3 such that,
for each point p ∈ Σ, one can find r > 0, α ∈ (0, 1), and a C1,α-diffeomorphism
fp : Br(p) → Br(p), with Dfp(p) a linear isometry, such that fp(Σ ∩ Br(p)) =
K ∩ Br(p), where K is either a plane P , a half-plane H , a union Y of three half-
planes meeting along a common line at 120-degrees, or a regular tetrahedral cone
T . Moreover, the interior set Σ of the points p with K = P is assumed to have
vanishing mean curvature – given the C1,α-regularity, at first in distributional
sense, and thus, by elliptic regularity, in the classical, smooth sense.

The above definition captures, in elementary mathematical terms, the content of
the experimental laws of Plateau for soap films at equilibrium. It should be noted
that Plateau also experimented with soap bubbles, where the mean curvature of
the interior set may take different constant values on different connected com-
ponents. Also, the above definition does not include the possibility of “singular
boundary points”, which are indeed physically possible, although (apparently) not
exhaustively described in the physical and mathematical literature.

As shown in the works of Almgren [2] and Taylor [8], minimal Plateau’s surfaces
arise as Almgren minimal sets, i.e., as closed sets locally minimizing the two-
dimensional Hausdorff measure H2 in R3 with respect to local Lipschitz deforma-
tions. Variational characterization of Almgren minimal sets as global minimizers
in suitable variational problems have been first proposed, and then obtained, by
several authors in recent years. Limiting ourselves to the first results concerning
area minimization in codimension one we mention here [4, 5, 6] as entry points in
a vaster literature.
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Classical minimal surfaces are often motivated in terms of their application to the
description of soap films. From this viewpoint, given the ubiquity of Y -type and
T -type singularity, we consider the fascinating idea of reviewing classical results
for smooth minimal surfaces in the physically more relevant context of minimal
Plateau’s surfaces.

In this direction, we consider as a case study a rigidity theorem of Schoen [7] for
catenoids: given two co-axial circles in R3, the only minimal surfaces bounded by
those circles are either catenoids or disks. The expected result in the context of
minimal Plateau’s surfaces should include an additional rigidity case, which will
be present depending on the metric data of the problem (radii of the circles and
their distance), and consists of singular catenoids, i.e. union of two catenoidal
necks and a disk meeting along a common boundary circle of Y -points.

In [3] we obtain the expected extension of Schoen’s rigidity theorem to minimal
Plateau’s surfaces. For reasons whose nature is likely just technical, this is done
under the assumptions that the two circles have the same radii, and under a global
to local topological assumption called “cellular structure” (for each p ∈ Σ there
exists rp > 0 such that R3 \ Σ and Br(p) \ Σ have the same finite number of
connected components if r < rp).

The result is obtained by an original application of the classical moving planes
method introduced by Alexandrov in [1]. Interestingly, Alexandrov’s method has
been concurrently applied in the non–smooth setting of varifold solutions to the
mean curvature flow in [9], and, independently from our work, to the study of
Schoen’s rigidity theorem in the varifold setting, but assuming a priori the absence
of Y -singularities, in [10]. A novel contribution we can offer is the insight that
the application of the moving planes can be compatible with the actual presence
of singularities, while still working as a tool to obtain additional regularity (we
exclude T -type singularities in a situation where they could indeed be possible).

References

[1] A. D. Alexandrov, A characteristic property of spheres, Ann. Mat. Pura Appl. (4) 58 (1962),
303–315.

[2] F. J. Almgren, Existence and regularity almost everywhere of solutions to elliptic variational
problems with constraints, Mem. Amer. Math. Soc. 4 (1976), no. 165, viii+199 pp.

[3] J. Bernstein, F. Maggi, Symmetry and rigidity of minimal surfaces with Plateau-like singu-
larities. Arch. Ration. Mech. Anal. 239 (2021), no. 2, 1177–1210.

[4] G. David, Should we solve Plateau’s problem again?, Advances in analysis: the legacy of
Elias M. Stein, 108–145, Princeton Math. Ser., 50, Princeton Univ. Press, Princeton, NJ,
2014.

[5] J. Harrison, H. Pugh, Existence and soap film regularity of solutions to Plateau’s problem,
Adv. Calc. Var. 9 (2016), no. 4, 357–394.

[6] C. De Lellis, F. Ghiraldin, F. Maggi, A direct approach to Plateau’s problem. J. Eur. Math.
Soc. (JEMS) 19 (2017), no. 8, 2219–2240.

[7] R.M. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces. J. Differential
Geom. 18 (1983), no. 4, 791–809 (1984).

[8] J.E. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal
surfaces. Ann. of Math. (2) 103 (1976), no. 3, 489–539.



Partial Differential Equations 53

[9] K. Choi, R. Haslhofer, O. Hershkovits, B. White, Ancient asymptotically cylindrical flows
and applications, preprint arXiv:1910.00639v3.

[10] R. Haslhofer, O. Hershkovits, B. White, Moving plane method for varifolds and applications,
preprint arXiv:2003.01505v1.

Reporter: Joshua Daniels-Holgate


