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Introduction:  The general Hidden Subgroup Problem is as follows.  Let G be a known finite 
group.  Let H be an unknown subgroup of G.  Suppose there is a set S and a function f : G → S 
such that for g, k ε G, f(g) = f(k) if and only if g and k are in the same coset of H.  (We say f 
separates cosets.)  The question is to find a method of using f to determining what H is, 
significantly faster than naïve methods.  The most naïve method is to compare every f(g) to 
f(identity).  Then g will be in H exactly when equality holds.  Of course, standard facts about 
group theory, such as LaGrange’s theorem, can clearly be used to speed that up somewhat, but 
not really significantly. 
 
These notes outline how quantum computations can be used to attack the problem in the case that 
G is Abelian. Later, we will discuss Kiteav’s reduction of the discrete log problem to the Abelian 
hidden subgroup problem.  We will also discuss the oft made statement that the factorization 
problem is a special case of the Abelian hidden subgroup problem, seeing that it is true if we 
modify our definition slightly. 
 
Of the few quantum algorithm’s I have learned, the one discussed here is the easiest, and so 
would be a good place for a beginner to start.  However, for a true beginner, I would strongly 
recommend first reading section 2 of [M1], which gives a general introduction to the physics and 
notation relevant to quantum computing.  If one follows that by then reading this, and then 
reading the rest of [M1], and finally reading [M3] (the most elaborate quantum algorithm I 
know), the reader will have learned everything I know about the subject (and will no doubt 
realize how little that is).  
 
These notes are not complete.  They present the parts that I find prettiest, namely, a review of 
group characters, the group Fourier transform, and the actual quantum computation.  They do not 
discuss the efficiency of the method.  These notes are adapted from [L], which discusses the 
details missing here, and also discusses what progress has been made on the non-Abelian case. 
 
 
Our computations will on the complex inner-product space having the set of symbols  
{|g, s> | g ε G, s ε S} as an orthonormal bases.  The inner product will be the standard one.   
Recall, a unit vector in such an inner product space is called a state, and (mathematical) states 
accurately represent actual (physical) states of a collection of qubits.   (We will assume the 

reader is comfortable with the meaning of expressions such as 

! 

1

|G |

! 

| g, f (g) >
g"G

# , and their 

relation to physical reality.) 
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BRIEF OUTLINE (details later):  Let G be Abelian.  Group character theory defines a subgroup 
H

! 

"  that is determined by H.  If H is known, H

! 

"  can be found.  Of course, we do not know H.  
However, the quantum computations we will present allow us to find H

! 

"  directly.  Knowing H

! 

" , 
we can then find H

! 

"

! 

" .  We will prove that H

! 

"

! 

"  = H, and so be done.   Well, actually, it is a bit 
more complicated.  Each run of the computer will be guarantied to produce an element of H

! 

" ,  
all possibilities being equally likely to appear.  We must collect a set of such elements, and hope 
that they constitute a generating set for H

! 

" .  If so, using them, we can find H.   (See [L] for 
discussions of the efficiency of finding a generating set for H

! 

" , and a method of using such to 
find H.) 
 
 
 
Of course, we need matters to be in a computational form.  For instance, we will assume 
G = Z

! 

N
1

⊕Z

! 

N
2

⊕…⊕Z

! 

N
w

 (recalling that any finite Abelian group is isomorphic to such).  That 
allows us to use a register in the computer to input an element g of G, using the standard  
“base 2” method.  (Example:  If  (3 mod 5, 1 mod 4) ε  Z5⊕Z4,  that element could be expressed 
as (0, 1, 1, 0 1), the first 011 representing 3, and the last 01 representing 1, where the first part 
has three places, since 23 ≥ 5 > 22.  What this does is encode Z5⊕Z4 as a subset of Z2

3+2.)   
We will also assume a second register of the computer can be used to deal with f(g), which 
means we need to be able to (efficiently) identify S with a subset of Z2

s, for some s.  
(If, say s = 3, and G = Z5⊕Z4, we would need 3 + 2 + 3 qubits in our computer.)  Finally, we 
must assume the function f can be efficiently computed. 
 
 
Our computer will have two registers, the first dealing with the g  ε G, the second dealing with 
the s ε S.   Our computer program will involve three steps.  Near the end of section 2 of [M1],  

it is shown that there is a quantum gate that converts 

! 

