Dehn surgery on links + the Thurston norm

Background
Thurston norm:
psende norm on handegy of 3 -mfel

$$
x: H_{2}=H_{2}(M, \partial M ; \mathbb{R}) \rightarrow \mathbb{R}^{20}
$$ $\alpha \in H_{2}$ integral $\Rightarrow \alpha$ repped by embedaleal surface in M

us (0)

$$
\begin{equation*}
x^{+}(s)=2 \tag{0}
\end{equation*}
$$

2

$$
\begin{aligned}
& \beta \in+l_{2} \quad p \beta=\alpha \quad \text { rational } \\
& \sim \times(\beta)=\frac{1}{p} \times(\alpha) \in Q
\end{aligned}
$$

use approximation to extend to real classes.
Properties (Thurston)

- If $x(\alpha)=0 \Longleftrightarrow \alpha=0$, then
x a norm
- Unit ball $B_{x} \subset H_{2}(M, \partial M ; \mathbb{R}) \cong \mathbb{R}^{n}$ convex polyhedron symmetric abort origin boundaries integral affine equations

Better examples

Ex, $M=S^{3}-\dot{N}(L)$
$H_{2}(M, 2 M ; \mathbb{R}) \cong \mathbb{R}^{2}$

$$
x_{+}\left(S_{1}\right)=2 \quad x_{+}\left(S_{2}\right)=2
$$

B_{x}

$$
\left[S_{1}\right]+\left[S_{2}\right] \quad\left[S_{1}\right]-\left[S_{2}\right]
$$

$$
x^{+}=4
$$

$x^{+}=2$
Detecting hurston norm camb $\Rightarrow[S]$ primitive Thurstan: If $S^{\text {connected }}$ poet surface + leaf of taut foliation, then

taunt foliation of $3-m f d \quad M$ is $M=L_{\lambda} L_{\lambda}$ each L_{λ} oriented surface, and
lewdly

or

Foliation $F=\left\{L_{x}\right\}$ taunt if \exists prop emberbled 1 -mifol in M which meets ever L_{7}, always transversely.

Ex. $M=$ surface bundle over S '

Taut foliation woe

$$
L_{\lambda}=\varepsilon_{g} \lambda
$$

$$
x\left(\left[\varepsilon_{g}\right]\right)=\left\{\begin{array}{cc}
\varepsilon_{g}-2 & g>0 \\
0 & \varepsilon_{g}=s^{2}
\end{array}\right.
$$

Cor (Gabai)
Property $R:$ If $S_{0}^{3}(K) \cong S^{2} \times S^{\prime}$, then $K=$ unknot
Thu (Gabai)
If $M=$ pet, connected, irreducible, arientable s-mfd with $\partial M=U T^{2}$ and $S \subset M$ connected norm-min surface, then S is leaf of taut foliation. If ∂S only one orientation an each ∂M, then ∂ foliation is Reebless " (ie. ∂M Not porm-min
cranswere
to leaves
If $M=S^{3}-N(k n o t)$ then ∂ foliation only compact circles.

Proof of Property R
$K=$ knot in S^{3}
$S=$ min-genus Seifert surface
The $\Rightarrow S$ leet of taunt foliation on $M=S^{3}-i(k)$, 2 foliation $=$ circle

Dehn fill M to get $S_{0}^{3}(K)$. Cap off each circle with disk to get taunt foliation including \hat{S} as leaf. $\leadsto \hat{S}$ norm-min
If $S_{0}^{3}(K)=S^{2} \times S^{1}$, then $[\hat{S}]=\left[S^{2} \times p t\right]$
so $\hat{S} \cong S^{2} \Rightarrow S \cong D^{2} \Rightarrow K=$ unbent.
(*) Not true for links

$$
\begin{aligned}
& S \hat{=} T^{2} \backslash D^{2} \\
& \text { norm-minimizing }
\end{aligned}
$$

$$
\ln S_{\partial S}^{3}(L)
$$

$$
k_{2}
$$

$$
=S_{(0, \infty)}^{3}\left(K_{1}, K_{2}\right)
$$

$$
\cong S^{2} \times S^{\prime}
$$

$$
x^{+}(s)=1
$$

$g(\hat{S})=1$

$$
[\hat{S}]_{\hat{S}}=\left[S^{2} \times p t\right]
$$

$\therefore \hat{S}$ not norm-minimizing
rational speer T_{0} state about H_{2}
Thu $(n>1)$-camponat S^{3} instead of space slopes

$$
\text { If } L=K_{1} w K_{2}, \ln \left(K_{1}, K_{2}\right) \neq 0
$$

$$
M:=S^{3}-N(L)
$$

$$
H_{2}:=H_{2}(M, \partial M ; R)
$$

$$
\begin{aligned}
& \text { norm }^{2}: \mathrm{H}_{2} \rightarrow \mathbb{R}^{20}
\end{aligned}
$$

then \mathcal{F} finite, $E \subset H_{2}$ so if non-degererate
primitive $\alpha \in H_{2}-E$ and $[S]=\alpha, S$ norm -min
dimension $(n-2)$
THEN \hat{S} norm-win in $S_{2 S}^{3}(L)$

