Branched covers bounding Q-homology balls (P. Aceto, J. Meier, A.N. Miller, M. Miller, JH. Park, A. Stipsicz

Project from AIM 2019 meeting on topologically slice knots

Observation 1

- Let $K \subset S^{3}$ be a knt.
- For $q \in \mathbb{N}$, write $\Sigma_{q}(K):=$
q-fold cyclic cover of S^{3} branched over K
- Let $\mathbb{Q}:=\left\{p^{r} \mid p \in \mathbb{N}\right.$ prime, $\left.r \in \mathbb{N}\right\}$ (prime powers)
Then for $q \in Q, \sum_{q}(K)$ is a \mathbb{Q}-homology sphere.

$$
\left(H_{*}\left(\varepsilon_{q}(K) ; \mathbb{Q}\right) \cong H_{*}\left(S^{3} ; Q\right)\right)
$$

(Classic number theory argument:
$b_{1}\left(\Sigma_{q} k\right)>0 \Leftrightarrow \Delta_{k}\left(\xi_{q}\right)=0$ for some primitive q-root of unity $\left(\mid f_{q=p^{\prime}}\right) \Leftrightarrow \Phi_{p^{\prime}}(t) \mid \Delta_{k}\left(t^{q} \Rightarrow p^{\prime}=\Phi_{p^{\prime}}(1) \mid \Delta_{k}(1)=1\right.$

Observation 2

- Now take K to be slice i.e. $K=\partial D_{\text {disk }} \xrightarrow{\text { such }} B^{4}$

Then for $q \in Q$,
$\Sigma_{q}(K)$ bounds a \mathbb{Q}-homology ball. B^{4}
Pf $\varepsilon_{q}(K)$ bounds the q-fold cyclic cover of B^{4} branched aver D.

$$
=: W_{q}(K)
$$

Use similar number they / Alexander argument to compute $b_{1}\left(W_{q}(k)\right)=0$
In fact, $\left|H_{1}\left(W_{q} k\right)^{2}=\left|H, \varepsilon_{q}(k)\right|^{G}\right.$, which
is useful sine $\Rightarrow \mid H_{1}$, $E_{g} K K \mid$ square
coy:
Alternate terminology:

$$
\left[\Sigma_{q}(K)\right]=0=\left[S^{3}\right] \text { in } \theta_{\mathbb{Q}}^{3}
$$

$$
\begin{aligned}
& \Theta_{\mathbb{Q}}^{3}=\left\{\mathbb{Q} H S^{3} s\right\} /_{\substack{\text { C-homlogy } \\
\text { cbordism }}} \\
& {\left[Y_{1}\right]=\left[Y_{2}\right] \text { in } \Theta_{Q}^{3} \text { if }} \\
& \exists Z^{4}, \partial^{4}=Y, u-Y_{2} \\
& H_{*}\left(Z^{4} ; \mathbb{Q}\right) \cong H_{*}\left(S^{3} \times I ; \mathbb{Q}\right) \\
& \text { So }[Y]=\left[S^{3}\right] \text { iff } \\
& Y=\partial\left(\mathbb{Q}+H B^{4}\right) \\
& \underbrace{z^{z}\left(S^{3}\right) B^{4}}_{Q+B^{4}}
\end{aligned}
$$

Let $e=\{k n o t s\} /$ smooth concardance

So $[K]=[$ unkrot $]:=0$ iff K is slice

Then get homomarphism

$$
\begin{aligned}
\varphi: & \longrightarrow \prod_{z \in Q} \theta_{Q}^{3} \\
& {[K] \mapsto l_{\text {ist }} \text { dall }\left[\Sigma_{q}(K)\right] }
\end{aligned}
$$

$$
\begin{aligned}
\varphi: & e \longrightarrow \prod_{z \in Q} \theta_{Q}^{3} \\
& {[K] \mapsto l_{\text {list }} f_{\text {all }}\left[\Sigma_{q}(k)\right] }
\end{aligned}
$$

Observations $1+2$ were that $\varphi(0)=0$, other properties of homanorphism are similar
Motivating question: to what extent does φ characterize slice kits? Is $\operatorname{Ker} \varphi$ nontrivial?
i.e. Do there exist non-slice hoots whose Q-fold branched covers

Knots for this talk:

$$
K_{n}:=\text { closure of braid }\left(\sigma_{1} \sigma_{2}^{-1}\right)^{n}
$$

ie. $<1,2$ alternating knot with $2 n$ crossings - Also called the $(1, n)$ Turk's head knot

- maybe called a "weave" knot with some indices
(Take n odd and not divisible by 3)
- If n even, then $\sum_{2}(K) \neq \partial Q+1 B^{4}$ egg. $K_{2}=\left(\begin{array}{r}\text { Figure eight } \\ \left|H_{1} \varepsilon_{2}\right|=5 \text { not }\end{array}\right.$ $\left|H_{1} \varepsilon_{2}\right|=5$ not square
- If $3 I_{n}$, then K_{n} actually a link.

Tum
If $n \neq 2^{r}, 3^{r} \in Q$ and $q \in Q$, then $\sum_{q}\left(K_{n}\right)$ bounds a $\mathbb{Q} H B^{4}$.