1

|G |

! 

| g,0 >
g"G

#  to 

! 

1

|G |

! 

| g, f (g) >
g"G

# .  

Therefore, that conversion is an allowable quantum calculation, and is the middle one of our 
three steps.  It is the only one of the three that deals with both registers simultaneously. 
 
The first and last steps in our program only deal with the first register.  Actually, both those steps 
are the same, namely, applying the group Fourier transform.  In order to introduce that transform, 
we must first remind the reader of the theory of (irreducible) characters of a finite Abelian group.  
(The knowledgeable reader can skip ahead.) 
 
 
Definition:  An irreducible character of the Abelian group G is a homomorphism from G to the 
multiplicative group of nonzero complex numbers.  (Whenever we use the word character, it will 
be understood to refer to an irreducible character of G.)  

! 

G will denote the set of all such 
characters. 
 

! 

G is easily made into a group.  The identity is the character that sends each element of G to 1.  
The inverse of χ sends g to the inverse of χ(g).  The operation is function multiplication. 
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Since G is a group under addition, if χ is a character and g, h ε G, then χ(g + h) = χ(g)χ(h). 
Thus, for n an integer, we have χ(ng) = (χ(g))n.  If it happens that ng = 0, then  
1 = χ(0) = χ(ng) = (χ(g))n, and so χ(g) is an n-th root of unity.  (In particular, χ(g) is an n-th root 
of unity for n the order of g.) 
 
Notation:  We have G = Z

! 

N
1

⊕Z

! 

N
2

⊕…⊕Z

! 

N
w

.  For a = (a1, a2, …, aw) and b = (b1, b2, …bw) in G  
(and treating the aj and bj as integers between 0 and Nj – 1), define χa(b) to be 

! 

j=1

w

" exp(2πiajbj/Nj).   

 
 
(A)  Lemma:  The map a → χa is a group isomorphism between G and 

! 

G. 
 
Proof:  It is straightforward to see that χa is a character.   Now let χ be any character.   
For 1 ≤ j ≤ w, let Bj ε G be the w-tuple consisting entirely of zeros except for the j-th position in 
which there is a 1.  Now NjBj = 0, and so χ(Bj), being an Nj-th root of unity, has the form 
exp(2πiaj/Nj) for some integer aj between 0 and Nj – 1.    Since (b1, b2, …, bw) =   
b1B1 + b2B2 +… + bwBW, we easily see that χ = χa, for a = (a1, a2, …, aw).  Thus  

! 

G = {χa | a ε G}, and so our map is onto.  Furthermore, it is easily verified that it is a group 
homomorphism.   Now if χa is the identity of 

! 

G, then χa(Bj) = 1.  As it also equals exp(2πiaj/Nj), 
we must have Nj|aj, so that aj is the zero of Z

! 

Nj .  As that holds for 1 ≤ j ≤ w, we must have a = 0 
in G.  We therefore see that the kernel of our map is {0}, and we are done. 
 
 
(B) Lemma: χa(b) = χb(a).  Also, χ-a(b) = 

! 

"
a
(b) (with the overbar denoting complex conjugation). 

 
Proof:  The first statement is immediate from the definition.  As for the second,  
 

χ-a(b) = 

! 

j=1

w

" exp(-2πiajbj/Nj) = 

! 

exp(2"ia jb j /N j )
j=1

w

#  = 

! 

"
a
(b). 

 
 
 
 
(C) Lemma:  Let a,c ε G.  Then 

! 

"
a
(b)

b#G

$ "
c
(b) equals 0 unless a = c, in which case it equals |G|. 

Proof:  

! 

"
a
(b)

b#G

$ "
c
(b) = 

! 

b"G

# ((

! 

j=1

w

" exp(2πiajbj/Nj))(

! 

exp(2"ic jb j /N j

j=1

w

# )) =  

 
 

! 

b"G

# ((

! 

j=1

w

" exp(2πiajbj/Nj))( 

! 

j=1

w

" exp(-2πicjbj/Nj)).  Letting dj = aj – cj, that becomes  
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! 

b"G

# ((

! 

j=1

w

" exp(2πidj/Nj))b
j) =

! 

b
1
"ZN1

#

! 

b
2
"ZN2

# … 

! 

bw"ZNw

# ((

! 

j=1

w

" exp(2πidj/Nj))b
j) =  

 

! 

j=1

w

" (

! 

b j"ZN j

# (exp(2πidj/Nj)b
j).   If Nj divides dj, then 

! 

b j"ZN j

# (exp(2πidj/Nj)b
j = Nj.  Otherwise, it is a 

geometric series summing to 

! 

