Three views of the Freedman–Quinn invariant

Rob Schneiderman

Lehman College CUNY & MPIM

BIRS Topology in Dimension 4.5 November 2022

1/22

Based on joint work with Peter Teichner: 'Homotopy versus Isotopy: spheres with duals in 4-manifolds' – sections 4 and 7 – arXiv:1904.12350v4 [math.GT]

This talk will describe a version of the Freedman–Quinn invariant fq(R, R') for homotopic embedded 2-spheres R, R' in a 4-manifold M.

fq(R, R') takes values in a quotient of $\mathbb{F}_2 T$, the $\mathbb{Z}/2\mathbb{Z}$ -vector space on the 2-torsion elements $T := \{g \in \pi_1 M | g^2 = 1 \neq g\} < \pi_1 M$.

fq(R, R') vanishes if R and R' are concordant.

2/22

A more general version of fq originally appeared in the setting of the classification of simply connected 4-manifolds in the proof of Theorem 10.9 of Freedman and Quinn's book *Topology of 4-manifolds*.

The "fq" notation, along with a generalization/correction, is in R. Stong's paper Uniqueness of π_1 -negligible embeddings in 4-manifolds: A correction to Theorem 10.5 of Freedman and Quinn.

Michael Klug's talk will present Stong's generalization.

3/22

6-dimensional view \rightsquigarrow easy proof of well-definedness

5-dimensional view \rightsquigarrow Stong's generalization

4-dimensional view \rightsquigarrow 4d smooth Light Bulb Theorem

4/22

For simply connected A^3 , B^3 properly immersed in X^6 , have *intersection invariant*

$$\lambda(A,B) = \sum_{p \in A \pitchfork B} \epsilon_p \cdot g_p \in \mathbb{Z}\pi_1 X$$

and *self-intersection* invariant

$$\mu(A) := [\sum_{oldsymbol{
ho}\in A \pitchfork A} \epsilon_{oldsymbol{
ho}} \cdot g_{oldsymbol{
ho}}] \in \mathbb{Z} \pi_1 X / \langle g + g^{-1}, 1
angle$$

with $\epsilon_p = \pm$ the usual sign at p, and $g_p \in \pi_1 X$ determined by choosing loop that changes sheets at p. (Smooth, compact, oriented, based,...)

 λ and μ are invariant under homotopy (rel boundary).

 $\mu(A) = 0$ if A is homotopic to an embedding (rel boundary).

6/22

Have relations:

$$\mu(A+B) - \mu(A) - \mu(B) = [\lambda(A,B)]$$

and

$$\lambda(A, A) = \mu(A) - \overline{\mu(A)} \in \mathbb{Z}\pi_1 M / \langle 1 \rangle$$

where $\bar{g} := g^{-1}$ on $\mathbb{Z}\pi_1 X$.

7/22

Let H be a homotopy between embedded 2-spheres R and R' in M^4 .

Define fq(*H*) to be the self-intersection invariant of the 'thickened' track $\hat{H} : S^2 \times I \hookrightarrow M \times \mathbb{R} \times I$:

$$\mathsf{fq}(\mathcal{H}) := \mu(\widehat{\mathcal{H}}) = \sum_{\pmb{p} \in \widehat{\mathcal{H}} \pitchfork \widehat{\mathcal{H}}} \epsilon_{\pmb{p}} \cdot g_{\pmb{p}} \in \mathbb{Z} \pi_1 \mathcal{M} / \langle g + g^{-1}, 1
angle$$

8/22

Product structure $M \times \mathbb{R} \times I \Rightarrow \lambda(A, B) \equiv 0$.

$$0 = \lambda(A, A) = \mu(A) - \overline{\mu(A)} \in \mathbb{Z}\pi_1 M / \langle 1 \rangle \Rightarrow \operatorname{im}(\mu) < \mathbb{F}_2 T.$$

So have

$$\mathsf{fq}(H) := \mu(\widehat{H}) \in \mathbb{F}_2 T$$

Recall:
$$T := \{ g \in \pi_1 M \, | \, g^2 = 1 \neq g \}.$$

For *H* a based homotopy between embedded 2-spheres $R, R' \subset M^4$, define:

$$fq(R, R') := [fq(H)] \in \mathbb{F}_2 T/\mu(\pi_3 M)$$

 $\mu : \pi_3 M \cong \pi_3(M \times \mathbb{R} \times I) \to \mathbb{F}_2 T$ is a homomorphism by the relation $\mu(A + B) - \mu(A) - \mu(B) = [\lambda(A, B)] = 0.$

To show independence of choice of H, suffices to show that any <u>self</u>-homotopy J of R has $\mu(J) \in \mu(\pi_3 M)$.

