Three views of the Freedman-Quinn invariant

Rob Schneiderman

Lehman College CUNY \& MPIM
BIRS Topology in Dimension 4.5
November 2022

The Freedman－Quinn invariant fq

Based on joint work with Peter Teichner：
＇Homotopy versus Isotopy：spheres with duals in 4－manifolds＇－ sections 4 and $7-\operatorname{arXiv:1904.12350v4~[math.GT]~}$

This talk will describe a version of the Freedman－Quinn invariant $\mathrm{fq}\left(R, R^{\prime}\right)$ for homotopic embedded 2－spheres R, R^{\prime} in a 4－manifold M ．
$\mathrm{fq}\left(R, R^{\prime}\right)$ takes values in a quotient of $\mathbb{F}_{2} T$ ，the $\mathbb{Z} / 2 \mathbb{Z}$－vector space on the 2－torsion elements $T:=\left\{g \in \pi_{1} M \mid g^{2}=1 \neq g\right\}<\pi_{1} M$ ．
$\mathrm{fq}\left(R, R^{\prime}\right)$ vanishes if R and R^{\prime} are concordant．

Origin of fq

A more general version of fq originally appeared in the setting of the classification of simply connected 4 －manifolds in the proof of Theorem 10.9 of Freedman and Quinn＇s book Topology of 4－manifolds．

The＂fq＂notation，along with a generalization／correction，is in R．Stong＇s paper Uniqueness of π_{1}－negligible embeddings in 4－manifolds：A correction to Theorem 10.5 of Freedman and Quinn．

Michael Klug＇s talk will present Stong＇s generalization．

This talk will sketch three views of $f q$

6－dimensional view \rightsquigarrow easy proof of well－definedness

5－dimensional view \rightsquigarrow Stong＇s generalization

4－dimensional view $\rightsquigarrow 4 d$ smooth Light Bulb Theorem
$4 / 22$
回 のaく

Recall：Intersection form in 6－dimensions

For simply connected A^{3}, B^{3} properly immersed in X^{6} ， have intersection invariant

$$
\lambda(A, B)=\sum_{p \in A \pitchfork B} \epsilon_{p} \cdot g_{p} \in \mathbb{Z} \pi_{1} X
$$

and self－intersection invariant

$$
\mu(A):=\left[\sum_{p \in A \pitchfork A} \epsilon_{p} \cdot g_{p}\right] \in \mathbb{Z} \pi_{1} X /\left\langle g+g^{-1}, 1\right\rangle
$$

with $\epsilon_{p}= \pm$ the usual sign at p ， and $g_{p} \in \pi_{1} X$ determined by choosing loop that changes sheets at p ． （Smooth，compact，oriented，based，．．．）

Intersection form in 6-dimensions

λ and μ are invariant under homotopy (rel boundary).
$\mu(A)=0$ if A is homotopic to an embedding (rel boundary).

Intersection form in 6－dimensions

Have relations：

$$
\mu(A+B)-\mu(A)-\mu(B)=[\lambda(A, B)]
$$

and

$$
\lambda(A, A)=\mu(A)-\overline{\mu(A)} \in \mathbb{Z} \pi_{1} M /\langle 1\rangle
$$

where $\bar{g}:=g^{-1}$ on $\mathbb{Z} \pi_{1} X$ ．

The Freedman－Quinn invariant fq of a homotopy－Definition

Let H be a homotopy between embedded 2－spheres R and R^{\prime} in M^{4} ．
Define $\mathrm{fq}(H)$ to be the self－intersection invariant of the＇thickened＇track $\widehat{H}: S^{2} \times I \rightarrow M \times \mathbb{R} \times I$ ：

$$
\mathrm{fq}(H):=\mu(\widehat{H})=\sum_{p \in \widehat{H} \pitchfork \widehat{H}} \epsilon_{p} \cdot g_{p} \in \mathbb{Z} \pi_{1} M /\left\langle g+g^{-1}, 1\right\rangle
$$

The Freedman－Quinn invariant qq of a homotopy－Target

Product structure $M \times \mathbb{R} \times I \Rightarrow \lambda(A, B) \equiv 0$ ．
$0=\lambda(A, A)=\mu(A)-\overline{\mu(A)} \in \mathbb{Z} \pi_{1} M /\langle 1\rangle \Rightarrow \operatorname{im}(\mu)<\mathbb{F}_{2} T$.
So have

$$
\mathrm{fq}(H):=\mu(\hat{H}) \in \mathbb{F}_{2} T
$$

Recall：$T:=\left\{g \in \pi_{1} M \mid g^{2}=1 \neq g\right\}$.

The Freedman－Quinn invariant $\mathrm{fq}\left(R, R^{\prime}\right)$ ．

For H a based homotopy between embedded 2－spheres $R, R^{\prime} \subset M^{4}$ ， define：

$$
\mathrm{fq}\left(R, R^{\prime}\right):=[\mathrm{fq}(H)] \in \mathbb{F}_{2} T / \mu\left(\pi_{3} M\right)
$$

$\mu: \pi_{3} M \cong \pi_{3}(M \times \mathbb{R} \times I) \rightarrow \mathbb{F}_{2} T$ is a homomorphism by the relation $\mu(A+B)-\mu(A)-\mu(B)=[\lambda(A, B)]=0$ ．

To show independence of choice of H ，suffices to show that any self－homotopy J of R has $\mu(J) \in \mu\left(\pi_{3} M\right)$ ．

This is true because such J agrees with the product self－isotopy on the 2－skeleton of $S^{2} \times I$ ，and the difference is carried by a map of a 3－sphere：$S^{3} \rightarrow M \times \mathbb{R} \times I$ ．（Uses that H is based．）

Defining $\mathrm{fq}\left(R, R^{\prime}\right)$ using unbased homotopies?