1" (exp(2#id j /N j ))
N j

1" exp(2#id j /N j )
, which equals 0, since the numerator is 0  

 
but the denominator is not.  Therefore, 

! 

"
a
(b)

b#G

$ "
c
(b) = 0 unless Nj divides dj for 1 ≤ j ≤ w, in 

which case it equals 

! 

N j

j=1

w

"  = |G|.  However, since dj = aj – cj is in Z

! 

N j
, we see that Nj divides  

dj for 1 ≤ j ≤ w, exactly when a = c. 
 
 
Remark:   (C) is called the first orthogonality relation, and holds for the irreducible characters of 
non-Abelian groups as well.  Since the definition of an irreducible character is harder for the 
non-Abelian case, the proof is somewhat harder.  See [I, Chapter 2]. 
 
 
 
(D) Corollary: 

! 

"
a
(b)

b#G

$  equals 0 unless a = 0, in which case it equals |G|.    

 
Proof:  This is just the special case of (C) in which c = 0 (since χ0 is identically 1).  
 
 
We previously mentioned that the first and last steps of our program will be an application of the 
group Fourier transform to the first register (that register being used to deal with states which are 
linear combinations of basic states |k> for k ε G).   
 
 
Notation:  Let H(G) be the complex inner-product space having the set of symbols  
{|k> | k ε G} as an orthonormal bases. 
 
 
Definition:  The Fourier transform of G is the operator on H(G) which takes the basis element 

|k> to 

! 

1

|G |

! 

"g (k) | g >
g#G

$ .  
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(E) Lemma:  F is a unitary operator (and so applying it constitutes an allowable quantum 
computation). 
 
Proof:  We must show that {F(|k>) | k ε G} is an orthonormal bases of H(G).  For k, h ε G, the 

inner product of f(|h>) and f(|k>) is 

! 

1

|G |

! 

"g (k)
g#G

$ "g (h)  = (by (B)) 

! 

1

|G |

! 

"k (g)
g#G

$ "h (g) .   

By (C), that is 0 unless h = k, in which case it is 1.  The lemma follows (linear independence 
using a standard argument). 
 
 
 
The next lemma is not strictly required, but is of interest. 
 
(F) Lemma:  For k ε G, F(F(|k>)) = |-k>. 
 

Proof:  F(F(|k>)) = 

! 

1

|G |

! 

"g (k)F(| g >
g#G

$ )  =  

 

! 

1

|G |

! 

"g (k)
g#G

$ [

! 

1

|G |

! 

"#h (g) |#h >
#h$G

% ] = 

 

! 

1

|G |

! 

[ "g (k)"#h (g))] |#h >
g$G

%
#h$G

%  = (using (B)) 

 

! 

1

|G |

! 

[ "k (g)"h (g)] |#h >
g$G

%
#h$G

%  = |-k> (using (C)). 

 
 
 
Our brief outline said that we will find H by first finding H

! 

" .  We review that subgroup. 
 
 
Definition:  Let H be a subgroup of G.  Then H

! 

"  = {g ε G | χg(h) = 1 for all h ε H} =  
∩Ker χh over all h ε H.  (The last equality, by (B), makes it clear that H

! 

"  is a subgroup of G). 
 
 
(G) Lemma:  |H

! 

" | = |G/H|.  
 
Proof: We will show more than what is stated, but we only need the statement.   
If g ε H

! 

" , then clearly H ⊆ Ker χg.  Therefore, the map γg defined on G/H by  
γg(a + H) = χg(a) is well defined.  Now γg is easily seen to be a homomorphism into the 
multiplicative group of nonzero complex numbers.  That is, it is a character of G/H. 
Therefore, the map Γ sending g ε H

! 

"  to γg is a map from H

! 

"  to 

! 

G /H .    
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We claim Γ is a homomorphism.  For g, k ε H

! 

" , Γ(g + k) = γg+k sends a + H to χg+k(a) = 
χg(a)χk(a), and so does Γ(g)Γ(k). 

We claim that Γ is one-to-one.  Suppose g ε H

! 