- because \hat{S} leaf of taut foliation
- because S leif of taunt foliation wo opt circles

$E \supset \operatorname{min-genus}$ primitive elements of different from X each face + vertices

faces useful because in ane face, x is linear. So if R, T norm-min for adjacent vertices of B_{x}, then $a R+b T$ (cut-and-paste)
 is norm-muin too.
 ab product disks get

Gabai: Sutured manifolds
(M, γ) sutwed manifold is
pet B-mitd M with disjoint annuli, tori $\begin{gathered}A(\gamma) \\ T(\gamma)\end{gathered}$ caM
s.t. - each annulus in $A(\gamma)$ has oriented core (calleal sutures $s(\gamma)$)

- Companents of $\partial M-\gamma$ oriented

$$
\partial M-\gamma=\underbrace{R_{+}(\gamma)}_{\substack{\text { normal cut } \\ \text { of } M}} \cup \underbrace{R_{-}(\gamma)}_{\substack{\text { normal } \\ \text { into }}}
$$

So orientations on $2 M-\gamma$ induced by $s(\gamma)$.

Sutureal mfd is tant iff $R_{+}(\gamma)$ and $R_{-}(\gamma)$ norm-minimizing.

Foliation an sutured mid lecally

intericr suture "vertical" boudry

$$
M_{g}=\left(T^{2} \backslash 2 D^{2}\right) \times I \quad L_{\lambda}=T^{2} \backslash D^{2} \times p t
$$

id in front actomorvhisum
Now a let of non-compact leaves back but still taut.

Effect an ∂
Before:

pct circles
suspension of id: $I \rightarrow I$

et $f: I \rightarrow I$

Camplementary sutwed mfd:

$$
\begin{aligned}
& \int_{\text {swface }} C N^{3} \\
& \leadsto\left(N^{3} \backslash i(S), \partial S \times I\right)
\end{aligned}
$$

sutued mfd.
20, complement
of $8^{3} 8^{3}$

taut $\Longleftrightarrow S$ norm-minimizing

$a R+b T$ Fran Gabar's the,
Trebles
have ' taut foliation an $S^{3} \operatorname{lr}(L)$ achieving $S=a R+b T$ as a leaf. Can use product disks to change ∂ foliation.

Main observation:
Can simultaneously make ∂ foliation on both components just compact circles unless ∂_{+}(product disks) cats S into disks and one genus- $g(S)$ surface. $S=a R+b T$
The genus-g(s) piece is then in $R+T$.

So in complementary
sutured mfd to $a R_{+} b T$, we find many product disks

Why? S

annulus
in complement to S \sim annulus A $\partial S\binom{$ really }{ wink }

∂M Delete $A \times I$ from M to make new tors ∂ comp rent
Use product disks to make foliation ∂ an $S^{3} \operatorname{lu}(L)$ opec circles, at cost of foliation on new ∂ being bad.

Want to glue $A \times I$ back

$$
f=\operatorname{hgh}^{-1}
$$

$f, g: I \rightarrow I$
Can glue back in Solid torus if fig conjugate
Case 1: $2+A$ separating on S_{+}

Lemma (Gabar)
If F pos genus surface, can find taut foliation on F achieving any suspension an $\partial F \times I$
 suspersion $M_{\mu_{1} \text { iIII agreen }}$ $\mu_{2}: I \rightarrow I$ an purple prodect
dishs

If μ_{1}^{-1} conjugate to μ_{2}, can reglue deleted annalus $\times I$
So take μ_{1} cantracting, $\mu_{2}=\varphi \mu_{1}^{-1}$ expanding $\leadsto \mu_{2}, \mu_{1}$ conjugate, $\mu_{2} \mu_{1}=C$.

Case 1: $2+A$ separating on S.

free choice of $\mu_{i}^{ \pm}$
So take $\mu_{1}^{+}=g \mu_{2}^{-}=f$
$\mu_{1}^{-}=\mu_{2}+=i d$

g regive annulus
\leadsto taut foliation of compleusentery sutured mild to S with $\partial=$ circles $\leadsto \operatorname{tant}$ foliation of $S^{3} \ln (L)$ achieving S as lear with $\partial=$ circles

Case 2: $2+A$ nonseparating on S.

Use lemma to freely change

free choice of $\mu_{i}^{ \pm}$
So take $\mu_{1}^{+}=g \mu_{2}^{-}=f$

$$
\mu_{1}^{-}=\mu_{2}+=i d
$$

\leadsto taut foliation of

regive complementary sutured mold to S with $\partial=$ circles \leadsto taunt foliation of $S^{3} \ln (L)$ achieving S as leaf with $\partial=$ circles