Pf Note $\Sigma_{q}\left(K_{n}\right) \cong \Sigma_{n}\left(K_{q}\right)$ because branch

Claim: Kn bounds smooth disk in a $\mathbb{Q} H B^{4} Z$ with $H_{1}(z ; \mathbb{Z})$ all 2 -torsion

Pf K_{n} is strongly negative-amphichiral i.e. \mathcal{J}^{3} orientation-reversing involution $\tau: S^{3} \rightarrow S^{3}$
$K_{n} \rightarrow K_{n}$
fixing two points of K_{n}
$k_{s} \tau=$ reflection through
$k_{5}<$ this point
Can use τ to construct z

Lemma (Casson Gordon)
If q odd prime power,
then $K_{n}=\partial\left(\right.$ disk into $\left.\mathbb{Z}_{2} H B^{4}\right)$

$$
\Rightarrow \sum_{q}\left(K_{n}\right)=\partial\left(Q H B^{4}\right)
$$

Pf Take cover of
(m, Z $^{K} Z$ branched aver D q and orders in $H_{1}(Z ; \mathbb{Z})$ coprime will \Rightarrow cover is a $\mathbb{Q} H B^{4}$

Back to
Thu
If $n \neq 2^{r}, 3^{r} \in Q$ and $q \in Q$, then $\sum_{q}\left(K_{n}\right)$ bounds a $\mathbb{Q} H B^{4}$.
Pf
If q odd, then claim follows from k_{n} strongly negative-amphichiral + Gasson-Gardon
If $q=2^{r}$, then $\sum_{2^{r}}\left(K_{n}\right) \cong \sum_{n}\left(K_{r}\right)$ bounds a $Q H B^{4}$ since $K_{r^{r}}$ strongly negative-amphichiral + Casson-Gordon.

So for:
$\operatorname{map} \varphi: e \rightarrow \prod_{Q} \theta_{Q}^{3}$
proved $\left[K_{n}\right] \in \operatorname{Ker} \varphi$
if n an odd prime power, 3$\}_{n}$.
Thu

$$
\begin{aligned}
& K_{7}, K_{11}, K_{17}, K_{23} \text { not } \\
& (\Rightarrow \operatorname{Ker} \varphi \neq 1)^{\text {sot ice }}
\end{aligned}
$$

Rom
K_{5} is ribbon
Rank Ky not slice due to masters thesis of Satori 2010, different context
Rome These lents are also linearly indeporectet in l^{2}. Think $\left\{\left[K_{n}\right] \mid n=5 \bmod d 6\right\}$ are all lineally independent, but an only "dotanct forty many.
Rama $K_{n} \# K_{n}$ slice since $K_{n}=-\overline{K_{n}}$.

Slice obstruction: twisted Alexander polynomials
Take $M_{k}:=S_{0}^{3}(k)$
$\xi_{d}=d$-th root of unity representation

$$
\alpha: \pi_{1} M_{k} \rightarrow G\left(q_{G}, \mathbb{Q}\left[\xi_{d}\right]\left[t^{ \pm 1}\right]\right)
$$

gives twisted Alexander module

$$
A^{\alpha}\left(\overline{k):=} H_{1}\left(M_{k} ; Q\left[\xi_{d}\right]\left[t^{ \pm}\right]^{z}\right)\right.
$$

a $\mathbb{Q}\left[\xi_{d}\right]\left(t^{ \pm 1}\right]$ module

$$
\text { If } q=d=1 \text {, then } \alpha: \pi, M_{k} \rightarrow G l\left(1, \mathbb{Q}\left[t^{+}\right]\right)
$$

and $A^{\alpha}(K)$ is the classical rational Alexander module.

$$
A^{\alpha}(K)=\frac{\mathbb{Q}\left[\xi_{1}\right]\left(t^{\prime}\right]}{(\text { twisted Alexander ideal) Alexander }}
$$

Write $\tilde{\Delta}_{k}^{\alpha}(t)=\alpha$-twisted Alexander polyramid of K.

- Gross algebraic object
- related to representation theory of $\pi_{1}\left(S^{3} \backslash K\right)$
- difficult to compute but \mathcal{F} some implementation due to

1) Kirk -Livingston
2) (Allison N.) Miller -Powell

Extremely useful theorem: Generalized If K slice, then $\tilde{\Omega}_{K}^{\alpha}(t)$ factors specifically, $q \in Q$, then as a norm

$$
\left|H, \varepsilon_{q}(K)\right|=n^{2} \text { and } \mathcal{P} \subset H_{1}\left(\Sigma_{q} K\right)
$$ and representation vanishing an P_{ϵ} (dididn't explain) with $\tilde{\Omega}_{n}^{\alpha}(t)=c t^{k} f(t) f(t)$ means

Sketch of why $K_{n} \quad n \in\{7,11,17,23\}$ is not slice:

- Understand metabolizes of $H_{1} \Sigma_{3}\left(K_{n}\right)$ (squar e-root order G subgroups fixed $\binom{$ i.e. possible }{P^{\prime}, } and covering transformation $\begin{gathered}\text { and } \\ \text { form vanishes })\end{gathered}$
- Compute corresponding twisted Alexander polynomials
- Obstunct factorization in $Q\left[\xi_{d}\right]\left(t^{ \pm 1}\right]$ by arguing sufficient to obstruct in $\mathbb{Z} / p\left[t^{ \pm 1}\right]$ and then use Maple
Get linear independence from factoring

$$
H_{1}\left(\varepsilon_{3}\left(K_{n}, \cdots \cdots \not K_{n_{m}}\right)\right) \cong H_{1}\left(\varepsilon_{3} K_{n},\right) \cdots \oplus H_{1}\left(\varepsilon_{3} K_{n}\right)
$$ representation here \sim rep on each summand

Question
What strategy can possibly

1) show $(\mathbb{H} / 2)^{\infty} \subset \operatorname{Ker} \varphi$?

Unlikely to simultaneasly compute infinitely many $\tilde{\Delta}_{k}^{\alpha}(t)^{\prime} s$
2) Is $\mathbb{Z} \subset \operatorname{Ker} \varphi$?
we used strong negative amphichirality to show $\left[K_{n}\right] \subset \operatorname{Ker} \varphi$, which forced $\left[K_{n} \# K_{n}\right]=[$ unknot $\left.]\right)$