"  is in the kernel of Γ.  Then for all a + H, 
we have χg(a) = γg(a + H) = 1.  This is true for all a ε G, and so χg = χ0.  By (A), g = 0. 

We claim that Γ is onto.  Pick some γ ε 

! 

G /H .  Define χ on G by saying χ(a) = γ(a + H).  
Clearly χ is a character of G, and so χ = χg for some g ε G.  However, clearly H ⊆ Ker χ, and so 
g ε H

! 

" .  Thus γ = γg = Γ(g). 
 We now see that Γ is an isomorphism.  In particular, |H

! 

" | =  |

! 

G /H |.  However, by (A), 
we already know |

! 

G /H | = |G/H|, and so we are done. 
 
 
 
 

Notation:  For H a subgroup of G, let |H> = 

! 

1

|H |

! 

| h >
h"H

#  (which is a state). 

 
 
(H) Lemma:  If H is a subgroup of G, then F(|H>) = |H

! 

">. 
 

Proof:  F(|H>) = 

! 

1

|H |

! 

F(| h >
h"H

# ) = 

! 

1

|H ||G |

! 

h"H

# [

! 

"
t
(h) | t >

t#G

$ ] =  

 

! 

1

|H ||G |

! 

t"G

# (

! 

"
t
(h)

h#H

$ )|t>.     Now χt is a character of G.  However, when restricted to H, it is 

obviously also a character of H.  Therefore, by (D),

! 

"
t
(h)

h#H

$  is 0 unless χt restricted to H is 

identically 1, in which case that sum equals |H|.  However, χt restricted to H is identically 1 
exactly when t is in H⊥.  Therefore, we have  
 

F(|H>) = 

! 

1

|H ||G |

! 

t"H #

$ |H||t> = (using G)  

! 

1

|H
"
|

! 

| t >

t"H #

$  = |H

! 

">. 

 
 
 
We give two proofs of the next corollary. 
 
 
(I)  Corollary:  If H is a subgroup of G, then H

! 

"

! 

"  = H. 
 
Proof #1:  The definition of H

! 

"  shows H ⊆ H

! 

"

! 

" .  By two applications of (G), we have  
|H

! 

"

! 

" | = |G|/|H

! 

" |  = |G|/(|G|/|H|) = |H|. 
 

Proof  #2:  By (H), F(F(|H>)) = |H

! 

"

! 

"> = 

! 

1

|H
""
|

! 

| k >

k"H ##

$ .  However, by (F), we also have  
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F(F(H)) = 

! 

1

|H |

! 

F(F(| h >
h"H

# )) = 

! 

1

|H |

! 

|"h >
h#H

$ = 

! 

1

|H |

! 

| h >
h"H

# .  Since all the |k> and |h> are  

 
part of the same bases of our vector space H(G), the equality of these two linear combinations 
implies they are identical, and we are done. 
 
Notation:  For t ε G, let τt be the operator which sends the basis element |g> to |t+g>.  (Clearly 
that operator permutes the canonical orthonormal basis elements of H(G), and so is unitary.)    
Also, let φt be the operator which multiplies the basis element |g> of H(G) by χg(t).  (As the norm 
of χg(t) is 1, this operator is also unitary.) Finally, let T be a transversal for the subgroup H of G  
(i.e., T is a set of coset representatives). 
 
 
(J) Lemma:  For t ε G, we have Fτt = φtF. 
 
Proof:  One can easily verify that both sides send the basis vector |g> of H(G) to  

! 

1

|G |

! 

"k (t + g) | k >
k#G

$ , (using that χk(t) χk(g) = χk(t+g)). 

 
 
 
We are now ready to beginning showing how to program the computer to produce equally likely 
random elements of H

! 

" . 
 
(K) The Program:  We begin with the computer in the state |0,0>.  We then apply F to the first 

register, which is easily seen to result in the state 

! 

1

|G |

! 

| g,0 >
g"G

# .   As explained earlier, there is 

a quantum gate that converts the above state to the state 

! 

1

|G |

! 

| g, f (g) >
g"G

# .   Since f separates 

cosets, we know that for t ε T and h ε H, f(t + h) = f(t).  Therefore, (using that |G| = |T||H|) our 
previous state can be written as  
 

! 

1

|T |

! 

(
1

|H |t"T

# | t + h >) | f (t) >
h"H

#  = 

! 

1

|T |

! 