This is true because such J agrees with the product self-isotopy on the 2-skeleton of $S^2 \times I$, and the difference is carried by a map of a 3-sphere: $S^3 \hookrightarrow M \times \mathbb{R} \times I$. (Uses that H is <u>based</u>.)

Question:

Does there exist a self-homotopy J of some $S^2 \subset M^4$ such that $\mu(J) \notin \mu(\pi_3 M)$?

Answer is "No" if $[S^2] \in \pi_2 M$ has trivial stabilizer in $\pi_1 M$ (eg. if $[S^2]$ admits an algebraic dual).

Answer is "Yes" to analogous question for $S^2 \subset N^5$ and $S^1 \subset Y^3$.

Preimage of each singular circle of the track $S^2 \times I \hookrightarrow M \times I$ of a regular homotopy from R to R' is a pair of circles or a single circle.

Each circle in a pair maps by homeomorphism onto its image. Each single circle is a double cover of its image.

Singular circles \rightsquigarrow elements of $\pi_1 M$ from sheet-changing loops.

Singular circles with single circle preimages $\rightsquigarrow g \in \pi_1 M$, $g^2 = 1$.

5-dimensional definition of fq

Define: fq(H) := $\sum c_i t_i \in \mathbb{F}_2 T$ where the coefficient c_i of t_i is the number modulo 2 of single circles corresponding to $t_i \in T \subset \pi_1 M$.

14/22

Michael Klug's talk will introduce Stong's secondary invariant, which is extracted from <u>all</u> the singular circles of $S^2 \times I \hookrightarrow M \times I$ in the case that fq(R, R') vanishes and R is *spherically characteristic*.

15/22

Can <u>eliminate</u> each pair of circles after the thickening $S^2 \times I \hookrightarrow M \times I \longrightarrow S^2 \times I \hookrightarrow M \times \mathbb{R} \times I$ by pushing one sheet into the \mathbb{R} -direction.

Pushing in the \mathbb{R} -direction: single circle \mapsto single self-intersection.

A regular homotopy from $R \subset M$ to $R' \subset M$ can be described, up to isotopy, as

finger moves on R, yielding an immersed 'middle level' $f: S^2 \hookrightarrow M$,

followed by Whitney moves on f yielding R'.

The Whitney moves leading from f to R' are guided by ascending Whitney disks on f.

Whitney moves leading back from f to R(which are 'inverse' to the finger moves) are guided by descending Whitney disks on f.

in $M \times \{*\}$: $f(x^+) = f(y^+)$ and $f(x^-) = f(y^-)$

From 5-d view to 4-d view of fq (with new color scheme)

The singular circles of the track $S^2 \times I \hookrightarrow M \times I$ of a regular homotopy from R to R' 'project' to <u>boundaries</u> of ascending Whitney disks W'_i (leading to R') and descending Whitney disks W_i (inverse to finger-moves on R) in a 'middle level' $f : S^2 \times \{*\} \hookrightarrow M \times \{*\}$.

In middle level $f: S^2 \times \{*\} \hookrightarrow M \times \{*\}$ of $S^2 \times I \hookrightarrow M \times I$

Preimage circle **pairs** project to **pairs** of immersed circles formed by preimages of ascending and descending Whitney disk boundaries:

20/22

In middle level $f: S^2 \times \{*\} \hookrightarrow M \times \{*\}$ of $S^2 \times I \hookrightarrow M \times I$

Preimage **single** circles project to **single** immersed circles formed by preimages of ascending and descending Whitney disk boundaries:

21/22

Define: $fq(H) := \sum c_i t_i \in \mathbb{F}_2 T$ where the coefficient c_i of t_i is the number modulo 2 of immersed circles formed by preimages of ascending and descending Whitney disk boundaries corresponding to t_i in a middle level $f : S^2 \times \{*\} \hookrightarrow M \times \{*\}$ of H.

Theorem: [Gabai, S.–Teichner] Homotopic 2-spheres $R, R' \subset M^4$ admitting a common geometric dual sphere (framed, embedded) are isotopic if and only if fq(R, R') vanishes.

Proofs use dual to 'clean up' the Whitney disks (including their boundary arcs!) in a middle level of a homotopy...

Dave Gabai will explain how the *Dax invariant* gives a further obstruction to isotopy in the setting of homotopic <u>disks</u> rather than spheres.

23/22