Question:
Does there exist a self-homotopy J of some $S^{2} \subset M^{4}$ such that $\mu(J) \notin \mu\left(\pi_{3} M\right)$?

Answer is "No" if $\left[S^{2}\right] \in \pi_{2} M$ has trivial stabilizer in $\pi_{1} M$ (eg. if $\left[S^{2}\right]$ admits an algebraic dual).

Answer is "Yes" to analogous question for $S^{2} \subset N^{5}$ and $S^{1} \subset Y^{3}$.

5－dimensional view of fq

Preimage of each singular circle of the track $S^{2} \times I \rightarrow M \times I$ of a regular homotopy from R to R^{\prime} is a pair of circles or a single circle．

Each circle in a pair maps by homeomorphism onto its image． Each single circle is a double cover of its image．

5－dimensional view of fq

Singular circles \rightsquigarrow elements of $\pi_{1} M$ from sheet－changing loops．

Singular circles with single circle preimages $\rightsquigarrow g \in \pi_{1} M, g^{2}=1$ ．

5-dimensional definition of fq

Define: $\mathrm{fq}(H):=\sum c_{i} t_{i} \in \mathbb{F}_{2} T$ where the coefficient c_{i} of t_{i} is the number modulo 2 of single circles corresponding to $t_{i} \in T \subset \pi_{1} M$.

5－dimensional view of $\mathrm{fq} \rightsquigarrow$ Stong＇s invariant

Michael Klug＇s talk will introduce Stong＇s secondary invariant，which is extracted from all the singular circles of $S^{2} \times I \rightarrow M \times I$ in the case that $\mathrm{fq}\left(R, R^{\prime}\right)$ vanishes and R is spherically characteristic．

From 5－d view back to 6－d view

Can eliminate each pair of circles after the thickening $S^{2} \times I \rightarrow M \times I \quad \mapsto \quad S^{2} \times I \rightarrow M \times \mathbb{R} \times I$ by pushing one sheet into the \mathbb{R}－direction．

Pushing in the \mathbb{R}－direction：single circle \mapsto single self－intersection．

Setting up 4－d view of fq

A regular homotopy from $R \subset M$ to $R^{\prime} \subset M$ can be described， up to isotopy，as
finger moves on R ，yielding an immersed＇middle level＇$f: S^{2} \leftrightarrow M$ ，
followed by Whitney moves on f yielding R^{\prime} ．

The Whitney moves leading from f to R^{\prime} are guided by ascending Whitney disks on f ．

Whitney moves leading back from f to R
（which are＇inverse＇to the finger moves） are guided by descending Whitney disks on f ．

From 5－d view to 4－d view of fq （with new color scheme）

in $M \times\{*\}: \quad f\left(x^{+}\right)=f\left(y^{+}\right) \quad$ and $\quad f\left(x^{-}\right)=f\left(y^{-}\right)$

From 5－d view to 4－d view of fq （with new color scheme）

The singular circles of the track $S^{2} \times I \rightarrow M \times I$ of a regular homotopy from R to R^{\prime}＇project＇to boundaries of ascending Whitney disks W_{i}^{\prime}（leading to R^{\prime} ） and descending Whitney disks W_{i}（inverse to finger－moves on R ） in a＇middle level＇$f: S^{2} \times\{*\} \leftrightarrow M \times\{*\}$ ．

In middle level $f: S^{2} \times\{*\} \leftrightarrow \rightarrow M \times\{*\}$ of $S^{2} \times I \rightarrow M \times I$
Preimage circle pairs project to pairs of immersed circles formed by preimages of ascending and descending Whitney disk boundaries：

In middle level $f: S^{2} \times\{*\} \rightarrow M \times\{*\}$ of $S^{2} \times I \rightarrow M \times I$

Preimage single circles project to single immersed circles formed by preimages of ascending and descending Whitney disk boundaries：

4－dimensional definition of fq

Define： $\mathrm{fq}(H):=\sum c_{i} t_{i} \in \mathbb{F}_{2} T$ where the coefficient c_{i} of t_{i} is the number modulo 2 of immersed circles formed by preimages of ascending and descending Whitney disk boundaries corresponding to t_{i} in a middle level $f: S^{2} \times\{*\} \leftrightarrow M \times\{*\}$ of H ．
preimage of ascending and descending
Whitney disk boundaries in domain of f ：

Smooth 4－d Light Bulb Theorem for 2－spheres

Theorem：［Gabai，S．－Teichner］Homotopic 2－spheres $R, R^{\prime} \subset M^{4}$ admitting a common geometric dual sphere（framed，embedded）are isotopic if and only if $\mathrm{fq}\left(R, R^{\prime}\right)$ vanishes．

Proofs use dual to＇clean up＇the Whitney disks（including their boundary arcs！）in a middle level of a homotopy．．．

Dave Gabai will explain how the Dax invariant gives a further obstruction to isotopy in the setting of homotopic disks rather than spheres．