(
1

|H |t"T

# $ t (| h >)) | f (t) >
h"H

#  = 

 
 

! 

1

|T |

! 

t"T

# (τt(

! 

1

|H |

! 

| h >
h"H

# ))|f(t)> = 

! 

1

|T |

! 

t"T

# (τt(|H>))|f(t)>.  We next apply F to  
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the first register.  Using (J), we see the result is 

! 

1

|T |

! 

t"T

# (φtF(|H>))|f(t)>, which by (H) equals 

! 

1

|T |

! 

t"T

# (φt(|H

! 

">))|f(t)> = 

! 

1

|T |

! 

t"T

# (φt (

! 

1

|H
"
|

| k >

k#H "

$ ))|f(t)>.  Using the definition of φt and  

 

the fact that (G) shows |H

! 

" | = |T|, this last state equals 

! 

1

|T |

! 

t"T

# (

! 

"
k
(t) | k >

k#H $

% )|f(t)> = 

! 

1

|T |

! 

"k (t)

t#T ,k#H $

% | k, f (t) >.   At this point, let us mention that since f separates cosets, f takes 

distinct values on distinct members of T.  Thus, the various |k, f(t)> are |H

! 

" ||T| = |T|2 distinct 

states.  Since the norm of χk(t) is 1, if 

! 

1

|T |

! 

"k (t)

t#T ,k#H $

% | k, f (t) > is read, all of the states  

|k, f(t)> (with k ε H

! 

" , t ε T) have an equally likely chance (namely 1/|T|2) of appearing.  Also, 
any such k appears in exactly |T| such states, and so each k ε H

! 

"  has a chance of exactly 1/|T| of 
being read from the first register.  Therefore, we produce a random element of H

! 

" , all equally 
likely. 
 
 
Remark:  There is a subtlety in the above mathematics that might be overlooked.  Let us 

illuminate it.  At the second step, we went from the state 

! 

1

|G |

! 

| g,0 >
g"G

#  to the state 

! 

1

|G |

! 

| g, f (g) >
g"G

# .  Superficially, that appears to leave the first register unaffected.  However, 

the step actually has a profound affect on the first register, since it entangles it with the second 

register.  If one reads the second register of 

! 

1

|G |

! 

| g,0 >
g"G

# , one will assuredly get 0, and the 

first register will remain in the state 

! 

1

|G |

! 

| g >
g"G

# .  However, if one reads the second register of 

! 

1

|G |

! 

| g, f (g) >
g"G

# , one will get some choice of f(g).  Suppose g is in the coset t + H (with t ε T). 

 

Then by entanglement, the first register will be in the state 

! 

1

|H |

! 

| g >
g"t+H

# .  Our process had 

three steps, the first and last being the application of F to the first register.  We are discussing the 
middle step.  Suppose it was left out.  Then we would merely start with |0, 0>, and apply F twice 
to the first register.  By (F), we would end up back at |0, 0>.  It is the middle step, the entangling 
step, which works the magic. (Entanglement is thoroughly examined in [M4], and perhaps too 
thoroughly in [M2].) 
 
 
 



 9 

The rest of the procedure consists of repeating (K) many times, each time getting a random 
element of H

! 

" .  Now [L, Theorem D1, appendix D] states that if n + 

! 

log |K |" #elements are 
chosen at random from a finite group K, then the probability they generate K exceeds 1 – 1/2n.  
We wish to apply that to K = H

! 

" .  However, not knowing |H

! 

" | , we instead use  
n + 

! 

log |G |" #.  For adequately large n, we will almost certainly have a generating set for H

! 

" . 
Next, [L, p. 23] shows how to use that generating set to successively find random elements of H.  
Again, we take n + 

! 

log |G |" # of them, since we do not know |H|.   
 
 
DISCRETE LOG PROBLEM:  Let p be prime, and let b be a primitive root for p.  Given x, it is 
easy to find c such that c ≡ bx mod p.  However, given c it is very hard to find x with  
bx ≡ c mod p.   That is called the discrete log problem.  The x → bx mod p function is an example 
of a one-way function, and such functions are prime candidates for use in cryptography.  Indeed, 
El Gamel encryption makes use of the difficulty of finding x given c.  In [S], along with his 
famous quantum factorization algorithm, Shor gives a lesser mentioned but equally interesting 
quantum algorithm for solving the discrete log problem.  (It is also exhibited in [M1].) 
 Here, we give a solution to the discrete log problem due to Kiteav [K].  It is 
accomplished by converting the discrete log problem into an Abelian hidden subgroup problem. 
 
 
(L) Let b be a primitive root of the prime p and suppose p does not divide c.  We wish to find  
x with bx ≡ c mod p.  Let G = Zp-1

! 

" Zp-1.  Let f be the function from G to S = Up, the 
multiplicative group of units mod p, defined by f(u, v) = bucv mod p.  Now f is easily seen to be a 
group homomorphism from G to Up, and its kernel is H = { (u, v ) | f(u, v) = 1 mod p}.  One 
easily sees that f separates cosets of H, the hidden subgroup we seek.   Suppose an element  
(u, v) of H has been found. Then since bx 

! 

" c mod p, we have 1 

! 

" bucv 

! 

" bu+vx mod p.  As b is a 
primitive root for p, we have u + vx 

! 

" 0 mod p - 1.  For each choice of v in {0, 1, 2, …, p – 2}, 
there is one choice of u  making that congruence true.  Many of the v in that set are relatively 
prime to p – 1.  Assuming that is so for our v, we see x 

! 

" -uv-1 mod p – 1, and we are done.  
(Note that we did not need to find a generating set for H.  Finding v-1 from v is easy via the 
Euclidean algorithm.) 
 
 
Remark:  Applying the Abelian hidden subgroup algorithm to Zp-1

! 

" Zp-1 would require using the 
Fourier transform of that group.  I do not know how efficient that is, nor am I interested enough 
to try to learn.  A more interested reader can find some discussion of such matters in [L].   
 
 
 
FACTORING:  One often sees claims that factorization can be reduced to the Abelian hidden 
subgroup problem.  That appears to be correct under a weaker version of the hidden subgroup 
problem, as we now discuss.  
 Suppose we wish to factor n (not a prime power).  An incorrect approach would be to say 
that we can write n = kh with GCD(k, h) = 1.  Thus Zn ≈ Zk ⊕ Zh, and we wish to find the hidden 
subgroup Zk ⊕ 0 of Zn.  The problem here is that we do not have any coset separating f. 
Without the additional information given by f, our task is exactly as hard as finding a factor of n. 
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We must find an approach that incorporates some useful f. 
Pick a random b with 1 < b < n, and use the Euclidean algorithm to quickly find  

GCD(b, n).  If the GCD exceeds 1, it is a non-trivial factor of n.   The more likely case is that 
GCD equals 1.  If so, let r (unknown) be the order of b mod n in the group of units of Zn.   
Since r divides φ(n), let H = {0, r, 2r, …, (φ(n)/r – 1)r} ⊆ Zφ(n) = G.  H is our hidden subgroup.  
Is there an f?  Yes!  For x ∈ Zφ(n), let f(x) = bx mod n.  We then have f(x) = f(y) IFF  
bx ≡ by mod n IFF r | x – y IFF x and y are in the same coset of H. 
 Suppose we could find H.  Actually, we do not have to find all of H; a few random 
elements of H will probably suffice to factor n, as we now explain. 
 First of all, we hope that r is even.  If the process we are about to explain fails to factor n 
within a fairly small number of tries, we can guess that for the b we selected, r is probably odd.  
In that case, we will pick a new b, and try again.  (Exercise:  Show that at least half of all b have 
an even r.  Consider n as a product of prime powers, and use that prime powers have primitive 
roots.)  Assuming r is even, suppose we have managed to find some h in H.  Then h = rk with  
0 ≤ k ≤ φ(n)/r – 1.    
 Claim:  There is a good chance that GCD(bh/2 – 1, n) is a non-trivial factor of n.  If k is 
even, then r | h/2, and we easily see that GCD equals n, and we fail.  However, if k is odd,  
then r does not divide h/2, and so we know that bh/2 is not congruent to 1 mod n.   Thus  
GCD(bh/2 – 1, n) < n.  Therefore, we must show there is a good chance that GCD  
is bigger than 1.  Now bh/2 – 1 = (br/2)k – 1 has br/2 – 1 as a factor.  Thus, it will suffice to show 
there is a good chance that GCD(br/2 – 1, n) > 1.  In fact, the well-known exponential 
factorization method (see [M1, section 1] or many textbooks) shows the chance of that last GCD 
being greater than 1 is at least ½.   Within a few tries for b and h, we should be able to factor n. 
 
However, we cannot use the Abelian hidden subgroup algorithm described above to find 
elements of H.  That algorithm assumes that G is known.  Our G = Zφ(n) is not known.  We do not 
know φ(n).   What we have is a variant of the hidden subgroup problem (as defined at the start of 
this paper).  We have an unknown G, and unknown H, and a known f. 
 
EXAMPLE:  Suppose we do not know the factorization of 21, but are told by an oracle that  
φ(21) = 12.  Since GCD(2, 21) = 1, we try letting b = 2.  We know that the order of 2 mod 21 
(= r, unknown) will divide 12, and so the multiples of r (taken mod 12) will constitute a hidden 
subgroup H of Z12.   We also know the function f(x) = 2x mod 21 is a coset separating function 
for H.  (Note that f(5) = 11, since 25 ≡ 11 mod 21.) Thus, the algorithm given above can be used 
to find H.  Notice that at the end of the second step of the algorithm (the entangling step), the 
computer will be in the state  

! 

1

12
(|0, 1> + |1, 2> + |2, 4> + |3, 8> + |4, 16> + |5, 11>  

 
             + |6, 1> +  |7, 2> + |8, 4> + |9, 8> + |10, 16> + |11, 11>).   
   

(Notice the two cycles of second entries, each of length 6.) 
 

 
 With a small amount of luck, the algorithm would soon tell us that H = {0, 6}, from 
which we would learn that the order of r is 6.   Now using the exponential factorization 
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technique, we cross our fingers and find GCD(26/2 – 1, 21).  It is 7, and so we have found a factor 
of 21. 
  
 
REMARK:  In the special case where n = pq is the product of two distinct primes, since  
n - ϕ(n) + 1 = p + q, if we know ϕ(n), we would have pq and p + q, and so could easily factor n. 
 
 
But what if the oracle is closed for remodeling, and we do not know what φ(21) equals?   
Shor’s famous algorithm ([S], [M1]) deals with that problem.  Since 29 = 512 is the first power 
of 2 larger than 212, it works with Z512.  (That modulus is manageably small, yet big enough to 
give a high probability of success to Shor’s method.)  We also use the function  
f(x) = 2x mod 21, but now for all x in Z512.   However, f is not a coset separating function.  We 
saw above that f gives cycles of length 6, and so were it a coset separating function, there would 
have to be 6 cosets, so that the subgroup they came from would have to have size  
512/6 = 85 + 2/6.  But that is not an integer.  Instead, one step of Shor’s algorithm has the 
computer in the state 
 
(1/

! 

512 )[|0, 1> + |1, 2> + |2, 4> + |3, 8> + |4, 16> + |5, 11> +  
 
                 |6, 1> + |7, 2> + |8, 4> + |9, 8> + |10, 16> + |11, 11> +  
 

     |12, 1> + |13, 2> + |14, 4> + |15, 8> + |16, 16> + |17, 11> + 
       . 
       .  
       . 

    |504, 1> + |505, 2> + |506, 4> + |507, 8> + |508, 16> + |509, 11> +   
 
   |510, 1> + |511, 2>].    (There are 85 complete cycles, and 2/6 of another cycle.) 

 
Suppose we now read the second register, and get (for example) 2.  That means the first register 
goes into the state (1/

! 

86  )[|1> + |7> + |13> + …. + |505> + |511>] =   
(1/

! 

86  )

! 

i= 0

84

" |6i + 1>.   (We hope to find the 6 = r.)   Shor then applies a Fourier transform, 
and ends with a state having the property that when read, has a good chance of producing a 
number t such that t/512 is a good approximation to a number of the form k/r.  The theory of 
continued fractions allows us to find r, (with luck, the right r).  We apply exponential 
factorization with r.  If we fail to factor 21, we know we got the wrong r.  With luck, a few tries 
gives us the right r, namely 6. 
 
Remark:  It has been said that Shor’s algorithm is a special case of the hidden subgroup problem.  
Although there are similarities, perhaps it would be better to say both are examples of hidden 
cycle problems.    

In [K], Kiteav introduces a new idea, which gives an alternate factorization algorithm, 
with some similarities to Shor’s.  (See [M3].)   However, there are aspects of [K] that I do not yet 
understand.    
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